
HIGH-LEVEL SYNTHESIS HEURISTICS FOR RUN-TIME RECONFIGURABLE
ARCHITECTURES

George Economakos and Sotiris Xydis

School of Electrical and Computer Engineering, National Technical University of Athens
Iroon Polytexneiou 9, GR-15780 Athens, Greece

phone: + (30) 210-7223341, fax: + (30) 210-7722428, email: geconom@microlab.ntua.gr
web: www.microlab.ntua.gr

ABSTRACT
High-level synthesis is becoming more popular as design
densities keep increasing in both the ASIC and FPGA world.
Additionally, modern programmable devices offer the advan-
tage of partial reconfiguration, which allows an algorithm to
be partially mapped into a small and fixed FPGA device that
can be reconfigured at run time, as the mapped application
changes its requirements. This paper presents resource con-
strained high-level synthesis heuristics, which utilize recon-
figurable datapath components under a variety of implemen-
tation platforms. The resulting architectures can be short-
ened so that the gain in clock cycles outperforms the timing
overhead of reconfiguration. The main advantage of the pro-
posed methodology is that through run time reconfiguration,
more complicated algorithms can be mapped into smaller de-
vices without speed degradation.

1. INTRODUCTION

During the last years, digital devices have been built us-
ing either application specific hardware modules (ASICs) or
general purpose software programmed microprocessors, or a
combination of them. Hardware implementations offer high
speed and efficiency but they are tailored for a specific set of
computations. If an alternative implementation is needed,
a new and expensive design process has to be performed.
On the contrary, software implementations can be modified
freely during the life-cycle of a device. However, they are
much more inefficient in terms of speed and area.

Reconfigurable computing [9, 4] is intended to fill the
gap between hardware and software, achieving potentially
much higher performance than software, while maintaining a
higher level of flexibility than hardware. Reconfigurable de-
vices, including Field-Programmable Gate Arrays (FPGAs),
contain an array of computational elements whose function-
ality is determined through multiple programmable configu-
ration bits. These elements, usually called logic blocks, are
connected using a set of programmable routing resources.
Custom digital circuits can be mapped to the reconfigurable
hardware by computing the logic functions of the circuit
within the logic blocks and using the configurable routing
to connect them. Currently, the most common configuration
technique is to use Look-Up Tables (LUTs), implemented
with Random Access Memory (RAM).

Frequently, the areas of a program accelerated through
the use of reconfigurable hardware are too complex to be
loaded simultaneously onto the available device. In these
cases, it is beneficial to be able to swap different configu-
rations in and out of the reconfigurable hardware as they are
needed during program execution. This concept is known as

Run-Time Reconfiguration (RTR). Through RTR, more sec-
tions of an application can be mapped into hardware and
thus, despite reconfiguration time overhead, a potential for
an overall performance improvement is provided.

RTR can be applied on different phases of the design
process, according to the granularity of the reconfigurable
blocks, which may be complex functions [10], simple RTL
components [1] or LUTs [13]. The reconfiguration data can
be stored inside the reconfigurable device [12] or transfered
from an embedded or host processor [10]. The underlying
architecture can be traditional FPGAs or special purpose ar-
chitectures [7, 13, 18], supporting very fast reconfiguration.

High-Level Synthesis (HLS) is a modern design method-
ology, where a behavior is mapped into an RTL architecture.
HLS has a great impact on the final circuit implementation
because the corresponding transformations act on large por-
tions of the design, which are expressed by a unique algorith-
mic specification construct (assignment, conditional, loop,
etc). Reconfiguration in HLS can be applied in the construc-
tion of the RTL architecture. Generally, each RTL datapath
component is not active in every control step. Partially inac-
tive components can be merged into a reconfigurable compo-
nent, which is active in all control steps where at least one of
the merged components is active.

This paper presents a new resource constrained HLS
scheduling heuristic, which utilizes reconfigurable compo-
nents. Based on experimentation, a binary multiplier has
been found to take 3 to 4 times the LUTs required for an
adder of the same input bit width. So, a RTR component is
proposed, a multiplier that can be reconfigured as 3 adders
when inactive. Using such components, the resulting sched-
ule is shortened so as to overcome the timing overhead of re-
configuration for different implementation architectures. The
main advantage of this solution is that through RTR, more
complicated algorithms can be mapped into smaller devices
without speed degradation. The experimental results show
an average 50% schedule shortening, which can offer timing
improvements even in conventional FPGA architectures.

2. RELATED RESEARCH

RTR is a leading technology improvement of reconfigurable
computing. A key point for its broad acceptance is how to
conduct reconfiguration quickly and flexibly. Conventional
FPGAs have not focused on reconfigurability much, because
they have been mainly used for emulation and prototyping.
This has started to change and the new architectures proposed
are specifically suited for RTR. In [7, 18], the proposed ar-
chitecture can store up to 8 different contexts to configure
LUTs. With this approach, reconfiguration is essentially a

©2007 EURASIP 1658

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

fast hardware context switch. In [13] a similar architecture
with 8 different contexts is presented along with a scheduling
algorithm to partition a technology mapped design in time so
as to achieve the best fit in all contexts. Hardware context
switching is proposed in [12] too, with a conventional FPGA
architecture. This approach has the drawback that it requires
much more hardware resources than a non-RTR approach for
the same application.

While minimizing reconfiguration time is one way of
making RTR effective, [8] presents another, minimizing the
times a device needs reconfiguration through the whole run
time of the mapped application. The proposed approach con-
siders implementations with one or more traditional FPGAs.
It is applied on the dataflow graph of an application and it
partitions it into separate partial reconfigurations in order to
minimize the number of the required RTRs.

Reconfigurable arithmetic components are presented in
[3] and [5]. In [3] a component called Morphable Multiplier
is presented, which is an array multiplier that can be con-
figured through multiplexers to work as either an adder or a
multiplier. The work concentrates on the efficient design of
such a device, maximizing hardware utilization, and not on
using morphable multipliers for algorithm realization. This
is done in [5] for the design of a graphics processor. Both
contributions work on a high abstraction level, with half and
full adders as basic building blocks, and do not involve a spe-
cific reconfigurable architecture.

Reconfigurable computing for HLS is reported in [1].
This work considers register binding of the RTL description
and proposes a technique to utilize instead of LUTs, on-chip
embedded memory, found in modern FPGA devices.

3. THE PROPOSED SOLUTION

This paper considers RTR during HLS. HLS acts upon the
dataflow graph of an application with the following basic
transformations: allocation (select the appropriate number
of functional units, storage units and interconnect units from
available component libraries), scheduling (determine the se-
quence in which every operation is executed) and binding
(assign operations to functional units, values to storage units
and connect them to cover the entire datapath). These three
transformations are related to each other and no one can be
considered isolated from the others.

The proposed solution is a novel resource constrained
scheduling heuristic that must be applied after allocation and
before binding. Its novelty is the utilization of RTR arith-
metic units. Specifically, after experimentation with differ-
ent FPGA architectures, it has been found that a binary mul-
tiplier takes 3 to 4 times the LUTs required for an adder of
the same input bit width. So, we can assume that we have
an arithmetic component that can be used as a multiplier in
some control steps and as 3 adders (at least) in all the others.
If we perform resource constrained scheduling with such re-
configurable components we can reduce the latency, in terms
of control steps, of our circuit.

For example, consider a digital filter with two inputs x
and y and two outputs z1 and z2, where z1

� a0x0
� x1

� x2
�

a3x3
� x4

� a5x5 and z2
� b0y0

� b1y1
� y2

� y3
� b4y4

� y5.
If we want to build a circuit for this system, using two mul-
tipliers and two adders in every control step, we will come
out with the schedule of figure 1. If one of the multipliers is
reconfigurable, and as stated in the previous paragraph can

x

+

+x x
CS=1

x
CS=2

CS=3

CS=4

x x

+

+

+

+

+

+

+
CS=5

+

CS=6

a0 x0 x1 x2 a3 x3 x4 a5 x5 b0 y0b1 y1 y2 y3 b4 y4 y5

Figure 1: Schedule with 2 mult. and 2 add.

x

+

+x x
CS=1

x
CS=2

CS=3

CS=4

x

x

+

+

+

+

+

+

+
CS=5

+

a0 x0 x1 x2 a3 x3 x4 a5 x5 b0 y0b1 y1 y2 y3 b4 y4 y5

Figure 2: Schedule with 1 mult., 2 add. and 1 RTR mult.

be used as either a multiplier or 3 adders, we can reduce the
latency by one control step, as shown in figure 2.

Such a result is promising but to apply RTR we must
spend some time for reconfiguration at the beginning of some
of the control steps. Since all control steps must be equal in
time that means that we must either extend the control step
period or insert extra reconfiguration control steps. So, in
the above example, the one control step gain will be outper-
formed by the increase in clock period or schedule length due
to reconfiguration.

However, if we want to implement the system using two
multipliers and one adder we will come out with a large
schedule, shown in figure 3. In that case, making one multi-
plier reconfigurable will result in a more drastic latency im-
provement, as shown in figure 4. Now RTR timing overhead
is not a big problem because the latency reduction is almost
50% and the result is a faster implementation with better re-
source utilization.

In fact the results of this approach can be even more op-
timistic taking into account that a multiplier needs twice the
execution time an adder needs. So, if we use multicycle mul-
tipliers, a single reconfiguration can change a multiplier into
6 adders in two consecutive control steps.

4. SCHEDULING WITH RECONFIGURABLE
LOGIC

Practical problems in hardware scheduling are modeled
by generic sequencing graphs, with possibly multiple-
cycle operations of different types. With this model, the
minimum-latency resource constrained scheduling problem
and the minimum-resource latency constrained problem are
intractable. Therefore, heuristic algorithms have been re-
searched and used. For resource constrained scheduling, that
is when binding is applied first and the number of available
hardware resources is determined, a very efficient and widely
used algorithm is list scheduling. In its general form, list

©2007 EURASIP 1659

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

x

+

+x x
CS=1

x
CS=2

CS=3

CS=4

x x

+

+

+

+

+

+

+

CS=5

+

CS=6

CS=7

CS=8

CS=9

CS=10

a0 x0 x1 x2 a3 x3 x4 a5 x5 b0 y0b1 y1 y2 y3 b4 y4 y5

Figure 3: Schedule with 2 mult. and 1 add.

x

+

+x x
CS=1

x
CS=2

CS=3

CS=4

x

x

+

++

+

+

+

+

CS=5
+

CS=6

a0 x0 x1 x2 a3 x3 x4 a5 x5 b0 y0b1 y1 y2 y3 b4 y4 y5

Figure 4: Schedule with 1 mult., 1 add. and 1 RTR mult.

scheduling is the following algorithm.

INSERT READY OPS(V ,PListt1 ,PListt2 , ����� ,PListtm);
Cstep=0;
while ((PListt1

�� /0) or ����� or (PListt1
�� /0)) do

Cstep=Cstep+1;
for k=1 to m do

for funit=1 to Nk do
if (PListtk

�� /0) then
Scurrent=SC OP(Scurrent ,FIRST(PListtk ,Cstep));
PListtk =DELETE(PListtk ,FIRST(PListtk);

endif
endfor

endfor
INSERT READY OPS(V ,PListt1 ,PListt2 , ����� ,PListtm);

endwhile

The algorithm uses a priority list PList for each operation
type tk � T . These lists are denoted by the variables PListt1 ,
PListt2 , �	�	� , PListtm . Each operation’s priority is defined by
its mobility, that is the difference between its ALAP schedul-
ing value and its ASAP scheduling value. The operations in
all priority lists are scheduled into control steps based on Nk
which is the number of functional units performing opera-
tion of type tk. The function INSERT READY OPS scans
the set of nodes V , determines if any of the operations in
the set are ready (i.e., all its predecessors are scheduled),
deletes each ready node from the set V and appends it to
one of the priority lists based on its operation type. The
function SC OP(Scurrent ,oi,s j) returns a new schedule after

scheduling the operation oi in control step s j. The function
DELETE(PListtk ,oi) deletes the indicated operation oi from
the specified list. Operations with low mobility are put first
in the list. In other words, operations that do not have many
opportunities to be scheduled in subsequent control steps are
preferred for the current. As the algorithm moves on, the
ASAP and ALAP values change and thus mobilities are dy-
namically re-calculated.

The same algorithm can be used when a subset of the
resources are reconfigurable and through RTR can be used in
some control steps as one type and in all the rest as another
type. For example, a reconfigurable binary multiplier can be
used as either a multiplier or (at least) as three additions. The
required modifications are the following:
 If a reconfigurable operator can be used as two (or, in the

general case more) distinct types, in each control step the
operations belonging to those types are merged together
in a common priority list.
 The number of functional units that perform each oper-
ator type are still kept separate and a new number Rn is
used to count the reconfigurable components.
 When both reconfigurable and non-reconfigurable com-
ponents of the same type are available in a control step,
the latter take precedence. So merging of the priority lists
take place after all available non-reconfigurable compo-
nents have been used.
 The number of available reconfigurable functional units
is decreased only when an operation is scheduled in a
control step where reconfigurable components are avail-
able and requires all the remaining resources of the com-
ponent.
With the above modifications, the new resource-

constrained scheduling heuristic with reconfigurable compo-
nents is as follows.

INSERT READY OPS(V ,PListt1 ,PListt2 , ����� ,PListtm);
Cstep=0;
while ((PListt1

�� /0) or ����� or (PListt1
�� /0)) do

Cstep=Cstep+1;
for k=1 to m do

for funit=1 to Nk do
if (PListtk

�� /0) then
Scurrent=SCH OP(Scurrent ,FIRST(PListtk ,Cstep));
PListtk =DELETE(PListtk ,FIRST(PListtk);

endif
endfor

endfor�
RPListt1 , ����� ,RPListtRn � =MERGE(PListt1 , ����� ,PListtm);

for k=1 to Rn do
if (RPListtk

�� /0) then
Scurrent=SCH OPS(Scurrent ,NTH(RPListtk ,Cstep));

endif
endfor
INSERT READY OPS(V ,PListt1 ,PListt2 , ����� ,PListtm);

endwhile

The modified algorithm constructs a set of merged pri-
ority lists RPListt1 , �	��� ,PListtRn � for each control step with
the function MERGE. Each merged list contains ready oper-
ations that a reconfigurable component can perform. If we
have more than one identical reconfigurable components, the
corresponding merged lists are the same (through a symbolic

©2007 EURASIP 1660

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Number of Number of cycles
Application nodes 3/3 2/1/2 2/1/1
Fircls 63 24 18 10
Firls 64 32 25 17
Firrcos 79 42 30 18
Invfreqz 41 25 18 10
Maxflat 115 51 38 22
Remez 55 28 20 17

Table 1: DSP schedules with RTR

link). Then, the function SCH OPS, schedules all operations
of the same type that are in the beginning of the merged list
and cover the whole reconfigurable component (or as much
as possible). These operations are returned by the function
NTH. For example, if we have a reconfigurable component
that can perform one multiplication or three additions and the
merged priority list is a1,a2,m1,a3,m2 � (where ai denotes an
addition and mi denotes a multiplication), a1, a2 and a3 will
be scheduled in the current control step.

The circuits designed using this heuristic are faster but
have a reconfiguration timing overhead. Depending on
the implementation technology different approaches can be
taken to make the final implementation efficient.
 In architectures with small reconfiguration time we can

extend the duration of every control cycle.
 In architectures with glitchless reconfiguration we can
perform it in multiple cycles (and overwrite working
components with the same configuration).
 In conventional architectures we can restrict the number
of possible reconfigurations.
Additionally, in all cases, the proposed reconfiguration

can be kept minimum by utilizing very few (less than five)
reconfigurable components.

5. EXPERIMENTAL RESULTS

The scheduling algorithm of the previous section has been
implemented on top of a C-to-RTL HLS synthesis environ-
ment. Six different DSP applications from MATLAB’s DSP
tool box (manually translated in untimed C) have been used
as testbenches. The applications were Fircls (Constrained
least square FIR filter), Firls (Least square linear-phase FIR
filter), Firrcos (Raised cosine FIR filter), Invfreqz (Discrete-
time filter from frequency data) Maxflat (Generalized digital
Butterworth filter) and Remez (Parks-McClellan optimal FIR
filter). Table 1 shows three implementations for each appli-
cation, one with 3 multipliers, 3 adders and no reconfigurable
components, one with 2 regular multipliers, 1 reconfigurable
multiplier and 2 adders and one with 2 regular multipliers, 1
reconfigurable multiplier and 1 adder. The implementations
with only 1 regular adder have an average latency improve-
ment of 53% and also occupy less area. Under this approach
a much better resource utilization is achieved. The penalty
that has to be paid is that if reconfigurations are very frequent
(for example at the beginning of every control step) the total
reconfiguration delay may be too long. The 53% latency im-
provement however covers even a doubling in control step
period (worst case) due to RTR. More details about the re-
configuration delay in conventional FPGA architectures are
given in the next section.

Microblaze

ICAP

Control
Logic

HWICAP

Dual Port
Block RAM

FPGA
Cofiguration

Memory

OPB

Figure 5: Implementation architecture

6. PRACTICAL CONSIDERATIONS

While the proposed algorithm is focused on future architec-
tures with low RTR overhead, some implementation issues
may be solved in an efficient way with conventional FPGA
devices. Such an issue is that if we want to have really fast
reconfiguration all action must be performed inside the re-
configurable fabric, because any external source of reconfig-
uration data (like serial connection with a host computer) is
too slow. An answer for that problem is the Virtex family of
Xilinx FPGAs, which is equipped with an internal reconfig-
uration access port (ICAP) used by internal logic to access
and modify the configuration memory. Xilinx offers a ready-
to-use IP called HWICAP [15], which can read a portion of
the configuration memory into block RAM, modify it, and
write it back, through the ICAP port. HWICAP can be used
in embedded self-reconfigurable devices [2, 6].

The architecture of such a device is given in figure 5.
The HWICAP controller can be connected with an embed-
ded processor like Xilinx’s MicroBlaze soft processor [16]
through the OPB bus (for a different embedded processor an
appropriate bus bridge may be used). The processor com-
municates with the HWICAP controller through the bus and
requests that a part of the devices configuration memory is
written in on-chip RAM (block RAM). Then the processor
can modify this information (accessing directly block RAM)
and request to be written back. So the processor, which is
initially configured inside the FPGA, can reconfigure other
parts of the device during run time. To do this the proces-
sor needs to know how to modify the copy of configuration
memory to achieve the required results. In our approach, the
differences between the multiplier and the three adders can
be initially stored inside MicroBlaze (during the initial con-
figuration phase) and exchanged on demand with appropriate
interrupt service routines. If the differences are kept as small
as possible, this is both feasible and efficient.

This approach, called difference-based reconfiguration
[14, 11], writes data in the exact location of each device in the
configuration bitstream (partial or full). Following this ap-
proach we conducted an experiment with the ML401 Xilinx

©2007 EURASIP 1661

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

board, based on the Virtex-4 XC4VLX25 device. The Virtex-
4 devices [17] allow fast configuration at a rate of 400MB/s
and the smallest partial bitstream that the HWICAP device
can handle is a frame of 32 vertical slices (each slice con-
tains 2 LUTs) which is 41 32bit words.

For our implementation we found that a 16 bit multi-
plier needs 54 slices while each 16 bit adder 9. In order
to minimize the reconfiguration overhead, we used place-
ment constraints to arrange the 3 adders (27 slices) of the
reconfigurable multiplier in a common frame. In the begin-
ning, this frame along with a number of neighboring slices
is configured as a 16 bit multiplier. When reconfiguration is
needed a hardware FSM generates an interrupt to MicroBlaze
which sends through HWICAP the frame with the 3 adders.
The reconfigurable component has ports for all devices (both
the multiplier and the 3 adders) permanently connected to
the registers and MUXs of the overall architecture. This is
needed so that no routing reconfiguration in required, which
can complicate the solution and add an extra timing over-
head. From all these details the reconfiguration time for each
reconfigurable component can be calculated as 0.41µsec. In
the case of the Maxflat filter of table 1 (which requires only
one reconfiguration) and a clock period of 50MHz the la-
tency improvement of our scheduling algorithm is 0.58µsec,
which outperforms the reconfiguration penalty (data trans-
fers between the MicroBlaze and block RAM use the 8 asyn-
chronous FSL FIFO links which can run as fast as 600MHz
and so, their contribution to the overall reconfiguration over-
head is negligible). So, all though our approach is aimed at
future architectures with small reconfiguration times, it can
be efficient with conventional FPGA devices also.

7. CONCLUSIONS

A novel resource constrained HLS scheduling heuristic,
which utilizes reconfigurable datapath components has been
presented in this work. Using reconfigurable multipliers, the
resulting schedule can be shortened so as the gain in clock
cycles can overcome the timing overhead of reconfiguration.
The main advantage of this solution is that through RTR,
more complicated algorithms can be mapped into smaller de-
vices without speed degradation. The experimental results
after integrating the proposed heuristic into an HLS environ-
ment shown an average 50% reduction in clock cycles that
compensates for the worst cases of reconfiguration overhead,
with better hardware utilization. Since RTR delays will be
shortened even more in future devices, the proposed schedul-
ing heuristic may be proved to be even more effective.

REFERENCES

[1] H. Al Atat and I. Quaiss. Register binding for FPGAs
with embedded memory. In 12th Annual Syumposium
on Field-Programmable Custom Computing Machines,
pages 167–175. IEEE, 2004.

[2] B. Blodget, S. McMillan, and P. Lysaght. A lightweight
approach for embedded reconfiguration of FPGAs. In
Design Automation and Test in Europe Conference and
Exhibition, pages 399–400. ACM/IEEE, 2003.

[3] S. Chiricescu, M. Schuette, R. Glinton, and H. Schmit.
Morphable multipliers. In 12th International Confer-
ence on Field Programmable Logic and Applications,
pages 647–656. IEEE, 2002.

[4] K. Compton and S. Hauck. Reconfigurable computing:
A survey of systems and software. ACM Computing
Surveys, 34(2):171–210, 2002.

[5] K. Dale, J. W. Sheaffer, V. V. Kumar, and D. P. Luebke.
Applications of small scale reconfigurability to graph-
ics processors. Technical Report CS-2005-11, Univer-
sity of Virginia, 2005.

[6] J. C. Ferreira and M. M. Silva. Run-time reconfigu-
ration support for FPGAs with embedded CPUs: The
hardware layer. In International Parallel and Dis-
tributed Processing Symposium, pages 165–168. IEEE,
2005.

[7] T. Fujii, K. Furuta, M. Motomura, M. Nomura,
M. Mizuno, K. Anjo, K. Wakabayashi, Y. Hirota,
Y. Nakazawa, H. Ito, and M. Yamashina. A dy-
namically reconfigurable logic engine with a multi-
context/multi-mode unified-cell architecture. In In-
ternational Solid-State Circuits Conference, Digest of
Technical Papers, pages 364–365. IEEE, 1999.

[8] S. Ghiasi, A. Nahapetian, and M. Sarrafzadeh. An op-
timal algorithm for minimizing run-time reconfigura-
tion delay. ACM Transactions on Embedded Computing
Systems, 3(2):237–256, 2004.

[9] R. Hartenstein. A decade of reconfigurable computing:
A visionary retrospective. In Design Automation and
Test in Europe Conference and Exhibition, pages 642–
649. ACM/IEEE, 2001.

[10] C. Patterson. High performance DES encryption in
virtex FPGAs using JBits. In Symposium on Field-
Programmable Custom Computing Machines, pages
113–121. IEEE, 2000.

[11] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and
P. Lysaght. Modular dynamic reconfiguration in vir-
tex fpgas. IEE Proceedings - Computers and Digital
Techniques, 153(3):157–164, 2006.

[12] J. Torresen and K. A. Vinger. High performance com-
puting by context switching reconfigurable logic. In
16th European Simulation Multiconference, pages 207–
210, 2002.

[13] S. Trimberger. Scheduling designs into a time-
multiplexed FPGA. In 6th International Symposium
on Field Programmable Gate Arrays, pages 153–160.
ACM, 1998.

[14] A. Upegi and E. Sanchez. Evolving hardware by dy-
namically reconfiguring xilinx fpgas. In 6th Interna-
tional Conference on Evolvable Systems: From Biology
to Hardware, pages 56–65, 2005.

[15] Xilinx. OPB HWICAP Product Specification v1.3,
2004.

[16] Xilinx. MicroBlaze Processor Reference Guide, 2005.
[17] Xilinx. Virtex-4 User Guide, 2006.
[18] M. Yamashina and M. Motomura. Reconfigurable com-

puting: Its concept and a practical embodiment us-
ing newly developed dynamically reconfigurable logic
(DRL) LSI. In 5th Asia and South Pacific Design
Automation Conference, pages 329–332. ACM/IEEE,
2000.

©2007 EURASIP 1662

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

