
AUTOMATIC CODE GENERATION FOR MULTI-MICROBLAZE SYSTEM WITH
SYNDEX

Pengcheng Mu, Mickaël Raulet, Jean-François Nezan, Jean-Gabriel Cousin

IETR/Image and Remote Sensing Group
CNRS UMR 6164/INSA Rennes

20, avenue des Buttes de Coësmes, 35043 RENNES Cedex, France
pmu@ens.insa-rennes.fr {mraulet, jnezan, jcousin}@insa-rennes.fr

ABSTRACT
Image processing applications such as video codecs repre-
sent a great challenge in terms of real-time embedded sys-
tems. Programmable multicomponent architectures can pro-
vide suitable target solutions combining flexibility and com-
putation power. Integrating multicomponents on FPGA pro-
vides greater flexibility but presents more challenges in sys-
tem level design e.g. design space exploration, multiproces-
sor distribution and scheduling, inter-processor communica-
tions and real-time constraints. The aim of our work is to
develop a fast automatic design process dedicated to the im-
plementation of deterministic image processing applications
on parallel multicomponent architectures. This design pro-
cess is based on AAA methodology using the SynDEx CAD
tool. A distributed implementation from high-level applica-
tion and architecture descriptions is automatically provided,
saving a considerable amount of time in design space explo-
ration achieving optimisation by reducing global execution
time. This paper presents the design process for an FPGA-
based multi-MicroBlaze system using SynDEx, and several
kernels are developed for the automatic code generation .

1. INTRODUCTION

Today’s image processing applications such as video or still
image codecs require a lot of processing power. Specific
hardware circuits overcome speed constraints but are not
compatible with a short time-to-market. They also need
early and evaluative demonstration prototypes. An alterna-
tive can be provided by programmable software components
(such as DSP and RISC processors) or programmable hard-
ware components (such as FPGA components) since they are
more flexible. Hard real-time constraints could be satisfied
by multicomponent architectures. As DSP is software pro-
grammable and FPGA is hardware configurable, this design
can provide considerable flexibility. However, this flexibility
is limited by the unchangeable topological structure of the
programmable software components and their fixed number.

With the help of multi-million gate configurable logic
and various heterogeneous FPGA hardware components
(multipliers, memory blocks, etc.), soft and hard processors
could now be integrated on FPGA. Examples of such soft
RISC processors include Nios from Altera1 and MicroBlaze
from Xilinx2. In addition, Xilinx has also integrated the Pow-
erPC 405 hard core on their FPGA. In [1], a Texas Instru-
ments3 C6201 DSP VHDL model is used on FPGA. When

1http://www.altera.com
2http://www.xilinx.com
3http://www.ti.com

the processors are integrated on FPGA, both control and
computation functionnalities of the embedded system could
be handled by one or more FPGAs, designing an FPGA-
based Systems on (Programmable) Chips (SoC). With mul-
tiple processors integrated on FPGA, we can also build up
Multiprocessor Systems on (Programmable) Chips (MPSoC)
[2]. This MPSoC offers flexibility and efficient support, not
only as regards its software but also as regards its hardware.
Several scenarios for architecture and algorithmic design can
be explored to reach real-time constraints. Time-to-market is
shorter in comparison with specific hardware circuits but this
manual exploration is still complex. As an example of the re-
search for multiprocessor, ATLAS [3], which is also known
as RAMP-Red is a prototype including 8 PowerPC 405 cores
that run multithreaded code for applications and a ninth core
that handles the operation system and I/O devices.

Co-Design [4] is usually used as the design method for
embedded systems. When it is used for MPSoC, the mul-
ticomponent architecture raises problems in terms of appli-
cation distribution: manual data transfers and synchroniza-
tions quickly become very complex and result in loss of time
and potential deadlocks. One suitable design process solu-
tion consists of using rapid prototyping methodology. The
aim is then to go from a high-level description of the appli-
cation to its real-time implementation on target architecture
as automatically as possible. This automation saves develop-
ment time and prevents conflicts and deadlocks. It ensures
processing safety and reduces validation tests.

A rapid prototyping methodology based on the SynDEx
tool is suitable for image processing systems and heteroge-
neous multicomponent architectures, and has been used in
some multi-DSP systems for image processing applications
[5]. This paper presents the use of this rapid prototyping
methodology in multi-MicroBlaze systems. The document
is organized as follows: in section 2 the prototyping method-
ology is introduced, then it is used for multi-MicroBlaze sys-
tems on FPGA in section 3 , and the necessary kernels for
automatic code generation are also presented. In section 4,
we give the test results and analyze the performances with an
application example. Finally, section 5 gives the conclusions
and perspectives.

2. AAA FAST PROTOTYPING METHODOLOGY
WITH SYNDEX

Our laboratory is studying a rapid prototyping design pro-
cess based on the use of the SynDEx4 tool [5]. SynDEx is
a free academic system level Computer Aided Design tool

4http://www.syndex.org

©2007 EURASIP 1644

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

microblaze_1 (microblazePOSIX)

TCP1

FSL0

FSL1

microblaze_0 (microblazePOSIX) (main)

TCP1

FSL0

FSL1

TCP_1 (TCP) FSL_0 (FSL)

PC (pentiumOS)

TCP1

Ajout_100 (*2)

xsc2(ref)

img_in img_out

Display_Y

xsc1(ref)

Y

Display

xsc1(ref)

Y

U

V

Read_YUV

xsc1(ref)

Y

U

V

architecture
graph

algorithm
graph

Ajout_100_1

Ajout_100_0

Adequation

Timing graph
FSL_0 microblaze_0 microblaze_1 TCP_1 PC

Figure 1: SynDEx design flow

co-developed by INRIA Rocquencourt and our laboratory. It
supports the AAA methodology (Adequation Algorithm Ar-
chitecture [6]) for distributed real-time processing.

2.1 SynDEx tool

The aim of SynDEx is to directly achieve optimized imple-
mentation from descriptions of an algorithm and an architec-
ture. Figure 1 gives the SynDEx design flow.

An algorithm graph (Figure 1) is described as a Data
Flow Graph (DFG), and specifies the potential parallelism
of the application. An architecture graph (Figure 1) de-
scribes the multicomponent target, i.e. a set of intercon-
nected processors and specific integrated circuits, and spec-
ifies the available parallelism. In the application example
given in Figure 1, the algorithm graph includes one input,
two outputs and a function which is divided into two identi-
cal parts to be executed simultaneously. In the architecture
graph, the target is composed of a PC, two MicroBlazes and
two communication media that are explained in section 3.5.
As these two MicroBlazes and the medium between them
are all integrated on an FPGA, the architecture graph gives a
medium-coarse grain description in comparison with the one
considering an FPGA as a black-box [5].

"Adequation" (Figure 1) means efficient mapping, and
consists of manually or automatically exploring the imple-
mentation solutions with optimization heuristics [6]. These
heuristics aim to minimize the total execution time of the al-
gorithm running on the multicomponent architecture. The
heuristic is a greedy list scheduling based approach with
manual interaction when timing constraints are not met.

Implementation consists of both performing a distribu-
tion (allocating parts of the algorithm to components) and

scheduling the algorithm on the architecture i.e. giving a to-
tal order for the operations distributed onto a component.

Formal verifications during adequation avoid deadlocks
in the communication scheme thanks to semaphores inserted
automatically during real-time code generation. Moreover,
since the Synchronized Distributed Executives (SynDEx) are
automatically generated and safe, part of the tests and low-
level manual coding are eliminated, decreasing the develop-
ment lifecycle.

SynDEx provides a timing graph (Figure 1), which in-
cludes simulation results of the distributed application and
thus enables SynDEx to be used as a virtual prototyping tool.
SynDEx then automatically generates the generic executives,
which are independent of the hardware target, and places
them in several source files , one for each hardware target.

2.2 Automatic executive generation

The generic executives automatically created by SynDEx are
static and composed of a list of macro-calls. The M45 macro-
processor transforms this list of macro-calls into compilable
codes for a specific target. The codes are usually C or assem-
ble codes for processors and VHDL for the specific functions
implemented on the FPGA. The M4 macroprocessor replaces
macro-calls by their definitions as given in the corresponding
executive kernel. The definitions are dependent on a target
and/or a communication medium. In this way, SynDEx can
be seen as an off-line static operating system that is suitable
for setting data-driven scheduling, such as image process-
ing applications. For examples, SynDEx kernels have been
developed for several processors such as General Purpose

5http://www.gnu.org/software/m4

©2007 EURASIP 1645

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Processors (usually on PC), Texas Instruments TMS320C6x
(C62x, C64x) DSP and Virtex FPGA families [5]. The gen-
erated codes could then be compiled by specific CAD tools
such as CCS for Texas Instruments DSP, Quartus II or ISE
for FPGA and Visual Studio for PC.

2.3 Design process

Architecture
graphConstraintsAlgorithm

graph

Adequation

GENERIC
Synchronized Distributed Executives

Hardware development

Timing
graph

Target_1 … Target_N Application Comm_M
Kernel Kernel Kernel Kernel

DEDICATED executives for specific targets
(specific Compilers/Loaders)

SynDEx

M4

Software development

FPGA Device
configuration

EDK
(for FPGA)

Software development

Visual Studio 2005
(for PC)

User

Figure 2: Global prototyping design flow

SynDEx and the use of specific kernels enable full rapid
prototyping from the application description (DFG) to final
multiprocessor implementation (Figure 2). The DFG de-
scription for an application should be done manually while
an automatic tool for high-level algorithmic complexity anal-
ysis may be used to help the system design [7].

The main advantage of the SynDEx based prototyping
process is its simplicity because most of the tasks performed
by the user concern the description of an application (cre-
ation of the algorithm graph) and a compiling environment.
All complex tasks (adequation, synchronization, data trans-
fers and chronometric reports) are executed automatically or
semi-automatically. The user can rapidly explore several de-
sign alternatives by modifying the architecture graph and/or
the algorithm graph, or by adding constraints [5].

3. FAST PROTOTYPING FOR
MULTI-MICROBLAZE SYSTEMS ON FPGA WITH

SYNDEX

The AAA fast prototyping methodology has been used in a
number of multi-DSP systems for image processing appli-
cations, and it could also be used in FPGA-based MPSoC to
integrate multiple components on one or more FPGAs. As an
embedded soft core, MicroBlaze is a RISC processor and op-
timized for implementation in Xilinx FPGA. It is highly con-
figurable, allowing users to select a specific set of features
required by their design. Integrating multiple MicroBlazes
on one or more FPGAs can build up a multi-MicroBlaze
MPSoC. This multi-MicroBlaze system is flexible in terms
of both software and hardware, so it can be used in compli-
cated and computation-rich applications such as image pro-
cessing. This section details the use of fast prototyping for
multi-MicroBlaze systems on FPGA with SynDEx.

3.1 Prototyping and design flow

Figure 2 shows the design flow for multi-MicroBlaze sys-
tems, a number of tools such as SynDEx, M4, EDK and Vi-
sual Studio are necessary for the design stage.

In this design flow, users firstly have to model in Syn-
DEx IDE (Integrated development environment) the proces-
sors and communication media which are used in their de-
sign. Two different models are possible for the communica-
tion media between processors: SAM (Single Access Mem-
ory) and RAM (Random Access Memory, shared memory)
[5].These modules are saved in a library and could be used
for other designs without any modifications. With these mod-
ules, users then could build up the architecture and the algo-
rithm graphs, and the adequation would be done by SynDEx
while the Synchronized Distributed Executives are automati-
cally generated in the form of m4 files. The m4 files then are
translated into compilable executives for specific targets such
as MicroBlaze, PC and specific functions on FPGA with the
help of kernels which are explained in this section.

As the codes are generated, the next step is to build up
the system. For the Xilinx FPGA, EDK (Embedded Devel-
opment Kit) is used for both hardware and software devel-
opments. The hardware is equivalent to the description of
FPGA in the architecture graph of SynDEx except that it is
described in the finest grain with EDK and can be used to
generate the bitstream that configures the FPGA. For soft-
ware programming, EDK uses the generated executives for
MicroBlazes and respective drivers to build up ELF files (Ex-
ecutable Linked Format) for the multi-MicroBlaze system.
When PC is used, Visual Studio (or other tools such as Dev-
C++) is necessary for software development using the gener-
ated executives for PC and respective drivers.

3.2 Development platform for multi-MicroBlaze sys-
tems

The ML402 development board and its complete develop-
ment line have been used in our work. This board is designed
for applications in Digital Video, DSP, Image Processing. Its
main features are as follows:

• Xilinx Virtex4 FPGA with 100MHz Oscillator for system
clock

• Different types of memories including DDR SDRAM,
ZBT SRAM, Flash and IIC EEPROM

• A set of connectors and interfaces including 10/100/1000
Tri-Speed Ethernet PHY, USB controller with Host and
Peripheral Ports, DB 15 VGA display, JTAG Configura-
tion Port etc.

In addition to the board, a PC has been used to act as the first
producer and last consumer of data. It connects to the board
via an Ethernet network, which allows TCP/IP communica-
tion between PC and the board (MicroBlaze in our applica-
tion). The most important advantage of such a platform is
that multiple processors and coprocessors can be integrated
on the FPGA, and their topological structure could be cus-
tomized to satisfy a user’s needs. In fact, the structure usually
depends on the application. Multiple types of medium such
as FIFO, shared memory can be used for communication be-
tween processors and an example of a system composed of
three MicroBlazes and a PC is showed in Figure 3 where the
three MicroBlazes are integrated on the FPGA of the board.

©2007 EURASIP 1646

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

FSL_2 (FSL)

microblaze_2 (microblazePOSIX)

TCP1

FSL0

FSL1

microblaze_0 (microblazePOSIX) (main)

TCP1

FSL0

FSL1

PC (pentiumOS)

TCP1

microblaze_1 (microblazePOSIX)

TCP1

FSL0

FSL1

FSL_1 (FSL)

TCP_1 (TCP)

FSL_0 (FSL)

Figure 3: Architecture of a multi-MicroBlaze system

3.3 SynDEx executive kernels
As described in section 2, the SynDEx generic executives
have to be translated into a compilable language. The transla-
tion of SynDEx macros into the target language is contained
in library files (also called kernels). Figure 4 shows the orga-
nization of different kernels for the multi-MicroBlaze system
as detailed in the following sections.

Code generation

Generic
SynDEx.m4x

Architecture
dependent

Application dependent
ApplicationName.m4x

Processor type dependent
pentiumOS.m4x

microblazePOSIX.m4x

Media type dependent
TCP.m4x
FSL.m4x

Figure 4: SynDEx kernel organization

3.4 MicroBlaze kernel
The program in MicroBlaze-based systems could be de-
signed using either a standalone Board Support Package
(BSP), which has no operating system, or Xilkernel, which
supports the core features required in an embedded, real-time
operating system (RTOS). Xilkernel is a POSIX compliant
API. When using Xilkernel, the standalone BSP is used be-
low the operating system layer. In [8], RTOS is introduced in
the AAA methodology. The RTOS has an impact on proces-
sor target such as execution time or allocated memory, but the
overcost is slight, especially for image processing algorithms
where data in the DFG are often large. Moreover, executives
automatically generated including RTOS primitives are sim-
ple leading to a better comprehension for users. They are
also more generic and compatible with more components.
Therefore, our software component kernel for MicroBlaze
has been developed using Xilkernel.

A software component kernel is used to automatically
generate executives that would run in a specific processor,
and different kernels should be used for different processors.
With the MicroBlaze kernel, the generic executives gener-
ated by SynDEx are translated into MicroBlaze compilable
C codes. The generated codes are compiled using Xilkernel,
and semaphores are used to synchronize the various threads
of the program.

Executives generated by SynDEx consist of a sequential
list of function calls (one for each DFG operation). There-
fore, functions have to be defined outside of SynDEx to make
the whole program executable. Most of these functions are
developed in C language so that they can be reused for any C
programmable device.

3.5 Communication media kernels for multi-MicroBlaze
system
As described in 3.1, communication media are important
components in the fast prototyping methodology. Two types
of communication media are used in our multi-MicroBlaze
system, one for the communication between MicroBlazes
and the other for the communication between MicroBlaze
and PC. In our work, Fast Simplex Link (FSL) is used for
the former and TCP/IP for the latter.

3.5.1 FSL

FSL is a uni-directional point-to-point communication chan-
nel bus used to provide fast communication between two IPs.
Up to 8 master and slave FSL interfaces are available on a
MicroBlaze processor, and the number of FSL can be cus-
tomized according to design needs. As FSL is a FIFO-based
communication bus, a SAM is used in SynDEx to model it
and a kernel has been developed for it.

FSL can be used to transfer data in two clock cycles be-
tween registers on the processor and hardware running on the
FPGA. The hardware can be either an IP peripheral (MicroB-
laze coprocessor) or another MicroBlaze processor (multi-
MicroBlaze).

3.5.2 TCP/IP

TCP/IP is a widely used communication protocol. The Ether-
net hardware is provided in the ML402 development board as
well as an IP to control it: the Ethernet Media Access Con-
troller (EMAC). The EMAC and a MicroBlaze are both on
the FPGA and internally connected by an OPB bus (On-chip
Peripheral Bus).

For image processing applications, TCP/IP could be used
to transfer data from PC to ML402 board for processing,
as well as transferring data to display the results (processed
images) on PC. In SynDEx, TCP/IP could be modeled as
a SAM because it uses FIFOs. With the kernel developed
for TCP/IP, SynDEx could generate a sequence of generic
executives to complete TCP/IP-based communication. Like
the computation function requirements, the communication
functions should also be developed outside SynDEx, and
these functions may be different depending on the different
types of processors. C functions have been respectively de-
veloped for PC and MicroBlaze so that they can communi-
cate using TCP/IP.

To program TCP/IP on a PC, Windows Sockets 2 is com-
monly used, while for MicroBlaze, two libraries could be
used, according to the user’s requirements. One of the net-
work libraries for embedded processors is libXilNet, which
is developed by Xilinx and provides a simple set of Socket
Application Programming Interface (APIs) functions; the
other is the Light Weight IP (lwIP) library, which is a third
party network library supporting two interfaces - Raw API
and BSD style Socket API. For comparison, libXilNet con-
sumes less memory space and has more restrictions while the
lwIP library is much more powerful but needs more memory.

©2007 EURASIP 1647

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Users can choose one of these two libraries according to their
requirements e.g. throughput for communication, memory
capacity etc. In our application, libXilNet is used for reasons
of simplicity and we can achieve a throughput of 10Mbps.

4. RESULTS

A simple image processing application is shown in Figure
1. Using our kernel for TCP/IP, a throughput of 10 Mbps
has been achieved. Since we have used libXilNet as the net-
work program library for MicroBlaze, which supports only
the polled mode, no significant improvement could be ob-
tained in throughput in this case. However, EMAC also sup-
ports other two types of MAC modes such as simple FIFO
interrupt mode and DMA (Direct Memory Access) mode (in-
cluding simple DMA and Scatter/Gather DMA). To make
EMAC work under these modes, the lwIP library should
be used in place of libXilNet. In fact, lwIP supports both
the polled mode and the simple FIFO interrupt mode with
Raw API as well as simple FIFO interrupt mode and simple
DMA mode with Socket API; Scatter/Gather DMA mode is
not currently supported by lwIP. Using lwIP could improve
throughput levels but more memory should be provided for
the program. This means that a tradeoff is required between
throughput and memory.

As the FSL interface is very simple, FSL does not sup-
port interrupt; furthermore, as FSL is used to transfer data be-
tween the dedicated register on MicroBlaze and other hard-
ware running on the FPGA, it does not support DMA. So
FSL-based data transfer should always be controlled by the
processor. As a result, FSL is suitable for connecting the Mi-
croBlaze and the IP coprocessor because the data could be
transferred to the coprocessor and be retrieved from the co-
processor after processing without excessive delays. When
FSL is used to send data from one MicroBlaze to another,
as the destination MicroBlaze is usually processing multiple
tasks, the source MicroBlaze may have to wait until the des-
tination MicroBlaze is free to receive the data. This being
so, FSL is a simple means of communication between two
MicroBlazes but it has its drawbacks.

5. CONCLUSIONS AND PERSPECTIVES

This paper has presented the AAA fast prototyping method-
ology used on the multi-MicroBlaze system with the Syn-
DEx tool and a given design process. One software compo-
nent kernel for MicroBlaze is developed for automatic code
generation, and the generated code supports Xilkernel RTOS.
Different kinds of communication kernels have been devel-
oped such as TCP/IP for communication between PC and
MicroBlaze as well as FSL for communication between Mi-
croBlazes. Using this design process, the most important and
complicated parts of multi-processor development, such as
the distribution of code for different processors, or synchro-
nization between computation and communication are all im-
plemented by the SynDEx tool, and the compilable C code
could be generated automatically with the help of the nec-
essary kernels. As the FPGA-based multi-MicroBlaze sys-
tem can have a very flexible architecture that may change
greatly depending on the application algorithm, the use of
this method can facilitate development and save a consid-
erable amount of time, design space and the corresponding
application optimization.

Though FSL is a simple FIFO-based communication
channel between MicroBlazes, it does not support DMA and
interrupt. A new type of FIFO should therefore be developed
in the future, supporting DMA to allow parallel computa-
tion and communication. Some other types of communica-
tion based on shared memory would also be attractive and
could be developed as a RAM model in SynDEx for future
use.

As the complexity of the application increases, more
powerful computation ability will be needed and IP copro-
cessors are always used for time-consuming computations.
Because of simultaneous execution, the time required for
computation could be greatly reduced and this is very impor-
tant for real-time embedded systems. As MicroBlaze is a soft
processor integrated on FPGA, connecting a user IP to Mi-
croBlaze would be very convenient and flexible. Therefore,
developing hardware component kernels for IP coprocessors
in SynDEx would be necessary for the AAA fast prototyping
of multi-MicroBlaze systems when the application becomes
complicated and time-consuming.

REFERENCES

[1] Vincent Brost, Fan Yang, and Michel Paindavoine,
“Rapid implementation of image processing onto fpga
using modular dsp c6201 vhdl model,” in The 27th In-
ternational Congress on High-Speed Photography and
Photonics, Xian, China, 2006.

[2] Grant Martin, “Overview of the mpsoc design chal-
lenge,” in Proceedings of the 43rd annual conference
on Design automation, San Francisco, CA, USA, July
2006.

[3] Njuguna Njoroge, Jared Casper, Sewook Wee, Yuriy
Teslyar, Daxia Ge, Christos Kozyrakis, and Kunle
Olukotun, “Atlas: A chip-multiprocessor with transac-
tional memory support,” in Proceedings of the Confer-
ence on Design Automation and Test in Europe (DATE),
Nice, France, April 2007.

[4] G. De Michell and R. K. Gupta, “Hardware/software
co-design,” Proceeding of the IEEE, vol. 85, no. 3, pp.
349–365, March 1997.

[5] M. Raulet, F. Urban, J.-F. Nezan, C. Moy, O. Déforges,
and Y. Sorel, “Rapid Prototyping For Heterogeneous
Multicomponent Systems: An MPEG-4 Stream Over An
UMTS Communication Link,” Journal Of Applied Sig-
nal Processing (JASP), 2005.

[6] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Opti-
mized rapid prototyping for real-time embedded hetero-
geneous multiprocessors,” in Proceedings of 7th Inter-
national Workshop on Hardware/Software Co-Design,
CODES’99, Rome, Italy, May 1999.

[7] Massimo Ravasi and Marco Mattavelli, “High abstrac-
tion level complexity analysis and memory architecture
simulations for multimedia algorithms,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 15, no.
5, pp. 673–684, May 2005.

[8] Ghislain Roquier, Michaël Raulet, Jean-François Nezan,
and Olivier Déforges, “Using RTOS in the AAA
methodology automatic executive generation,” in Pro-
ceedings of 14th European Signal Processing Confer-
ence, Florence, Italy, 2006.

©2007 EURASIP 1648

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

