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ABSTRACT
Modern graphics cards for computers, and especially their
graphics processing units (GPUs), are designed for fast ren-
dering of graphics. In order to achieve this GPUs are
equipped with a parallel architecture which can be exploited
for general-purpose computing on GPU (GPGPU) as a com-
plement to the central processing unit (CPU). In this paper
GPGPU techniques are used to make a parallel GPU imple-
mentation of state-of-the-art recursive Bayesian estimation
using particle filters (PF). The modifications made to obtain
a parallel particle filter, especially for the resampling step,
are discussed and the performance of the resulting GPU im-
plementation is compared to one achieved with a traditional
CPU implementation. The resulting GPU filter is faster with
the same accuracy as the CPU filter for many particles, and
it shows how the particle filter can be parallelized.

1. INTRODUCTION

Modern graphics processing units (GPUs) are designed to
handle huge amounts of data about a scene and to render
output to screen in real time. To achieve this, the GPU is
equipped with a single instruction multiple data (SIMD) par-
allel instruction architecture. GPUs are developing rapidly in
order to meet the ever increasing demands from the computer
game industry, and as a side-effect, general-purpose comput-
ing on graphics processing units (GPGPU) has emerged to
utilize this new source of computational power [1–3]. For
highly parallelizable algorithms the GPU may even outper-
form the sequential central processing unit (CPU).

The particle filter (PF) is an algorithm to perform recur-
sive Bayesian estimation [4–6]. Due to its nature, a large part
consists of performing identical operations on many particles
(samples), so it is potentially well suited for parallel imple-
mentation. Successful parallelization may lead to a drastic
reduction of computation time and open up for new appli-
cations requiring large state space descriptions with many
particles. Nonetheless, filtering and estimation algorithms
have only recently been investigated in this context, see for
instance [7, 8]. There are many types of parallel hardware
available nowadays; examples include multicore processors,
field-programmable gate arrays (FPGAs), computer clusters,
and GPUs. GPUs are low cost and easily accessible SIMD par-
allel hardware — almost every new computer comes with a
decent graphics card. Hence, GPUs are an interesting option
for speeding up a PF and to test parallel implementations. A
first GPU implementation of the PF was reported in [9] for a
visual tracking computer vision application. In contrast, in
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Figure 1: The graphics pipeline. The vertex and fragment
processors can be programmed with user code which will be
evaluated in parallel on several pipelines. (See Section 2.1.)

this paper a general PF GPU implementation is developed. To
the best of the authors’ knowledge no successful complete
implementation of a general PF on a GPU has yet been re-
ported and this article aims to fill this gap: GPGPU techniques
are used to implement a PF on a GPU and its performance is
compared to that of a CPU implementation.

The paper is organized as follows: In Section 2 GPGPU
programming is briefly introduced and this is used in Sec-
tion 3 to discuss various aspects of the PF requiring special
attention for a GPU implementation. Results from CPU and
GPU implementations are compared in Section 5, and con-
cluding remarks are given in Section 6.

2. GENERAL PURPOSE GRAPHICS
PROGRAMMING

GPUs operate according to the standardized graphics pipeline
(see Figure 1), which is implemented at hardware level [2].
This pipeline, which defines how the graphics should be pro-
cessed, is highly optimized for the typical graphics applica-
tion, i.e., displaying 3D objects.

The vertex processor receives vertices, i.e., corners of
the geometrical objects to display, and transform and project
them to determine how the objects should be shown on the
screen. All vertices are processed independently and as much
in parallel as there are pipelines available. In the rasterizer it
is determined what fragments, or potential pixels, the geo-
metrical shapes may result in, and the fragments are passed
on to the fragment processor. The fragments are then pro-
cessed independently and as much in parallel as there are
pipelines available, and the resulting color of the pixels is
stored in the frame buffer before being shown on the screen.

At the hardware level the graphics pipeline is imple-
mented using a number of processors, each having multi-
ple pipelines performing the same instruction on different
data. That is, GPUs are SIMD processors, and each processing
pipeline can be thought of as a parallel sub-processor.
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2.1 Programming the GPU

The two steps in the graphics pipeline open to programming
are the vertex processor (working with the primitives making
up the polygons to be rendered) and the fragment processor
(working with fragments, i.e., potential pixels in the final re-
sult). Both these processors can be controlled with programs
called shaders, and consist of several parallel pipelines (sub-
processors) for SIMD operations.

Shaders, or GPU programs, were introduced to replace,
what used to be, fixed functionality in the graphics pipeline
with more flexible programmable processors. They were
mainly intended to allow for more advanced graphics effects,
but they also got GPGPU started. Programming the vertex and
fragment processors is in many aspects very similar to pro-
gramming a CPU, with limitations and extensions made to
better support the graphics card and its intended usage, but
it should be kept in mind that the code runs in parallel on
multiple pipelines of the processor.

Some prominent differences include the basic data types
which are available; most operations of a GPU operate on
colors (represented by one to four floating point numbers),
and data is sent to and from the graphics card using textures
(1D–3D arrays of color data). In newer generations of GPUs
32 bit floating point operations are supported, but the round-
ing units do not fully conform to the IEEE floating point stan-
dard, hence providing somewhat poorer numerical accuracy.

In order to use the GPU for general purpose calculations,
a typical GPGPU application applies a program structure sim-
ilar to Algorithm 1. These very simple steps make sure that
the fragment program is executed once for every element of
the data. The workload is automatically distributed over the
available processor pipelines.

Algorithm 1 GPGPU skeleton program1

1. Program the fragment shader with the desired operation.
2. Send the data to the GPU in the form of a texture.
3. Draw a rectangle of suitable size on the screen to start the

calculation.
4. Read back the resulting texture to the CPU.

2.2 GPU Programming Language

There are various ways to access the GPU resources as a pro-
grammer, including C for graphics (Cg), [10], and OpenGL
[11] which includes the OpenGL Shading Language (GLSL),
[12]. This paper will use GLSL that operates closer to the
hardware than Cg. For more information and alternatives see
[1, 2, 10].

To run GLSL code on the GPU, the OpenGL application
programming interface (API) is used [11, 12]. The GLSL
code is passed as text to the API that compiles and links the
different shaders into binary code that is sent to the GPU and
executed the next time the graphics card is asked to render a
scene.

1The stream processing capabilities of the upcoming GPU generations
might change this rather complicated method of performing GPGPU.

3. RECURSIVE BAYESIAN ESTIMATION

The general nonlinear filtering problem is to estimate the
state, xt , of a state-space system

xt+1 = f (xt ,wt), (1a)
yt = h(xt)+ et , (1b)

where yt are measurement and wt ∼ pw(wt) and et ∼ pe(et)
are process and measurement noise, respectively. The func-
tion f describes the dynamics of the system, h the measure-
ments, and pw and pe are probability density functions (PDF)
for the involved noise. For the important special case of
linear-Gaussian dynamics and linear-Gaussian observations
the Kalman filter, [13, 14], solves the estimation problem in
an optimal way. A more general solution is the particle filter
(PF), [4–6], which approximately solves the Bayesian infer-
ence for the posterior state distribution, [15], given by

p(xt+1|Yt) =
∫

p(xt+1|xt)p(xt |Yt)dxt , (2a)

p(xt |Yt) =
p(yt |xt)p(xt |Yt−1)

p(yt |Yt−1)
, (2b)

where Yt = {yi}t
i=1 is the set of available measurements. The

PF uses statistical methods to approximate the integrals. The
basic PF algorithm is given in Algorithm 2.

Algorithm 2 Basic Particle Filter [5]

1. Let t := 0, generate N particles {x(i)
0 }N

i=1 ∼ p(x0).
2. Measurement update: Compute the particle weights

ω
(i)
t = p(yt |x(i)

t )
/

∑ j p(yt |x( j)
t ).

3. Resample:
(a) Generate N uniform random numbers

{u(i)
t }N

i=1 ∼U (0,1).

(b) Compute the cumulative weights: c(i)
t = ∑

i
j=1 ω

( j)
t .

(c) Generate N new particles using u(i)
t and c(i)

t :
{x(i?)

t }N
i=1 where Pr(x(i?)

t = x( j)
t ) = ω

j
t .

4. Time update:

(a) Generate process noise {w(i)
t }N

i=1 ∼ pw(wt).

(b) Simulate new particles x(i)
t+1 = f (x(i?)

t ,w(i)
t ).

5. Let t := t +1 and repeat from 2.

4. GPU BASED PARTICLE FILTER

To implement a parallel PF on a GPU there are several aspects
of Algorithm 2 that require special attention. Resampling
and weight normalization are the two most challenging steps
to implement in a parallel fashion since in these steps all par-
ticles and their weights interact with each other. The main
difficulties are cumulative summation, and selection and re-
distribution of particles. In the following sections, solutions
suitable for parallel implementation are proposed for these
tasks, together with a discussion on issues with random num-
ber generation, likelihood evaluation as part of the measure-
ment update, and state propagation as part of the time update.
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Figure 2: Illustration of a parallel implementation of cumulative sum generation of the numbers 1,2, . . . ,8. First the sum is
calculated using a forward adder tree. Then the partial summation results are used by the backward adder to construct the
cumulative sum; 1,3, . . . ,36.

4.1 Random Number Generation

At present, state-of-the-art graphics cards do not have suffi-
cient support for random number generation for usage in a
PF, since the statistical properties of the built-in generators
are too poor. The algorithm in this paper therefore relies on
random numbers generated on the CPU to be passed to the
GPU. This introduces quite a lot of data transfer as several
random numbers per particle are required for one iteration of
the PF. Uploading data to the graphics card is rather quick,
but still some performance is lost.

Generating random numbers on the GPU suitable for use
in Monte Carlo simulation is an ongoing research topic, see
e.g., [16–18]. Doing so will not only reduce data transport
and allow a standalone GPU implementation, an efficient par-
allel version will improve overall performance as the ran-
dom number generation itself takes a considerable amount
of time.

4.2 Likelihood Evaluation and State Propagation

Both likelihood evaluation (as part of the measurement up-
date) and state propagation (in the time update), Steps 2
and 4b of Algorithm 2, can be implemented straightfor-
wardly in a parallel fashion since all particles are handled in-
dependently. As a consequence of this, both operations can
be performed in O(1) time with N parallel processors, i.e.,
one processing element per particle. To solve new filtering
problems, only these two functions have to be modified. As
no parallelization issues need to be addressed, this is easily
accomplished.

In the presented GPU implementation the particles x(i)

and the weights ω(i) are stored in separate textures which
are updated by the state propagation and the likelihood eval-
uation, respectively. Textures can only hold four dimen-
sional state vectors, but using multiple rendering targets the
state vectors can easily be extended when needed. When the
measurement noise is low-dimensional the likelihood com-
putations can be replaced with fast texture lookups utilizing
hardware interpolation. Furthermore, as discussed above, the
state propagation uses externally generated process noise, but
it would also be possible to generate the random numbers on
the GPU.

4.3 Summation

Summations are part of the weight normalization (during
measurement updates) and cumulative weight calculation
(during resampling), Steps 2 and 3b of Algorithm 2. A cumu-
lative sum can be implemented using a multi-pass scheme,
where an adder tree is run forward and then backward, as
illustrated in Figure 2. Running only the forward pass the
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Figure 3: Particle selection by comparing uniform random
numbers (·) to the cumulative sum of particle weights (–).

total sum is computed. This multi-pass scheme is a stan-
dard method for parallelizing seemingly sequential algo-
rithms based on gather and scatter principles. The reference
[2] describes these concepts in for the GPU setting. In the for-
ward pass partial sums are created that are used in the back-
ward pass to compute the missing partial sums to complete
the cumulative sum. The resulting algorithm is O(logN) in
time given N parallel processors and N particles.

4.4 Particle Selection
To prevent sample impoverishment, the resampling step,
Steps 3 of Algorithm 2, replaces the weighted particle dis-
tribution with a unweighted one. This is done by drawing a
new set of particles {x(i?)} with replacement from the origi-
nal particles {x(i)} in such a way that Pr(x(i?) = x( j)) = ω( j).
Standard resampling algorithms [4, 19, 20] select the parti-
cles by comparing uniform random numbers u(k) to the cu-
mulative sum of the normalized particle weights c(i), as illus-
trated in Figure 3. That is, assign

x(k?)
t = x(i)

t ,with i such that u(k) ∈ [c(i−1)
t ,c(i)

t ), (3)

which makes use of an explicit expression for the generalized
inverse cumulative probability distribution.

Different methods are used to generate the uniform ran-
dom numbers [20]. Stratified resampling, [19], generates
uniform random numbers according to

u(k) =
(k−1)+ ũ(k)

N
, with ũ(k) ∼U (0,1), (4)

whereas systematic resampling, [19], uses

u(k) =
(k−1)+ ũ

N
, with ũ ∼U (0,1), (5)
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Figure 4: Particle selection on the GPU. The vertices p, cu-
mulative weights snapped to an equidistant grid, define a line
where every segment represents a particle. Some vertices
may coincide, resulting in line segments of zero length. The
rasterizer creates particles x according to the length of the
corresponding line segments.

where U (0,1) is a uniform distribution between 0 and 1.
Both methods produce ordered uniform random numbers
which have exactly one number in every interval of length
N−1, reducing the number of u(k) to be compared to c(i) to a
single one. This is the key property enabling a parallel im-
plementation.

Utilizing the rasterization functionality of the graphics
pipeline, the selection of particles can be implemented in a
single render pass: calculate vertices p(i) by assigning the
cumulative weights c(i) to an equidistant grid depending on
the uniform random numbers u(i). That is,

p(i) =

{
bNc(i)c, if Nc(i)−bNc(i)c< u(bNc(i)c),

bNc(i)c+1, otherwise,
(6)

where bxc is the floor operation. Drawing a line connect-
ing the vertices p(i) and associating a particle to every line
segment, the rasterization process creates the resampled set
of particles according to the length of each segment. This
procedure is illustrated with an example in Figure 4 based
upon the data in Figure 3. The computational complexity
of this is O(1) with N parallel processors, as the vertex po-
sitions can be calculated independently. Unfortunately, the
current generation of GPUs has a maximal texture size limit-
ing the number of particles that can be resampled as a single
unit. To solve this, multiple subsets of particles are simulta-
neously being resampled and then redistributed into different
sets, similarly to what is described in [21]. This modification
of the resampling step does not seem to significantly affect
the performance of the particle filter as a whole.

4.5 Complexity Considerations
From the descriptions of the different steps of the PF algo-
rithms it is clear that the resampling step is the bottleneck
that gives the time complexity of the algorithm, O(logN)
compared to O(N) for a sequential algorithm.

The analysis of the algorithm complexity above assumes
that there are as many parallel processors as there are parti-
cles in the particle filter, i.e., N parallel elements. Today this
is a bit too optimistic, a modern GPU has an order of ten par-
allel pipelines, hence much less than the typical number of
particles. However, the number of parallel units is constantly
increasing so the degree of parallelization is improving.

Especially the cumulative sum suffers from a low degree
of parallelization. With full parallelization the time com-
plexity of the operation is O(logN) whereas the sequential

Table 1: Hardware used for the evaluation.
GPU

Model: NVIDIA GeFORCE 7900 GTX
Driver: 2.1.0 NVIDIA 96.40

Bus: PCI Express, 14.4 GB/s
Clock speed: 650 MHz

Processors: 8/24 (vertex/fragment)
CPU

Model: Intel Xeon 5130
Clock speed: 2.0 GHz

Memory: 2.0 GB
Operating System: CentOS 4.4 (Linux)

algorithms is O(N), however the parallel implementation
uses O(N logN) operations in total. As a result, with few
pipelines and many particles the parallel implementation will
be slower than the sequential one. However, as the degree of
parallelization increases this will be less and less important.

5. FILTER EVALUATION

To evaluate the designed PF on the GPU two PF have been
implemented; one standard PF running on the CPU and one
implemented as described in Section 4 running on the GPU.
(The code for both implementations is written in C++ and
compiled using gcc 3.4.6.) The filters were then used to
filter data from a constant velocity tracking model, measured
with two distance measuring sensors. The estimates obtained
were very similar with only small differences that can be ex-
plained by the different resampling method (one, or multiple
sets) and the presence of round off errors. This shows that the
GPU implementation does work, and that the modification of
the resampling step is acceptable. The hardware is presented
in Table 1. Note that there are 8 parallel pipelines in which
the particle selection and redistribution is conducted and that
the rest of the steps in the PF algorithm is performed in 24
pipelines, i.e., N � number of pipelines.

To study the time complexity of the PF, simulations with
1000 time steps were run with different numbers of particles.
The time spent in the particle filters was recorded, excluding
the generation of the random numbers which was the same
for both filter implementations. The results can be found
in Figure 5. The maximum number of particles (106) may
seem rather large for current applications, however, it helps
to show the trend in computation time and to show that it is
possible to use this many particles. This makes it possible to
work with large state dimensions and open up for PFs in new
application areas.

Some observations should be made: for few particles the
overhead from initializing and using the GPU is large and
hence the CPU implementation is the fastest. The CPU com-
plexity follows a linear trend, whereas at first the GPU time
hardly increases when using more particles; parallelization
pays off. For even more particles there are not enough par-
allel processing units available and the complexity becomes
linear, but the GPU implementation is still faster than the CPU.
Note that the particle selection is performed on 8 processors
and the other steps on 24, see Table 1, and that hence the
degree of parallelization is not very high for many particles.

A further analysis of the time spent in the GPU implemen-
tation shows in what part of the algorithm most of the time
is spent. Figure 6, shows that most of the time is spent in
the resampling step, and that the portion of time spent there
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Figure 6: Relative time spent in different parts of GPU imple-
mentation.

increases with more particles. This is quite natural since this
step is the least parallel in its nature and requires multiple
passes. Hence, optimization efforts should be directed into
this part of the algorithm.

6. CONCLUSIONS

In this paper, the first complete parallel general particle fil-
ter implementation in literature on a GPU is described. Us-
ing simulations, the parallel GPU implementation is shown to
outperform a CPU implementation on computation speed for
many particles while maintaining the same filter quality. The
techniques and solutions used in deriving the implementation
can also be used to implement particle filters on other similar
parallel architectures.
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