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ABSTRACT

Recursive prediction error (RPE) identification algorithrare at-
tractive alternatives to the traditional least-squaressbd adaptive
filtering algorithms for, e.g., room impulse response idfemation,

in such applications as acoustic feedback and echo carsila
It has however been observed that a recently proposed RRE alg
rithm suffers from numerical problems due to a scaling amityg
in the calculation of the auxiliary variables. This problesitack-
led by regularizing the identification of some of the auxiliaari-
ables, which is called “dual regularization”. This leads toclass
of Dually Regularized Recursive Prediction Error (DR-RR&gN-
tification algorithms, with different choices of regulation meth-
ods (Tikhonov or Levenberg-Marquardt) and matrices (dagsn-
corporating prior knowledge). Simulation results confirat the
DR-RPE algorithms do not exhibit numerical problems, andias
consequence produce more accurate estimates of the rooutsienp
response and of the auxiliary variables.

1. INTRODUCTION

Recently, recursive prediction error (RPE) identificatégorithms
have been proposed as robust and efficient solutions to soth p
lems as adaptive feedback cancellation (AFC) [1], [2] ansliatic
echo cancellation (AEC) [3]. In these applications, thecediation

of interfering feedback or echo signals is based on theiiitsatton

of an unknown room impulse response (RIR), see Fig. 1. Sinc
both the AFC and AEC problems can be described by a linear data

model,
y(t) = F(a.t)u(t) +v(t), @
with the finite-order and possibly time-varying RIR defined a

@)

andq denoting the time shift operator, i.q:ku(t) =u(t — k), they
have traditionally been solved using least-squares(ls2Sgth adap-
tive filtering algorithms such as the recursive least sqIéRLS),
normalized least mean squares (NLMS), and affine projection
gorithm (APA). However, due to the non-whiteness of the rerat
signalv(t), which is a disturbing signal w.r.t. the RIR identifica-
tion, the LS-based algorithms are suboptimal and perfororlpo
especially in the stochastic gradient (NLMS) case [3]. & AFC
application, the non-whiteness wft) moreover produces a bias in

F(gt) = fot)+ f1(t)g 2 +... + fn. ()gF
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Figure 1: The black part of the figure depicts a typical adoust
echo cancellation (AEC) scenario. Taking also into accthumted
part of the figure, turns the AEC problem into an adaptive liee#
cancellation (AFC) problem.

the solution of LS-based identification algorithms, whistdue to
the correlation between the signaid) andv(t) in the closed-loop
system [1].

This is where recursive prediction error (RPE) identificatal-
gorithms outperform the traditional adaptive filtering @i¢hms.
By including a time-varying autoregressive (TVAR) modet fbe

fear-end signal in the linear data model of (1),

YO = F@Out) + 5 5ol ©
with
AG.t) =1+a1(t)g +... +an, (g " @)

one can obtain a transformed problem [by multiplying botiesiof
(3) with A(q,t), and subsequently changing the order of the filters
A(g,t) andF(q,t) in the cascadé(q,t)F(q,t)]

A, )y(t) = F(g,t)A(g,t)u(t) +e(t), ®)

which has a white disturbance sigmé) and transformed (i.e., pre-
filtered) input and output signafsqg,t)u(t) andA(q,t)y(t), respec-
tively. Due to the whiteness of the disturbance, a LS-batgal a
rithm applied to the transformed problem in (5) can yield abiu
ased and optimal (mimimum-variance) RIR estimate [4]. tudt
however be pointed out that the TVAR polynomi(g,t) is also
unknown and time-varying. The concept of RPE identificaties
in the joint identification of the RIR and of the TVAR near-esig-
nal model by recursively minimizing the sum of squared priain
errors,

1 t )\tfk
2, g A -

whereA(q7t) andlf(q7t) represent estimates #{q,t) andF(q,t),
respectively, and weighting is performed using the invgnselic-

F(g,t)u(k)]},

min
HOEN

(6)
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tion error powerd, 2 to account for energy variations in the distur-

bancee(t) in the transformed data model (5), and usiigk to dis-
count old data with an exponential forgetting profile. Thieetive
window lengthN = 1/(1— A) is then determined by the forgetting Prediction error:

Table 1: Stochastic gradient RPE algorithm [3]

factorA.

It has been observed that the RPE identification algorithoa pr T
posed in [3] performs very well in AFC and AEC computer simu- g[t.é(t -1)]= [1 al(t— 1)] {y(t } - {UT(I)} f(t -1
lations, yet sometimes runs into numerical problems. I plaiper, i y(®) Uit

we will reveal the origin of this numerical shortcoming anap

pose a theoretically well-founded solution. In Section 2, will Prediction error variance:
show that the RPE algorithm exhibits a so-called scalingiguity,
in that it may theoretically produce the correct RIR estenaen 62 = MO2 1+ (1—Aa)€2t, B(t — 1)

when the TVAR coefficients and some of the other auxiliary-var
ables are scaled with an arbitrary scaling factor (thaigsitantly  Regression vectors:
larger than the inverse of the norm of the estimated TVARfeoef

cients). Since the auxiliary variables are not of direatiest to the . 1
user, this should not be a problem, unless the scaling becsme Yelt,at—1)] =[ult) U)] |:é(t _ 1)}
large that numerical overflow occurs. In some simulatiomades . T g

such numerical overflow has indeed been observed. Pplt, £t -1)]=U" O)f(t—1)—y(t)

Hence, even if the TVAR coefficients are not of direct inter- ) ] ]
est, we may benefit by improving their identification, sinbert ~ TVAR regression vector correlation matrix update:
numerical problems will be avoided and the resulting RIRnegte 1
will have a higher numerical accuracy. In Section 3, we widit _ _ T Y Tr Py
cate how the accuracy of the estimated TVAR coefficients @an b Ra(t) = AaRa(t—1) + 62 Yalt. £t D]walt £t 1))
increased using regularization. To distinguish betweerrégular-
ization of the estimated TVAR coefficients and the reguktion of ~ TVAR and RIR weight updates:
the estimated RIR coefficients, we will use the term “dualiteg
ization” to denote the former, and “primal regularizatidiot the
latter. We will apply both the Tikhonov and Levenberg-Maacplt
regularization methods to the dual regularization problerth a it,a(t— 1)eft é(tfl)}
regularization matrix that may incorporate prior knowledm the f'(t) = f'(t — 1)+ Yelt,a ’ _
true TVAR coefficients [5]. We will see how such prior knowtgd WEt At —D)]Yet, At —1)]+ 62
can be constructed for near-end speech signals. The perfioem
of the Dually Regularized RPE (DR-RPE) algorithms is théusil
trated using results from computer simulations in Sectipart
finally Section 5 concludes the paper.

a(t) —a(t—1)+ aitZR,;l(t)wA[t,?(t —1)jeft, Bt —1)]

2. SCALING AMBIGUITY IN THE RPE ALGORITHM scaling, provided thak >> ||a(t — 1)|\§1. For such large scaling

For convenience, the RPE algorithm with stochastic gradiR factors, the unit coefficient preceding the estimated TVAlR(fii-

weight update as proposed in [3], is reproduced in Table le Thcients inthe calculation afft, 8(t —1)] and(g [t, 4(t — 1)] becomes

parameter vectors and data matrices are defined as: negligible as compared t04(t — 1), and as a consequence, the pre-
diction error filterA(q,t — 1) approximately has a zero at infinity,

o(t) 2 Egﬂ : ™ A kA ) ; n

(e +nat1)x1 (Qt-1)=1+Ka(t—-1)g " +... +Kén, (t—1)g ™,
£1) 2 [fot) fa) o fae Oy 1)1 8) ~ KAt — 1) + ... +an, (t— g ™.
at) £ [aa(t) a(t) ... anA(t)}IAxl, (9 In computer simulations using the RPE algorithm, it appéaas
WOEBE-D - AW a0 ging s some st a0 bt ouers comut, e
u(t) 2 [ut) ... ”(t’nF)]E—n;H)xlv (11) tially increasing scaling. This is illustrated in Fig. 2, erk the

norm of the TVAR coefficients 20lgg||a(t)||> and the prediction
ut-1) u(t—na) error power 10log, 67 are drawn on a dB-scale, as a function of
Ut 2 : : (12)  the number of RPE iterations. In some simulations, the nigaler
. ’ divergence of the auxiliary variables is hardly visible e tonver-
ut=ne—1) . ult=ne —n) (Ne+1) xna gencg curves of the RIRyestimate until ove?/flow occurs (seg, e
o o ) [3, Fig. 4(c)]), yet in other simulations, it is clear thaieevbefore
The TVAR coefficient Vectoa(t) and the predICtIOI’l error variance numerical overflow occurs, the accuracy of the RIR estimgtd-i
of are estimated on an exponential data window with a forggttin ready severely affected by the numerical problems in théianx
factorAa, chosen such that the effective data window length equalgariable estimation (see Fig. 4).
approximately 20 ms (which is the average time interval oitivh
speech signal can be considered stationary). The stocigaatient 3. DUAL REGULARIZATION
RIR weight update features a step size
The scaling ambiguity is explained as follows: if the awadfi A simple and intuitive solution to prevent the TVAR coefficie
variablesa(t), a(t — 1), 62, 62 1, Yelt,a(t — 1)), et,0(t —1)],  from diverging as in the above example, is to include a mimmu
Ra(t), andRa(t — 1), are replaced by their scaled counterpartshorm constraint into the prediction error criterion (68, J.
Ka(t), Ka(t— 1), K262, K262 1, KYg[t,a(t — 1)], Kelt, 0(t — 1)),
K—2Ra(t), andK—2Ra(t — 1), respectively, then the RPE algo-
rithm will produce the same solutiofit) as in the case without  ;

t

min i LK{A(q t[y(k) —F (a,t)u(k)] >+ Blla) |3
wan2N& 6 7 i
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Figure 2: RPE scaling problem: frotre 6000 iterations, the aux-
iliary variables start growing at an exponential rate.

which corresponds to performing a Tikhonov regularizatigth
regularization parametgd. We will denote the TVAR coefficients’
regularization as “dual regularization”, for pointing ahe differ-
ence with the (“primal”) RIR coefficients’ regularizatio® more
thorough regularization approach would be to perform a égeh
ized” type of regularization, by considering the true TVABetfi-

cient vectorsa(k),k = 1,...,t as different realizations of the same
stochastic variabla on which some prior knowlegde may be avail-

able through its mean and covariance matrix, i.e.,

E{al £ ag,
cov{a} =E{(a—ao)(a—a0)"} 2 Ra.

(13)
(14)
An optimal approach to the dual regularization problem dsnt

be suggested in accordance with the optimal primal regation
approach in [5], and consists in minimizing

toat—k R
%{ 2 AAz {A@.Dly(k) —F (g, Hu(k)]}*

_min
B(t).a) =1 %
a0 -a0 R a0 -a0l).  (15)
Finally, also adding a primal regularization term resuits i
1 t Atfk R . 2
min — —1A(g,t)[y(K) — F(qg,t)u(k 16
Jmin il 3. 7 @O0~ Flauk))? a9

+f(t) —fo] "R ~HE(t) — fo] + [a(t) — a0 RaY[a(t) —ao] }

where the true RIR(t) is considered to be a realization of the

stochastic variabl€, with mean and covariance matrix

E{f} = fo,
cov{f} =E{(f —fo)(f —fo)" } 2 Ry.

(17
(18)

Minimizing (16) w.r.t. f(t) anda(t) results in the so-called Dually

Regularized Recursive Prediction Error (DR-RPE) iderstfan al-
gorithm, shown in Table 2. It should be noted that the usetlnas
choice of using either the Tikhonov regularized TVAR weigpt

date (corresponding tag = 0), or the Levenberg-Marquardt reg-

ularized TVAR weight update (corresponding 4g = a(t — 1)).
As for the stochastic gradient RIR weight update, the Legemb

Marquardt regularization (corresponding fi@ = f(t —1)) is the
only relevant choice [5].

©2007 EURASIP

Table 2: Dually Regularized RPE (DR-RPE) algorithm

1612

Prediction error:

et.Ot-1)]=[1 aT(t—1)] ( g((tt))} - BTT((?)} Bt 1))
Prediction error variance:
OF = MG+ (1—An)€2lt, 0(t — 1)]

Regression vectors:

weltat-2] =) UO) 5t |
WAl Et— 1] = UT R - 1)~y (0

Regularized TVAR regression vector correlation matrix update
[dual]:

Ra(t) = RAt~ 1+ Ut F(C - DIWRLE(L- )
+(1-Aa)Rat
Tikhonov Regularized TVAR weight update [dual]:
a(t) =at—1)+ Rt

x{aitzwA[t,?(t ~1)Jelt,6(t- 1) - (1-A)Ra At - 1)}

Levenberg-Marquardt Regularized TVAR weight
[dual]:

update

at) = a(t—1)+ C%R,gl(t)wA[tf(t —1)Jeft, Bt - 1)]

Levenberg-Marquardt Regularized RIR weight update [pri-
mal]:

R e[t a(t — 1)]elt, 6(t — 1)

f)=Ft—1) +pr Wt A(t— 1) Re@e LAt — 1)) + 62

4. SIMULATION RESULTS

Computer simulations were carried out to compare the pedace
of the unregularized RPE algorithm with the performanceheaf t
proposed DR-RPE algorithm for different choices of the tagu
ization matrixR,, and for both Tikhonov (TR) and Levenberg-
Marquardt (LMR) regularization methods. Since the focushig
paper is on the dual regularization, the primal regulaidramatrix
is set toR¢ = I. A first choice for the dual regularization matrix
is Ra = I, which yields a traditional (identity matrix) Tikhonov
or Levenberg-Marquardt regularization. A second choiceRg
allows for incorporating prior knowledge on speech sigredrac-
teristics. To this end, we have identified a TVAR model on 2909
different 20 ms speech frames read from the TIMIT databake [6
and ensemble-averaged the TVAR coefficient vector outedymio
to obtain

Ras=E{a4},

i=1,...,310929 (19)

EUSIPCO, Poznan 2007
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Figure 3: 3D surface plot of regularization matﬁ’zgi_,s.
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Figure 4: RIR misadjustment convergence curves for spdeulr s
lation.

A 3D surface plot of the resulting regularization matﬂka,s is
shown in Fig. 3.
The algorithms were tested in an adaptive feedback catioella
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Figure 5: Estimated TVAR coefficient norm for speech simatat
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Figure 6: Estimated prediction error power for speech sitior.

It can be seen that the accuracy of the RIR estimate is indeed i

(AFC) scenario at a sampling frequency of 16 kHz. Referring t proved by adding a dual regularization to the RPE algoritfine

Fig. 1, the amplifier is modelled as a broadband datascaded
with a saturation function, and the equalizer is a pure tirkay

i.e.,G(q) = g9, needed for identifiability of (t) anda(t) [1]. The

impact of the different choices for the regularization ritats and
methods on the RIR estimate convergence seems to be négligib
The norm 20logg ||a(t)]|2 of the estimated TVAR coefficients and

closed-loop system is kept at an average gain margin of 3 @B, bthe estimated prediction error power 101@{&2 are plotted in Figs.
settingL = —9 dB andd = 320 samples. The near-end signal is a5 and 6, respectively. It is clear that these auxiliary \@ga do
4 s male speech signal (not from the TIMIT database), whige th not diverge in the DR-RPE algorithms, as they do in the unregu

true RIR is measured in a typical recording studio and is @fkm
orderng = 2000. The TVAR model order is chosen ag = 24,
the forgetting factor for estimating the TVAR coefficientsdathe
prediction error variance is set g, = 0.9971, and the step size is
optimized for each of the algorithms, resulting jig = 10~3 for
the unregularized RPE algorithm apgt = 102 for the DR-RPE
algorithms.

larized RPE algorithm. Moreover, it can be seen from Fig. & th
the norm of the estimated TVAR coefficients is somewhat small
in caseRa = Ra s, especially using the Tikhonov regularization
method.

In a final simulation, the accuracy of the estimated TVAR eoef
ficients is compared for the different DR-RPE regularizaticatri-
ces and methods. To this end, the near-end signal is a 60resignt

The convergence of the RIR estimate is depicted in Fig. 4 byTVAR sequence, generated by passing a Gaussian white rigise s

plotting the so-called RIR misadjustment, defined as

nal through a time-varying all-pole filter of orden = 24. The
coefficients of this filter change every 20 ms and were contpute

o [£(t) —f]2 by linear prediction of 20 ms true speech frames. The quality
RIR misadjustment (dB)= 20log;o Il (20)  the estimated TVAR coefficients can be compared by evaiyéitie
©2007 EURASIP 1613 EUSIPCO, Poznan 2007
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computer simulations is that using the dual regularizatiom afore-
mentioned numerical problem does not occur anymore. As secon
guence, a more accurate RIR estimate may be obtained. Adecon
observation is that using a regularization matrix that ipocates

Table 3: Time-averaged TVAR misadjustment for synthetieesh
simulation of DR-RPE algorithms

nggﬁgﬂ'&g?eggf f}a TVAI?lngggczijlésétment prior knowlegde on the TVAR coefficients, results in a moreuac
9 au N : rate TVAR coefficient estimate. Moreover, the Tikhonov fegu
Levenberg-Marquardt| Ras -1.9629 dB ization method is preferred over the Levenberg-Marquarethod.
Tikhonov I -1.9814 dB
Tikhonov Ras -3.5738 dB REFERENCES
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