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ABSTRACT

Recursive prediction error (RPE) identification algorithms are at-
tractive alternatives to the traditional least-squares-based adaptive
filtering algorithms for, e.g., room impulse response identification,
in such applications as acoustic feedback and echo cancellation.
It has however been observed that a recently proposed RPE algo-
rithm suffers from numerical problems due to a scaling ambiguity
in the calculation of the auxiliary variables. This problemis tack-
led by regularizing the identification of some of the auxiliary vari-
ables, which is called “dual regularization”. This leads toa class
of Dually Regularized Recursive Prediction Error (DR-RPE)iden-
tification algorithms, with different choices of regularization meth-
ods (Tikhonov or Levenberg-Marquardt) and matrices (possibly in-
corporating prior knowledge). Simulation results confirm that the
DR-RPE algorithms do not exhibit numerical problems, and asa
consequence produce more accurate estimates of the room impulse
response and of the auxiliary variables.

1. INTRODUCTION

Recently, recursive prediction error (RPE) identificationalgorithms
have been proposed as robust and efficient solutions to such prob-
lems as adaptive feedback cancellation (AFC) [1], [2] and acoustic
echo cancellation (AEC) [3]. In these applications, the cancellation
of interfering feedback or echo signals is based on the identification
of an unknown room impulse response (RIR), see Fig. 1. Since
both the AFC and AEC problems can be described by a linear data
model,

y(t) = F(q, t)u(t)+v(t), (1)

with the finite-order and possibly time-varying RIR defined as

F(q, t) = f0(t)+ f1(t)q
−1 + . . .+ fnF (t)q−nF (2)

andq denoting the time shift operator, i.e.,q−ku(t) = u(t −k), they
have traditionally been solved using least-squares(LS)-based adap-
tive filtering algorithms such as the recursive least squares (RLS),
normalized least mean squares (NLMS), and affine projectional-
gorithm (APA). However, due to the non-whiteness of the near-end
signalv(t), which is a disturbing signal w.r.t. the RIR identifica-
tion, the LS-based algorithms are suboptimal and perform poorly,
especially in the stochastic gradient (NLMS) case [3]. In the AFC
application, the non-whiteness ofv(t) moreover produces a bias in
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Figure 1: The black part of the figure depicts a typical acoustic
echo cancellation (AEC) scenario. Taking also into accountthe red
part of the figure, turns the AEC problem into an adaptive feedback
cancellation (AFC) problem.

the solution of LS-based identification algorithms, which is due to
the correlation between the signalsu(t) andv(t) in the closed-loop
system [1].

This is where recursive prediction error (RPE) identification al-
gorithms outperform the traditional adaptive filtering algorithms.
By including a time-varying autoregressive (TVAR) model for the
near-end signal in the linear data model of (1),

y(t) = F(q, t)u(t)+
1

A(q, t)
e(t), (3)

with
A(q, t) = 1+a1(t)q

−1 + . . .+anA(t)q−nA , (4)

one can obtain a transformed problem [by multiplying both sides of
(3) with A(q, t), and subsequently changing the order of the filters
A(q, t) andF(q, t) in the cascadeA(q, t)F(q, t)]

A(q, t)y(t) = F(q, t)A(q, t)u(t)+e(t), (5)

which has a white disturbance signale(t) and transformed (i.e., pre-
filtered) input and output signalsA(q, t)u(t) andA(q, t)y(t), respec-
tively. Due to the whiteness of the disturbance, a LS-based algo-
rithm applied to the transformed problem in (5) can yield an unbi-
ased and optimal (mimimum-variance) RIR estimate [4]. It should
however be pointed out that the TVAR polynomialA(q, t) is also
unknown and time-varying. The concept of RPE identificationlies
in the joint identification of the RIR and of the TVAR near-endsig-
nal model by recursively minimizing the sum of squared prediction
errors,

min
f̂ (t),â(t)

1
2N

t

∑
k=1

λ t−k

σ̂2
k

{

Â(q, t)[y(k)− F̂(q, t)u(k)]
}2

, (6)

whereÂ(q, t) andF̂(q, t) represent estimates ofA(q, t) andF(q, t),
respectively, and weighting is performed using the inversepredic-
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tion error powerσ̂−2
k to account for energy variations in the distur-

bancee(t) in the transformed data model (5), and usingλ t−k to dis-
count old data with an exponential forgetting profile. The effective
window lengthN = 1/(1−λ ) is then determined by the forgetting
factorλ .

It has been observed that the RPE identification algorithm pro-
posed in [3] performs very well in AFC and AEC computer simu-
lations, yet sometimes runs into numerical problems. In this paper,
we will reveal the origin of this numerical shortcoming and pro-
pose a theoretically well-founded solution. In Section 2, we will
show that the RPE algorithm exhibits a so-called scaling ambiguity,
in that it may theoretically produce the correct RIR estimate, even
when the TVAR coefficients and some of the other auxiliary vari-
ables are scaled with an arbitrary scaling factor (that is significantly
larger than the inverse of the norm of the estimated TVAR coeffi-
cients). Since the auxiliary variables are not of direct interest to the
user, this should not be a problem, unless the scaling becomes so
large that numerical overflow occurs. In some simulation scenarios
such numerical overflow has indeed been observed.

Hence, even if the TVAR coefficients are not of direct inter-
est, we may benefit by improving their identification, since then
numerical problems will be avoided and the resulting RIR estimate
will have a higher numerical accuracy. In Section 3, we will indi-
cate how the accuracy of the estimated TVAR coefficients can be
increased using regularization. To distinguish between the regular-
ization of the estimated TVAR coefficients and the regularization of
the estimated RIR coefficients, we will use the term “dual regular-
ization” to denote the former, and “primal regularization”for the
latter. We will apply both the Tikhonov and Levenberg-Marquardt
regularization methods to the dual regularization problem, with a
regularization matrix that may incorporate prior knowledge on the
true TVAR coefficients [5]. We will see how such prior knowledge
can be constructed for near-end speech signals. The performance
of the Dually Regularized RPE (DR-RPE) algorithms is then illus-
trated using results from computer simulations in Section 4, and
finally Section 5 concludes the paper.

2. SCALING AMBIGUITY IN THE RPE ALGORITHM

For convenience, the RPE algorithm with stochastic gradient RIR
weight update as proposed in [3], is reproduced in Table 1. The
parameter vectors and data matrices are defined as:

θ(t) ,

[

f(t)
a(t)

]

(nF+nA+1)×1
, (7)

f(t) , [ f0(t) f1(t) . . . fnF (t)]T(nF+1)×1 , (8)

a(t) , [a1(t) a2(t) . . . anA(t)]TnA×1 , (9)

y(t) , [y(t −1) . . . y(t −nA)]TnA×1 , (10)

u(t) , [u(t) . . . u(t −nF )]T(nF+1)×1 , (11)

U(t) ,







u(t −1) . . . u(t −nA)
...

. . .
...

u(t −nF −1) . . . u(t −nF −nA)







(nF+1)×nA

(12)

The TVAR coefficient vectora(t) and the prediction error variance
σ2

t are estimated on an exponential data window with a forgetting
factorλA, chosen such that the effective data window length equals
approximately 20 ms (which is the average time interval on which a
speech signal can be considered stationary). The stochastic gradient
RIR weight update features a step sizeµF .

The scaling ambiguity is explained as follows: if the auxiliary
variablesâ(t), â(t − 1), σ̂2

t , σ̂2
t−1, ψF [t, â(t − 1)], ε[t, θ̂(t − 1)],

RA(t), andRA(t − 1), are replaced by their scaled counterparts
Kâ(t), Kâ(t −1), K2σ̂2

t , K2σ̂2
t−1, KψF [t, â(t −1)], Kε[t, θ̂(t −1)],

K−2RA(t), and K−2RA(t − 1), respectively, then the RPE algo-
rithm will produce the same solution̂f (t) as in the case without

Table 1: Stochastic gradient RPE algorithm [3]

Prediction error:

ε[t, θ̂(t −1)] =
[

1 âT(t −1)
]

(

[

y(t)
y(t)

]

−

[

uT(t)
UT(t)

]

f̂ (t −1)

)

Prediction error variance:

σ̂2
t = λAσ̂2

t−1 +(1−λA)ε2[t, θ̂(t −1)]

Regression vectors:

ψF [t, â(t −1)] = [u(t) U(t)]

[

1
â(t −1)

]

ψA[t, f̂ (t −1)] = UT(t)f̂ (t −1)−y(t)

TVAR regression vector correlation matrix update:

RA(t) = λARA(t −1)+
1

σ̂2
t

ψA[t, f̂(t −1)]ψT
A[t, f̂(t −1)]

TVAR and RIR weight updates:

â(t) = â(t −1)+
1

σ̂2
t
R−1

A (t)ψA[t, f̂(t −1)]ε[t, θ̂(t −1)]

f̂(t) = f̂ (t −1)+ µF
ψF [t, â(t −1)]ε[t, θ̂ (t −1)]

ψT
F [t, â(t −1)]ψF [t, â(t −1)]+ σ̂2

t

scaling, provided thatK >> ‖â(t −1)‖−1
2 . For such large scaling

factors, the unit coefficient preceding the estimated TVAR coeffi-
cients in the calculation ofε[t, θ̂(t−1)] andψF [t, â(t−1)] becomes
negligible as compared toKâ(t−1), and as a consequence, the pre-
diction error filterÂ(q, t −1) approximately has a zero at infinity,

Â(q, t −1) = 1+Kâ1(t −1)q−1 + . . .+KânA(t −1)q−nA ,

≈ Kq−1[â1(t −1)+ . . .+ ânA(t −1)q−nA+1].

In computer simulations using the RPE algorithm, it appearsthat
starting at some iteration, and without any outliers occuring in the
data, the aforementioned auxiliary variables undergo an exponen-
tially increasing scaling. This is illustrated in Fig. 2, where the
norm of the TVAR coefficients 20log10‖â(t)‖2 and the prediction
error power 10log10σ̂2

t are drawn on a dB-scale, as a function of
the number of RPE iterations. In some simulations, the numerical
divergence of the auxiliary variables is hardly visible in the conver-
gence curves of the RIR estimate until overflow occurs (see, e.g.,
[3, Fig. 4(c)]), yet in other simulations, it is clear that even before
numerical overflow occurs, the accuracy of the RIR estimate is al-
ready severely affected by the numerical problems in the auxiliary
variable estimation (see Fig. 4).

3. DUAL REGULARIZATION

A simple and intuitive solution to prevent the TVAR coefficients
from diverging as in the above example, is to include a minimum-
norm constraint into the prediction error criterion (6), i.e.,

min
f̂ (t),â(t)

1
2N

t

∑
k=1

λ t−k

σ̂2
k

{

Â(q, t)[y(k)− F̂(q, t)u(k)]
}2

+β‖â(t)‖2
2,
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Figure 2: RPE scaling problem: fromt ≈ 6000 iterations, the aux-
iliary variables start growing at an exponential rate.

which corresponds to performing a Tikhonov regularizationwith
regularization parameterβ . We will denote the TVAR coefficients’
regularization as “dual regularization”, for pointing outthe differ-
ence with the (“primal”) RIR coefficients’ regularization.A more
thorough regularization approach would be to perform a “general-
ized” type of regularization, by considering the true TVAR coeffi-
cient vectorsa(k),k = 1, . . . ,t as different realizations of the same
stochastic variablea on which some prior knowlegde may be avail-
able through its mean and covariance matrix, i.e.,

E{a} , a0, (13)
{

cov{a} = E
{

(a−a0)(a−a0)T}, Ra. (14)

An optimal approach to the dual regularization problem can then
be suggested in accordance with the optimal primal regularization
approach in [5], and consists in minimizing

min
f̂ (t),â(t)

1
2N

{ t

∑
k=1

λ t−k

σ̂2
k

{

Â(q, t)[y(k)− F̂(q, t)u(k)]
}2

+[â(t)−a0]TRa
−1[â(t)−a0]

}

. (15)

Finally, also adding a primal regularization term results in

min
f̂ (t),â(t)

1
2N

{ t

∑
k=1

λ t−k

σ̂2
k

{

Â(q, t)[y(k)− F̂(q, t)u(k)]
}2 (16)

+[̂f (t)− f0]TRf
−1[̂f(t)− f0]+ [â(t)−a0]TRa

−1[â(t)−a0]

}

,

where the true RIRf(t) is considered to be a realization of the
stochastic variablef , with mean and covariance matrix

E{f} , f0, (17)
{

cov{f} = E
{

(f − f0)(f − f0)T}, Rf . (18)

Minimizing (16) w.r.t. f̂ (t) andâ(t) results in the so-called Dually
Regularized Recursive Prediction Error (DR-RPE) identification al-
gorithm, shown in Table 2. It should be noted that the user hasthe
choice of using either the Tikhonov regularized TVAR weightup-
date (corresponding toa0 = 0), or the Levenberg-Marquardt reg-
ularized TVAR weight update (corresponding toa0 = â(t − 1)).
As for the stochastic gradient RIR weight update, the Levenberg-
Marquardt regularization (corresponding tof0 = f̂(t − 1)) is the
only relevant choice [5].

Table 2: Dually Regularized RPE (DR-RPE) algorithm

Prediction error:

ε[t, θ̂(t −1)] =
[

1 âT(t −1)
]

(

[

y(t)
y(t)

]

−

[

uT(t)
UT(t)

]

f̂ (t −1)

)

Prediction error variance:

σ̂2
t = λAσ̂2

t−1 +(1−λA)ε2[t, θ̂(t −1)]

Regression vectors:

ψF [t, â(t −1)] = [u(t) U(t)]

[

1
â(t −1)

]

ψA[t, f̂ (t −1)] = UT(t)f̂ (t −1)−y(t)

Regularized TVAR regression vector correlation matrix update
[dual]:

RA(t) = λARA(t −1)+
1

σ̂2
t

ψA[t, f̂(t −1)]ψT
A[t, f̂ (t −1)]

+(1−λA)Ra
−1

Tikhonov Regularized TVAR weight update [dual]:

â(t) = â(t −1)+R−1
A (t)

×
{ 1

σ̂2
t

ψA[t, f̂(t −1)]ε[t, θ̂(t −1)]− (1−λA)Ra
−1â(t −1)

}

Levenberg-Marquardt Regularized TVAR weight update
[dual]:

â(t) = â(t −1)+
1

σ̂2
t
R−1

A (t)ψA[t, f̂(t −1)]ε[t, θ̂ (t −1)]

Levenberg-Marquardt Regularized RIR weight update [pri-
mal]:

f̂ (t) = f̂ (t −1)+ µF
RfψF [t, â(t −1)]ε[t, θ̂ (t −1)]

ψT
F [t, â(t −1)]Rf ψF [t, â(t −1)]+ σ̂2

t

4. SIMULATION RESULTS

Computer simulations were carried out to compare the performance
of the unregularized RPE algorithm with the performance of the
proposed DR-RPE algorithm for different choices of the regular-
ization matrixRa, and for both Tikhonov (TR) and Levenberg-
Marquardt (LMR) regularization methods. Since the focus ofthis
paper is on the dual regularization, the primal regularization matrix
is set toRf = I. A first choice for the dual regularization matrix
is Ra = I, which yields a traditional (identity matrix) Tikhonov
or Levenberg-Marquardt regularization. A second choice for Ra

allows for incorporating prior knowledge on speech signal charac-
teristics. To this end, we have identified a TVAR model on 310929
different 20 ms speech frames read from the TIMIT database [6],
and ensemble-averaged the TVAR coefficient vector outer product
to obtain

R̂a,s = E{âi â
T
i }, i = 1, . . . ,310929. (19)
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Figure 3: 3D surface plot of regularization matrix̂Ra,s.
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Figure 4: RIR misadjustment convergence curves for speech simu-
lation.

A 3D surface plot of the resulting regularization matrix̂Ra,s is
shown in Fig. 3.

The algorithms were tested in an adaptive feedback cancellation
(AFC) scenario at a sampling frequency of 16 kHz. Referring to
Fig. 1, the amplifier is modelled as a broadband gainL cascaded
with a saturation function, and the equalizer is a pure time delay,
i.e.,G(q) = q−d, needed for identifiability off(t) anda(t) [1]. The
closed-loop system is kept at an average gain margin of 3 dB, by
settingL = −9 dB andd = 320 samples. The near-end signal is a
4 s male speech signal (not from the TIMIT database), while the
true RIR is measured in a typical recording studio and is of known
ordernF = 2000. The TVAR model order is chosen asnA = 24,
the forgetting factor for estimating the TVAR coefficients and the
prediction error variance is set toλA = 0.9971, and the step size is
optimized for each of the algorithms, resulting inµF = 10−3 for
the unregularized RPE algorithm andµF = 10−2 for the DR-RPE
algorithms.

The convergence of the RIR estimate is depicted in Fig. 4 by
plotting the so-called RIR misadjustment, defined as

RIR misadjustment (dB)= 20log10
‖f̂ (t)− f‖2

‖f‖2
. (20)
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Figure 5: Estimated TVAR coefficient norm for speech simulation.
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Figure 6: Estimated prediction error power for speech simulation.

It can be seen that the accuracy of the RIR estimate is indeed im-
proved by adding a dual regularization to the RPE algorithm.The
impact of the different choices for the regularization matrices and
methods on the RIR estimate convergence seems to be negligible.
The norm 20log10‖â(t)‖2 of the estimated TVAR coefficients and
the estimated prediction error power 10log10σ̂2

t are plotted in Figs.
5 and 6, respectively. It is clear that these auxiliary variables do
not diverge in the DR-RPE algorithms, as they do in the unregu-
larized RPE algorithm. Moreover, it can be seen from Fig. 5 that
the norm of the estimated TVAR coefficients is somewhat smaller
in caseRa = R̂a,s, especially using the Tikhonov regularization
method.

In a final simulation, the accuracy of the estimated TVAR coef-
ficients is compared for the different DR-RPE regularization matri-
ces and methods. To this end, the near-end signal is a 60 s synthetic
TVAR sequence, generated by passing a Gaussian white noise sig-
nal through a time-varying all-pole filter of ordernA = 24. The
coefficients of this filter change every 20 ms and were computed
by linear prediction of 20 ms true speech frames. The qualityof
the estimated TVAR coefficients can be compared by evaluating the
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Table 3: Time-averaged TVAR misadjustment for synthetic speech
simulation of DR-RPE algorithms

Regularization method Ra TVAR misadjustment
Levenberg-Marquardt I -1.5322 dB
Levenberg-Marquardt R̂a,s -1.9629 dB

Tikhonov I -1.9814 dB
Tikhonov R̂a,s -3.5738 dB

time-averaged TVAR misadjustment, defined as

TVAR misadjustment (dB)= 20log10

(

1
M

M

∑
k=1

‖â(k)−a(k)‖2

‖a(k)‖2

)

,

with M = 960·103 anda(k) the corresponding all-pole filter coef-
ficients used to generate the synthetic TVAR sequence. The time-
averaged TVAR misadjustment is compared for the four different
DR-RPE algorithms in Table 3. It can be seen that it is advanta-
geous to use the Tikhonov regularization instead of the Levenberg-
Marquardt regularization, and to use a regularization matrix incor-
porating prior knowledge, such as the proposed matrixR̂a,s.

5. CONCLUSION

In this paper, we have highlighted a numerical problem in a recently
proposed RPE identification algorithm, which seems to be dueto
an inherent scaling ambiguity. We have proposed to solve theprob-
lem using a so-called “dual regularization” approach, which may be
combined with a primal regularization method to obtain a class of
Dually Regularized Recursive Prediction Error (DR-RPE) identifi-
cation algorithms. User’s choices within the DR-RPE class include
the regularization method used (Tikhonov or Levenberg-Marquardt)
and the type of regularization matrix used. A first observation from

computer simulations is that using the dual regularization, the afore-
mentioned numerical problem does not occur anymore. As a conse-
quence, a more accurate RIR estimate may be obtained. A second
observation is that using a regularization matrix that incorporates
prior knowlegde on the TVAR coefficients, results in a more accu-
rate TVAR coefficient estimate. Moreover, the Tikhonov regular-
ization method is preferred over the Levenberg-Marquardt method.
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