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ABSTRACT

Adaptive Volterra filters are a popular model for compen-
sating distortions caused by nonlinear structures with mem-
ory such as low-quality loudspeakers. This paper proposes a
fast version of the recently investigated repeated coefficient
updates for the partitioned block frequency-domain adaptive
Volterra filter. Exploiting inherent recursions of the iteration
procedure yields an efficient realization with a very low ad-
ditional complexity compared to the usual LMS adaptation.
Experimental results for both noise and speech demonstrate
a significant acceleration of the filter convergence and over-
all echo cancellation for realistic nonlinear AEC scenarios.

1. INTRODUCTION

Adaptive Volterra filters are a well-known model for identifi-
cation and compensation of signal distortions caused by non-
linear structures with memory. A typical application scenario
is given by nonlinear acoustic echo cancellation (NLAEC)
as depicted in Fig. 1, where an adaptive second-order Vol-
terra filter is used to compensate for the nonlinear echoy(k)
recorded by the microphone signald(k).
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Figure 1: NLAEC scenario where the nonlinear echoy(k) is
to be compensated by an adaptive Volterra filter (PBFDAVF)

Commonly, standard NLMS updates are employed as
adaptation algorithm in order to keep the costs for the ad-
justment of the filter within a tolerable range. However, since
the nonlinear components are in general only weakly excited,
the convergence of the corresponding coefficients is usually
slowed down and thus not satisfactory. Therefore, an exten-
sion of iterated coefficient updates as they are known from
linear adaptive filtering [1, 2, 3] has recently been investi-
gated in [4]. There, an adaptive partitioned block frequency-
domain Volterra filter (PBFDAVF) has been modified to in-
corporate such an iteration procedure and was shown to ex-
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hibit a significantly increased convergence with application
to NLAEC.

This contribution proposes an efficient, fast version of the
iterated coefficient update mechanism by exploiting recur-
sive relations of the repeated filtering and update steps. First,
Sec. 2 introduces the notation for this paper and presents the
basic definitions of the PBFDAVF before the iteration algo-
rithm is outlined in Sec. 3. The derivation of the essential
recursion properties and the resulting fast realization isillus-
trated in Sec. 4 whereas Sec. 5 discusses the computational
complexity of the regarded algorithms. Finally, experimental
results for both noise and speech input can be found in Sec. 6.

2. PRELIMINARIES

In this section, we will briefly introduce the PBFDAVF in an
explicit notation and a matrix notation. For more detailed in-
formation, the reader is referred to [5]. Note that all expres-
sions using bold, underlined fonts denotevectors whereas
bold fonts refer tomatrices. Moreover, uppercase letters are
reserved for DFT domain quantities and constants whereas
lowercase letters denote time-domain signals.

The partitioned block second-order Volterra filtering in
the DFT domain reads

Ŷν(m) =
B1−1

∑
b=0

Ŷ1,ν,b(m)+
B2−1

∑
b1=0

B2−1

∑
b2=0

Ŷ2,ν,b1,b2(m) (1)

whereν refers to the processed signal frame,mrepresents the
frequency bin andB1,B2 denote the corresponding number of
filter partitions [5]. The binwise contributions to the output
spectra are given by

Ŷ1,ν,b(m) = Ĥ1,ν,b(m)Xν,b(m) (2)

Ŷ2,ν,b1,b2(m) =
1
M

M−1

∑̃
m=0

Ĥ2,ν,b1,b2(m̃, [m− m̃]M)

Xν,b1(m̃)Xν,b2([m− m̃]M) (3)

whereĤ1,ν,b(m) andĤ2,ν,b1,b2(m1,m2) specify the DFT co-
efficients of the linear and the quadratic kernel respectively.
Due to the symmetry of the 2D-DFT,[...]M denotes a modulo
operation w.r.t. the DFT lengthM. Moreover, the spectra of
the input frames correspond to

Xν,b(m) = DFTM

{
xν,b(κ)

}
(4)

where xν,b(κ) := x
(
ν L+ κ − (M−L)−bN

)
(5)
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and whereκ ∈ {0, ...,M−1}. Here,L ≤ N is the shift of the
overlap-save processing which relates to the partition size N
via an overlap factorρ = N

L .

Matrix Notation

For convenience, a matrix formulation of (1) to (5) will be
employed in the following. Defining the vector of the time-
domain input frames of the filter partitions as

xν,b :=
[
xν,b(0), . . . , xν,b(M−1)

]T
(6)

we may write theM ×M matrix of the corresponding DFT
spectra as

X1,ν,b := diag
{
X1,ν,b

}
where X1,ν,b = Fxν,b (7)

which utilizes theM-point DFT matrixF. TheM×M2 input
matrices of the quadratic kernel are then given by

X2,ν,b1,b2 := diag
{
X2,ν,b1,b2

}
(8)

using the concatenated column vector

X2,ν,b1,b2
:=

1
M

[
XT

2,ν,b1,b2
(0), . . . , XT

2,ν,b1,b2
(M−1)

]T

(9)
where theX2,ν,b1,b2

(m) comprise all DFT bin products of the
input partitions that contribute to a particular output binm in
(3). Furthermore, the corresponding vectors of the adaptive
Volterra filter are given as

Ĥ1,ν,b := Fĥ1,ν,b (10)

Ĥ2,ν,b1,b2
:=
[
Ĥ

T
2,ν,b1,b2

(0), . . . , Ĥ
T
2,ν,b1,b2

(M−1)
]T

(11)

where the elements of̂H2,ν,b1,b2
(m) are arranged analo-

gously to (9). Note that both the time-domain vectorsĥ1,ν,b
of the linear kernel and the corresponding matrices of the
quadratic kernel are zero-padded to the DFT lengthM in or-
der to preserve the partitioned structure of the Volterra ker-
nels [5].

Employing the above definitions, the filtering operations
of (2), (3) may be expressed by inner products of the involved
matrices. Thus, the Volterra filtering of (1) reads

Ŷν =
B1−1

∑
b=0

X1,ν,bĤ1,ν,b +
B2−1

∑
b1=0

B2−1

∑
b2=0

X2,ν,b1,b2 Ĥ2,ν,b1,b2

(12)
and yields the resulting time-domain output frame as

ŷν = F−1Ŷν . (13)

3. METHOD OF ITERATED ADAPTATION

Based on the provided matrix notation, we will now in-
vestigate the effect of iterated coefficient updates for the
frequency-domain adaptation of the PBFDAVF according to
(12). This means that the conventional LMS algorithm is re-
peatedR times on the same frame data as proposed in [1, 2]

for adaptive linear filtering scenarios and already outlined in
[4] for adaptive Volterra filters.

Hence, the DFT coefficients in (12) are replaced by their

iterated versionŝH
(r)
1,ν,b,Ĥ

(r)
2,ν,b1,b2

where the bracketed su-
perscript indicates the current iteration number 0≤ r ≤R−1.
As a consequence, the residual error in ther-th iteration is
based on the corresponding filter outputŷ(r)

ν and can be cal-
culated as

e
(r)
ν = W

(
dν − ŷ(r)

ν

)
(14)

where the frame vectordν of the microphone reference is
defined as in (5), (6) forb = 0 and contains the same data for
all of the repetitions. Additionally, a windowing matrix

W :=

[
0M−L 0

0 IL

]
(15)

is introduced which accounts for the time-domain constraint
of the overlap-save method [6]. Here,IL denotes theL× L
identity matrix whereas0M−L specifies a square “all-zero”
matrix of the given size.

Since the DFT-domain Volterra filter is implemented
adaptively, we apply a standard LMS stochastic gradient al-
gorithm [7] with a separate normalization and joint itera-
tions of both filter kernels (SNLMS-JI). The achieved filter
updates are thus given by

Ĥ
(r+1)

1,ν,b = Ĥ
(r)
1,ν,b +C1Ψ1X

H
1,ν,bFe

(r)
ν (16)

Ĥ
(r+1)

2,ν,b1,b2
= Ĥ

(r)
2,ν,b1,b2

+C2Ψ2XH
2,ν,b1,b2

Fe
(r)
ν (17)

for all partitions of the linear and the quadratic Volterra ker-
nel respectively. Note that the superscriptH denotes a Her-
mitian conjugate, the diagonal matricesΨ1,Ψ2 apply the
kernel-dependent step sizes of the SNLMS algorithm [4] and
the constraint matricesC1,C2 are used to enforce the zero-
padding of the time-domain kernel partitions. For the linear
case, theM×M matrixC1 reads

C1 := F

[
IN 0
0 0M−N

]
F−1 (18)

whereas for the quadratic case, the correspondingM2×M2

constraint matrixC2 has a more sophisticated structure
which is due to the construction of the input vectors by (8),
(9). Hence, the definition analogously to (18)

C2 := F2D,s·C2D,s·F
−1
2D,s (19)

requires the formulation of 2D-DFT matricesF2D,s with
scrambledelements in each row in order to provide the ap-
propriate frequency transform along with an intermediate 2D
windowing operationC2D,s according to the time-domain
kernel partitioning [5]. We will, however, skip the explicit
definition of these matrices for reasons of compactness, al-
though their derivation is straightforward.

Note that a continuous usage of the filter coefficients re-
quires a defined “hand-over”, i.e.

Ĥ
(0)

1,ν+1,b = Ĥ
(R)

1,ν,b (20)

Ĥ
(0)

2,ν+1,b1,b2
= Ĥ

(R)

2,ν,b1,b2
(21)

holds throughout all processed frames. Obviously, using the
SNLMS-JI algorithm with onlyR= 1 iterations corresponds
to a standard SNLMS algorithm as given in [4, 5].
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4. FAST ITERATION ALGORITHM

Although the outlined iteration method provides significant
improvements in the convergence speed of adaptive Volterra
filters [4], it is highly desirable to develop a more efficient
version of the straightforward iteration approach of Sec. 3.
In particular, it is imperative to avoid the costs of repeated
quadratic filtering and updating due to the large number of
second-order kernel coefficients. In the following, we will
thus utilize the matrix formulation of the PBFDAVF to ex-
ploit the inherent recursions of the iterated update procedure.

Starting from the a-priori error framee(0)
ν , any further

iteration tends to improve the minimization of the residual
error block w.r.t. the current input frame and the reference
data [1, 4]. All subsequent filter outputs for 1≤ r ≤ R−1 are
therefore characterized by

ŷ
(r)
ν = ŷ

(r−1)
ν + ∆ŷ

(r)
ν (22)

with ∆ŷ
(r)
ν as the refinement of the filter output due to the

already updated Volterra coefficients from the preceding it-
eration. Using (12), (13) and taking (16), (17) into account,
this refinement reads

∆ŷ(r)
ν = Gν e

(r−1)
ν (23)

whereGν denotes anM×M iteration gain matrix

Gν := F−1

(
B1−1

∑
b=0

X1,ν,bC1Ψ1XH
1,ν,b

+
B2−1

∑
b1=0

B2−1

∑
b2=0

X2,ν,b1,b2 C2Ψ2X
H
2,ν,b1,b2

)
F (24)

which is constant throughout all performed iterations for a
given input frame.

Furthermore, inserting (22) into (14), we observe a recur-
sive relation for the residual error block

e
(r)
ν = W

(
dν − ŷ

(r−1)
ν −∆ŷ

(r)
ν

)
= e

(r−1)
ν −∆e

(r)
ν (25)

where the additional error reduction is given by

∆e
(r)
ν := W∆ŷ(r)

ν = WGν e
(r−1)
ν . (26)

Considering (26) reveals that both right-hand side terms of
(25) depend on the error block of the previous iterationr −1.
Since this recursion may be traced back for all previous it-
eration steps as well, the a-posteriori error of any iteration is
yielded by

e
(r)
ν =

(
IM −WGν

)r
e

(0)
ν (27)

which merely relies on the a-priori error itself. On the other
hand, the complete evolution of the DFT-domain partitions
of the linear Volterra kernel for all iterations 0≤ r ≤ R− 1
can be expressed recursively as

Ĥ
(r+1)

1,ν,b = Ĥ
(r)
1,ν,b +C1Ψ1X

H
1,ν,bFe

(r)
ν

= Ĥ
(r−1)

1,ν,b +C1Ψ1X
H
1,ν,bF

(
e

(r−1)
ν +e

(r)
ν

)

...

= Ĥ
(0)

1,ν,b +C1Ψ1X
H
1,ν,bF ·

r

∑
i=0

e
(i)
ν . (28)

Analogously,

Ĥ
(r+1)

2,ν,b1,b2
= Ĥ

(0)

2,ν,b1,b2
+C2Ψ2X

H
2,ν,b1,b2

F ·
r

∑
i=0

e
(i)
ν (29)

holds for the partitions of the quadratic DFT-domain kernel.

Efficient Realization

Having developed these recursive formulations for the resid-
ual error block and the update of the DFT domain Volterra
coefficients, we seek an implementation which allows for an
efficient calculation of (28), (29). However, as the DFT ma-
tricesF in (24) are likely to be evaluated by FFT operations
in practice, the matrix-based recursion of (27) cannot be ap-
plied straightforwardly. Regarding (23), we neverthelessfind
that any additional refinement of the filter output can be ob-
tained by multiplication of the recent error block with the
gain matrixGν , rather than by a complete filtering in all
Volterra kernels and partitions. Note that in this case, thein-
volved DFTs may be replaced efficiently by appropriate FFT
algorithms.

Furthermore, the computational demands of the iteration
method are greatly reduced by allowing for unconstrained
updates for all intermediate coefficient adjustments, i.e.if

C1 = IM and C2 = IM2 (30)

holds for the constraint matrices. Despite the huge savings
in complexity, this simplification still yields attractivecon-
vergence behaviour as will be demonstrated by the results of
Sec. 6. Additionally regarding the kernel-dependent subband
normalization of the applied DFT-domain LMS algorithm,
the step size matrices are represented by

Ψ1 = diag
{

µ
1,ν

}
and Ψ2 = diag

{
µ

2,ν,aug

}
(31)

where

µ
1,ν :=

[
µ2,ν(0), . . . , µ2,ν(M−1)

]T
(32)

µ
2,ν,aug

:=
[

µ2,ν(0)1T
M, . . . , µ2,ν(M−1)1T

M

]T
. (33)

Note that the1M denote “all-one” vectors of lengthM, as
required for the definition of the augmented step size vector
for the quadratic filter partitions. The scalar step sizes for
both Volterra kernelsp = 1,2 are moreover given by

µp,ν(m) :=
αp

Sp,ν(m)+ δp
(34)

where theαp represent user-specified control parameters, the
δp denote regularization constants and theSp,ν(m) refer to
the recursively averaged spectral powers of the kernel inputs
as outlined in [4, 5].

Exploiting the above modifications, the iteration gain ma-
trix is reduced to the form

Gν = F−1Pν F (35)

where the power matrix

Pν :=
B1−1

∑
b=0

X1,ν,bΨ1X
H
1,ν,b

+
B2−1

∑
b1=0

B2−1

∑
b2=0

X2,ν,b1,b2 Ψ2X
H
2,ν,b1,b2

(36)
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collects the weighted energy of all kernels and partitions con-
tributing to each DFT bin. Due to the matrices involved in
(36), the resultingPν exhibits anM×M diagonal structure
as well and is constant for a given frameν. Hence, it may be
computed framewise prior to the repeated adaptation with an
arbitrary number of iterations.

Consequently, the influence of all iterations 1≤ r ≤R−1
on the a-posteriori error can be computed successively by

e
(r)
ν = e

(r−1)
ν −WGν e

(r)
ν (37)

a
(r)
ν = a

(r−1)
ν +e

(r)
ν (38)

where a
(r)
ν denotes the corresponding accumulated error

block and is initialized by an “all-zero” vector of lengthM,

i.e. a(0)
ν := 0M. Thus, the effective adaptation of the DFT-

domain Volterra coefficients can be carried out in a single,
direct update and yields

Ĥ
(R)

1,ν,b = Ĥ
(0)

1,ν,b +C1Ψ1XH
1,ν,bFa

(R−1)
ν (39)

Ĥ
(R)

2,ν,b1,b2
= Ĥ

(0)

2,ν,b1,b2
+C2Ψ2XH

2,ν,b1,b2
Fa

(R−1)
ν (40)

which is governed by the total accumulation of all interme-
diate errors. Accordingly, this algorithm is referred to asfast
iterated adaptation (SNLMS-FI)due to its remarkable com-
putational savings. It should be mentioned here that for the
coefficient adjustments of (39), (40), the constraint matrices
C1,C2 are not restricted as given by (30). This implies that
the actually performed filter update may as well fulfill the
zero-padding constraint of the time-domain partitioning [5].

5. COMPLEXITY CONSIDERATIONS

In this section, we present a short analysis of the proposed
algorithm in terms of complex multiplications (CMUL) and
compare this to the computational burden of a straightfor-
ward iteration method.

For these evaluations we investigate a non-overlapping
processing withL≡N, which requires only one transform for
the new input dataxν,0 of the first partition as all other block
spectra may be acquired by shifting previous input spectra by
one partition. A typical implementation is considered, which
exploits the symmetries of the second-order Volterra kernel
and thus the number of necessary quadratic filter coefficients
is roughly halvened [5]. Moreover, we neglect the efforts for
computing the power estimates contained in the normalized
step sizes (34) and restrict ourselves to unconstrained ver-
sions of the adaptation according to (30), in order to cover
only the core calculations of these algorithms.

After the input frame has been transformed, the com-
plexity of a straightforward SNLMS-JI algorithm [4] is de-
termined by the loop ofR iterations in total, each of which
contributesB1M and 1

2 B2
2M (2M +1) CMUL by filtering, 2

FFTs by overlap-save processing and error calculation and
another 2B1M andB2

2M2 CMUL by updating all kernel par-
titions. Thus it can be seen that the overall complexity of
the straightforward iterated coefficients updates has approx-
imately R times the complexity of the single-update case
whereR= 1.

Up to the calculation of the a-priori error block, the cor-
responding fast implementation (SNLMS-FI) requires the
same operations as the straightforward approach. However,

having calculated the power matrix with 2B1M andB2
2M2

CMUL for each frame, there is only need for another 2 FFTs
and a weighting of allM DFT bins in order to obtain the out-

put refinements and the accumulationa
(r)
ν throughout each

of the remainingR−1 iterations. Finally, we have only one
direct update of the Volterra coefficients, requiring the same
computations as each of theR updates for the SNLMS-JI.

Assuming a standard radix-2 implementation, we have a
complexity of 1

2 M ld(M) CMUL per FFT operation1. Thus,
the aforementioned calculations yield a total of

[
3RB1+

R
2

B2
2 +

2R+1
2

ld(M)

]
M +2RB2

2M2

CMUL for the straightforward SNLMS-JI algorithm and

[
5B1+

1
2

B2
2 +R ld(M)+ (R−1)

]
M +3B2

2M2

complex multiplications for its fast version. As can be seen
by these expressions, the term governed byM2 is scaled
by R for the straightforward approach whereas it is fixed at
3B2

2M2 for the fast SNLMS-FI adaptation method. This re-
flects the fact that an increasing refinement and iterated error
calculation as outlined by (35) to (40) can be achieved with-
out using a repeated quadratic filtering of considerable com-
plexity. In particular, this is due to the mapping of theM2

complexity of an explicit second-order kernel filtering (3)to
a complexity of orderM by multiplication with the diagonal
power matrix (36).

To provide a more illustrative example, we evaluate these
algorithmic demands for a scenario of nonlinear AEC where
N = 64, M = 128, the lengths of the Volterra kernels are
specified such thatB1 = 5, B2 = 1 and an adaptation with
R = 4 is performed. The number of operations for overlap-
ping frames (ρ = 4) is also given, in order to complete the
range of comparable processing methods [4]. In this case, the
effort for transforming the input data is noticeably increased,
since no DFT spectra from previous frames can be re-used
and hence the computational demands are slightly dispropor-
tionate. Comparing the corresponding CMUL with those of a
non-overlapping SNLMS, the resulting workload w.r.t. com-
plex multiplications per second is listed in Table 1.

Algorithm CMUL / sec add. effort
SNMLS (ρ = 4) 18,944,000 +319.9 %
SNMLS-JI (R= 4) 17,880,000 +296.3 %
SNLMS-FI (R= 4) 7,048,000 +56.2 %
SNLMS (ρ = 1) 4,512,000 n/a

Table 1: Comparison of workload for several algorithms

From these figures, the benefit of the SNLMS-FI in terms
of computational complexity is obvious, since this fast ver-
sion consumes only approximately 50% more calculations
for R = 4 iterations per update step. On the other hand, the
demands of the straightforward SNLMS-JI are roughly pro-
portional to the number of iterations.

1 ld(...) denotes the logarithmus dualis (i.e. base-2 logarithm)
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6. ADAPTATION BEHAVIOUR

Contemporary to the analysis of the computational complex-
ity we now demonstrate the effectiveness of this mecha-
nism w.r.t. to an acceleration of the adaptation for frequency-
domain Volterra filters. Therefore, an NLAEC scenario as de-
picted in Fig. 1 is evaluated, where the nonlinear path of the
acoustic echoy(k) is given by a second-order Volterra filter
with memory lengths according toN = 64 andB1 = 5,B2 = 1
and a corresponding power ratio of 20 dB for the linear-to-
nonlinear signal components iny(k). For the task of echo
cancellation, a PBFDAVF of the same size is utilized which
applies an FFT sizeM = 128 and a frame shift according
to the specified overlap factor. All adaptations are performed
using the parametersαp = 0.3 andδp = 0.001. Moreover,
the generated echo is subjected to additive white Gaussian
noisen(k) such that an SNR of 30 dB is obtained for the mi-
crophone signal in order to investigate a realistic single-talk
situation for NLAEC in a noisy environment.

At first, the ERLE measure [5] w.r.t. the referenced(k)
and the residual errore(k) is evaluated for a speech-like
coloured, Laplacian noise input. As illustrated in Fig. 2, there
is a significant increase in convergence speed for an adapta-
tion with iterated coefficient updates compared to the single-
update case using either non-overlapping frames or process-
ing with ρ = 4. Furthermore it can be seen that this en-
hancement is also maintained by the SNLMS-FI algorithm,
although its derivation implies the use of unconstrained up-
dates for the intermediate iterations. The missing constraint,
however, allows for a greater degree of freedom in accelerat-
ing an adaptation by iterated coefficient updates and thus the
fast algorithm in fact yields a slightly better echo cancellation
than the straightforward algorithm. Note that this effect is in
accordance with experiments where the SNLMS-JI has been
applied with only one final constraint after allR iterations.
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Figure 2: ERLE results for noise input (various algorithms)

As can be seen from Fig. 3, these observations also
hold for experiments with real speech signals, as both the
SNLMS-JI and the SNLMS-FI yield a significant acceler-
ation of the adaptation speed here as well. Although the
computational demands are kept at an acceptable level, the
SNLMS-FI is shown to be well capable of obtaining an addi-
tional ERLE gain of typically more than 10 dB compared to
a conventional SNLMS algorithm – regardless of the frame
overlap. Note that in both cases, the achieved steady state
gain of the iteration algorithms is above the given SNR,
which is due to an exploitation of the short-time signal char-
acteristics and beneficial for noisy AEC scenarios [1, 4].
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Figure 3: ERLE results for speech input (various algorithms)

7. CONCLUSIONS

We have presented a fast version of the iterated NLMS adap-
tation for DFT-domain Volterra filters. By exploiting the re-
cursive relations inherent to repeated Volterra filtering and
coefficient updates, this method has been shown to yield sig-
nificant computational savings which are even more apparent
than in the case of linear filtering. Nevertheless, our results
for both noise and speech inputs demonstrate the same gain
in convergence speed and steady state performance as for the
straightforward iteration procedure which readily justifies the
moderate increase in complexity over a conventional single-
update adaptation. Although the derivation of this fast iter-
ation algorithm is based on second-order Volterra filters for
presentational convenience, the resulting approach is easily
extensible to higher order structures as well.

REFERENCES

[1] K. Eneman and M. Moonen, “Iterated Partitioned
Block Frequency-Domain Adaptive Filtering for Acous-
tic Echo Cancellation”,IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 11, no. 2, pp. 143–
158, Mar. 2003.

[2] K. Eneman and M. Moonen, “On Iterating the Parti-
tioned Block Frequency-Domain Adaptive Filter”,Tech-
nical Report 00-127, Katholieke Universiteit Leuven,
Dec. 2000.

[3] J. Benesty and T. Gänsler, “On Data-Reuse Adaptive Al-
gorithms”, Proc. Int. Workshop on Acoustic Echo and
Noise Control (IWAENC), Kyoto, Japan, Sept. 2003.

[4] M. Zeller and W. Kellermann, “Iterated Coefficient Up-
dates of Partitioned Block Frequency Domain Second-
Order Volterra Filters for Nonlinear AEC”, inProc.
IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Honolulu, Hawaii, USA, Apr. 2007.

[5] F. Küch and W. Kellermann, “Partitioned Block
Frequency-Domain Adaptive Second-Order Volterra Fil-
ter”, IEEE Transactions on Signal Processing, vol. 53,
pp. 564–575, Feb. 2005.

[6] J. G. Proakis and D. G. Manolakis,Digital Signal Pro-
cessing: Principles, Algorithms and Applications, New
Jersey: Prentice Hall, 2006 (Fourth Edition).

[7] S. Haykin,Adaptive Filter Theory, New Jersey: Prentice
Hall, 2002 (Fourth Edition).

©2007 EURASIP 1609

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

