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ABSTRACT
We consider the problem of tree species classification from high

resolution aerial images based on radiometry, texture and a shape
modeling. We use the notion of shape space proposed by Klassen
et al., which provides a shape description invariant to translation,
rotation and scaling.

The shape features are extracted within a geodesic distance in
the shape space. We then perform a classification using a SVM ap-
proach. We are able to show that the shape descriptors improve the
classification performance relative to a classifier based on radio-
metric and textural descriptors alone.

We obtain these results using high resolution Colour InfraRed
(CIR) aerial images provided by the Swedish University of Agricul-
tural Sciences. The image viewpoint is close to the nadir, i.e. the
tree crowns are seen from above.

1. INTRODUCTION
Interest in applying remote sensing to forests goes back to the 1920s
when aerial photographs were first used to assess forest inventory.
Remote sensing is now widely employed in forest management
where the aerial information is combined with measurements taken
on the ground to study the biodiversity of the forest ecosystem. The
methods developed in forest image processing aim to facilitate the
task of forest inventory and assessment.

The most useful parameters obtained from aerial images and
ground measurements are density (of planting), age of trees, stem
volume, tree species composition, and information such as biotops
and habitats that have ecological value.

In order to obtain information about the diversity of the for-
est species and stem volume, the classification of tree crowns into
species is necessary. Prior to classification, we need to segment the
image into individual tree crowns. Segmentation techniques such
as template matching, edge detection and others that have been em-
ployed for this application are discussed in [5], [13].

A few approaches have been proposed to classify the trees into
species. One method is the Signature Generation Process where
for every crown extracted, a class of signatures is created from the
multispectral data of initial image, (cf [10]). A likelihood max-
imisation technique is used to label the crown. Some crowns with
signatures too far from a succesful match remain unclassified. In
another study [6], tree crowns are manually delineated to avoid bias
due to bad detection. 50 trees for each class verified against the
ground truth are selected. 7 parameters such as the multispectral
average of pixels in the crown (average on each of the bands) and
the illuminated part of the crown, as well as the multispectral value
of the tree crown (most lighted pixel) are then computed. Spectral
signatures of a crown or a region within a crown are developed by
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combining means and covariance patterns. The distinct character-
istics allow us to regroup delineated crowns in forested populations
[7]. There are some limitations with this method due to the close
spectral signature of species like the red cedar and the fir for in-
stance [8].

In [4], a classification based on reflectance is used to separate
the conifers from the deciduous trees. The internal structure and
shading within a crown offer other differentiating criteria. One such
measure, the proportion of red and clear pixels to the total number of
pixels, can identify birch trees. Another helps differentiate aspens
from spruces. A hierarchy of criteria is set forth to classify the
crowns. Classification accuracy using this strategy was 75%.

Radiometry and texture analysis have been used extensively in
remote sensing applications. In this paper, we incorporate informa-
tion obtained from studying tree crown shapes to improve classifi-
cation performance.

As in the Erikson [4] study, the tree classification is performed
on the four most prevalent species of in Sweden: Norway spruce,
Scots pine, birch, and aspen. Two of these species are coniferous
while the other two are deciduous. We select 48 crowns (12 per
class) from the high resolution CIR images (Fig.1). Their contours,
represented by a set of points, are then extracted in order to study
their shapes.

The support vector machine (SVM), a supervised learning
method, was chosen for the classification. An important property of
this classifier is that during the training process, only a small subset
of the training set vectors are selected as support vectors. This re-
duces the computational cost and provides better generalization, so
that, for instance, when new samples far from the decision bound-
ary are introduced, the existing support vectors remain unchanged.

Figure 1: An example of one of the images used in this work (reso-
lution 3 cm), c©Swedish University of Agricultural Sciences.
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2. SUPPORT VECTOR MACHINE
SVMs are a set of supervised learning methods of classification and
regression, which consists in finding the maximum separation (mar-
gin) between classes using a set of observations called the training
data. SVMs are also called maximum margin classifiers since they
minimize the empirical classification error and maximize the geo-
metric margin simultaneously [15].

2.1 Linear SVM
2.1.1 Separable case
Given a training data (xi,yi), i = 1, ...,N, where xi ∈ Rm and yi ∈
{−1,1}, that denotes to which class xi belongs, SVM looks for
the Optimal Separating Hyperplane that maximizes the distance be-
tween the closest training samples of the two classes called also the
”margin”.

The dividing hyperplane is defined as following w · x + b = 0.
The vector w is a vector normal to the hyperplane and b is the offset
parameter allowing us to increase the margin. So the classifier is
given by f : x∈Rm 7−→ sign(w·x+b)∈{−1,1} , i.e. all the training
data satisfy the following constraints:

{

w · xi +b ≥ 0 if yi = +1
w · xi +b ≤ 0 if yi = −1

That could be described by a set of inequalities:

yi(w · xi +b) ≥ 1 , ∀i (1)

To find the hyperplane which gives the maximum margin
2/‖w‖ (for details see [2]) we should minimize ‖w‖2, subject to
constraints (1). This leads to the following quadratic optimization
problem:

min
(w,b)

‖w‖2

2

By introducing the Lagrange multipliers λi, i = 1, ..,N, one for
each inequality constraints (1), the problem becomes ”dual” [2]:

max
λ

(L(λ ) =
N
∑
i=1

λi −
1
2

N
∑
i=1

N
∑
j=1

λiλ jyiy jxi · x j),

subject to
N
∑
i=1

λiyi = 0 , 0 ≤ λi , ∀i,

which is a convex quadratic optimization problem subject to linear
constraints. Thus, the solution is given by w = ∑N

i=1 λiyixi and b =
yi −w · xi, for i : λi 6= 0. The classification function becomes:

f (x) =
N
∑
i=1

λiyixi · x +b

2.1.2 Nonseparable case
For nonlinearly separable data, slack variables ξi and a regulariza-
tion parameter C are introduced to deal with misclassified samples,
i.e. to relax the constraints (see Fig. 2). By introducing them into
the optimization problem, we obtain:

min
(w,b)

‖w‖2

2 +C
N
∑
i=1

ξi,

subject to : yi(w · xi +b) ≥ 1−ξi , ξi ≥ 0, ∀i.
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‖w‖
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Figure 2: SVM Classifier.

This quadratic problem using the Lagrange multipliers be-
comes:

max
λ

(L(λ ) =
N
∑
i=1

λi −
1
2

N
∑
i=1

N
∑
j=1

λiλ jyiy jxi · x j),

subject to
N
∑
i=1

λiyi = 0 , 0 ≤ λi ≤C , ∀i.

2.2 Nonlinear SVM
For the cases where the decision function is not a linear function
of data, the nonlinear classifier was created by applying the kernel
trick (originally proposed by Aizerman) to maximum-margin hy-
perplanes (cf [1]). The resulting algorithm is formally similar, ex-
cept that every dot product xi · x j is replaced by a non-linear kernel
function K(xi,x j) = Φ(xi) ·Φ(x j), with Φ : Rm 7−→ H and H being
an Euclidean space generally of a higher dimension. This allows
the algorithm to fit the maximum-margin linear hyperplane in the
transformed H.

Thus, the classification function becomes:

f (x) =
N
∑
i=1

λiyiK(xi,x)+b.

In regard to kernels, there exists a mapping Φ, if K(xi,x j) satisfy
the Mercer’s condition [16].

3. FEATURE CREATION AND CLASSIFICATION
RESULTS

As mentioned in the introduction, 48 tree crown contours were se-
lected. The contours were carefully delineated manually to preserve
important tree crown shape information. The SVM classification is
performed using a Gaussian kernel K(x,x′) = exp(− ‖x−x′‖2

2σ2 ). Since
the database is quite small, for each experimental run, 50% of the
samples were picked at random to form the training set.

First, we performed the classification using only radiometric
attributes. We then add texture features and finally, we included the
shape descriptors. After each step, we calculated the performance.

To evaluate the performance, the average performance, P, of a
set of experiments is computed. 5% of the values at the high and
low end of the performance scale are excluded from this calculation.
P can be expressed as

P = (
Ne

∑
i=1

Pi −
Nw

∑
w=1

Pw −
Nb

∑
b=1

Pb)/(Ne −Nw −Nb).
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Pi = Nc/N is the performance of experiment, Ne the number of ex-
periments, Nc the number of correctly classified trees, N the num-
ber of trees and Nw and Nb the numbers of the worst and the best
results respectively. The maximum performance Pmax is also given
(from which we can get the best combination for training and test
sets). Then, we present the confusion matrix for the best perfor-
mance run. A confusion matrix is a visual representation of actual
versus predicted classifications.

3.1 Radiometry based features
For vegetation and land use monitoring, CIR or false-colour film
offers a richer set of information than natural colour film. The false
colours that describe the three channels are Red(NIR), Green(Red),
Blue(Green), [12]. CIR photography is commonly used to discrim-
inate live healthy trees from dying vegetation.

In our study, CIR allows us to distinguish the conifers from de-
ciduous trees. As was pointed out in [4], the 4 classes of trees -
aspen, birch, spruce and pine - can be easily identified as deciduous
or coniferous from first order statistics (the mean and standard de-
viation, computed from the histogram of pixel intensities on the im-
age). This is because deciduous trees reflect a substantially greater
percentage of infrared light.

Classification based exclusively on these descriptors gives low
performance with the average performance being P = 0.54 and the
maximum, Pmax = 0.67. The confusion matrix for one of the best
values of P after repeated classification runs is shown below

















0.5 0.5 0 0

0.167 0.666 0.167 0

0 0.334 0.666 0

0 0 0.167 0.833

















a

b

c

d

where (a)aspen, (b)birch, (c)spruce, (d)pine.
From this matrix, we can see that there are a substantial number

of false positives. For example, 50% of aspens are classified as
birch, while 33% of the birch trees are classified as either aspen or
spruce. This classifier is especially weak in differentiating between
coniferous and deciduous classes, i.e. between aspen and birch or
between spruce and pine.

3.2 Texture based features
To further distinguish within the deciduous and coniferous classes,
we performed texture analysis using gray level co-occurrence ma-
trices (GLCM), which is well adapted for characterising microtex-
tures. A co-occurrence matrix is a two-dimensional quantitative
representation of spatial relationship [9].

Let {I(x,y), 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1} denote a N ×N
image with G gray levels as described in [3]. The G×G gray level
co-occurrence matrix Pd is defined as

Pd(i, j) = |((r,s),(t,v)) : I(r,s) = i, I(t,v) = j| .

The entry (i, j) of matrix Pd is the number of occurrences of the
pair of gray levels i and j which are a distance d = (dx,dy) apart.
Since d is a displacement vector, (r,s), (t,v) ∈ N ×N, such that
(t,v) = (r + dx, s + dy), and ‖.‖ is the cardinality of a set. GLCMs
are a compact representation of pairs of pixel values in relation to
each other. They are an example of the second order statistics as
defined by Julesz and several useful features can be computed from
them.

We generated 9 such matrices for each tree, each matrix rep-
resenting a different direction or distance. Two texture features,
energy and contrast were extracted from the GLCMs.
The energy term, given by

∑
i

∑
j

P2
d
(i, j)

is a measure of the homogeneity of the texture. If the gray level
transitions are roughly uniformly distributed, the energy has a low
value. Conversely, textures which have dominant gray level transi-
tion modes have higher energy values.
The contrast feature

∑
i

∑
j
(i− j)2Pd(i, j)

is a measure of local variation present in an image. We selected this
feature to exploit the distinctive features present in the four types of
crown surface. Spruce trees, for example, display a radial pattern
while aspen have random light and dark regions.

Since these two features are independent of the size and shape
of the crown surface, they represent pure texture characteristics.

The evaluation of classifier performance allows us to determine
the optimal couple of parameters (d and direction). In practice we
have chosen d = 1 and 135 degree direction.

By incorporating these two texture features into the classifier,
we were able to separate the trees into 4 classes with the aver-
age performance P = 0.71 and the maximum performance Pmax =
0.833. The confusion matrix for one the best values of P after re-
peated classification runs is shown below:

















1 0 0 0

0 0.833 0 0.167

0.334 0 0.666 0

0 0 0.167 0.833

















a

b

c

d

We can see that the texture information allows to improve the
classification results for desciduous, especially for aspens (a).

3.3 Shape based features
To further improve the previous results, we propose to study tree
crown shapes in a so called ”shape space”, using the representation
of planar shapes by their angle functions, cf [11].

We consider the tree crown contours as continuous and closed
curves in R2. The representation of such curves in the shape space
is invariant to rigid rotation and translation, and to scaling in R2.
Let us define these properties.

Curves α = (α1(s),α2(s)) are parametrized by arclength s,
where α : R → R2 with period 2π satisfying condition of constant
speed along the curve |α ′(s)| = 1, ∀s. We can write α ′(s) = e jθ (s),
where θ : R → R and j =

√
−1 associating C with R

2. θ is called
direction function or angle function. For every s, θ (s) gives the
angle between α ′(s) and the positive abscissa x, cf Fig.3:

Figure 3: Examples of shapes and corresponding angle functions.

On the Fig.4 we can see more complicated graphs of angle func-
tion representing some crowns.
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Figure 4: Examples of crowns of four species, their contours,
corresponding angle functions θ , and θ̃ = θ − θ0 at the bottom.
(a)Aspen, (b)Birch, (c)Spruce, (d)Pine.

We assume L2 to denote the space of real functions R → R of
the period 2π and square integrable on [0,2π] with scalar product
〈 f1, f2〉 =

∫ 2π
0 f1(s) f2(s)ds and ‖ f‖ =

√

〈 f , f 〉.
Let θ (s) be the angle function of a planar shape. For the unit

circle the function is θ0(s) = s. For any other closed curve the angle
function can be written as θ = θ0 + f , where f ∈ L2. The space
θ0 +L

2 is an affine space the elements of which are different by an
element of L2.

The properties of curve invariance mentioned above are guar-
anteed by the following conditions (cf [11]):
1. The problem of scaling can be simply resolved by fixing the

length of the curve, for instance by 2π . Let c̄ be a closed con-
tour, then we obtain:

∫

c̄
ds =

∫ 2π

0
ds = 2π;

2. An addition of a constant to the angle function θ is equivalent
to the rotation of the curve in R2. To guarantee the invariance
of the curve to this action, we deal with the functions θ , the
mean values of which are equal to a constant on [0,2π]. So, let
1

2π
∫ 2π

0 θ (s)ds = π, where constant π is chosen to include the
identity function θ0 in the restricted set, since

1
2π

∫ 2π

0
θ0(s)ds =

1
2π

∫ 2π

0
sds = π;

3. Finally, to be closed, the curves must satisfy following condi-
tion:

∫ 2π

0
exp( jθ (s))ds = 0.

We define C ⊂ θ0 +L2 as the set of all the elements of θ0 +L2

satisfying the conditions 1-3 described above. Or more formally,
define the map φ = (φ 1,φ2,φ3)) : (θ0 +L2) → R3:

φ1 =
1

2π

∫ 2π

0
θ (s)ds

φ2 =
1

2π

∫ 2π

0
cos(θ (s))ds

φ3 =
1

2π

∫ 2π

0
sin(θ (s))ds.

From now on, we can define C as C = φ−1(π,0,0), which is
called the pre-shape space, because the same curve with different
initial points (s = 0) correspond to different elements of the space
C. But we will deal with the shape space S, where such curves are
represented by one element of S defined by C/D, where D is the
unite circle.

We are going to describe the tree features created using such
a representation of the crown contours. To do it some tree crown
shape analysis was done to determine the information that could
allow us to recognize the species.

Let us look at Fig.4. We can see that the aspens have an irreg-
ular structure, the convexities/branches sticking out of the body of
crowns. The branches of spruces are more regular and have a more
radial direction. The birch and pine crown contours are more round,
where birches are the smoothest.

The first feature, chosen to be incorporated in the classifier,
is a ”distance to a circle” d(θ ,θ0), which is computed using the
geodesic on the shape space (see [11] for details). For the given
shapes θi, i = 1, ...,M, we perform a vector of ”distances to a cir-
cle”:

vc(θ ) = {d(θi,θ0), i = 1,2, . . . ,M} ∈ R ,

where M is the number of trees.
We also include geometrical descriptors based on θ̃ = θ −θ0.
Firstly, we translate the property that some species have more

regular structure of the crowns than others, by a measure of contour
elasticity:

ve(θ̃ ) =

∫ 2π

0
˙̃θ (s)

2
ds,

ve(θ̃ ) = {ve(θ̃i), i = 1,2, . . . ,M} ∈ R .

In regard to spruces, generally they have big
branches/convexities and not numerous in comparison with
the convexities of birch crown. This criterion is reflected by the
angle function under the form of the local maxima number N.

vN(θ̃ ) = N,

vN(θ̃ ) = {vN(θ̃i), i = 1,2, . . . ,M} ∈ R .

Then, the pine crown shape is quite close to that of birch but
certain roughnesses are a little bit bigger, some branches sticking
out. Thus we can qualify the crown contour irregularities due to the
branches, leaves and shadows:

vµ (θ̃) = µ =
1
n

n
∑
k=1

∣

∣θ̃(sk)
∣

∣,

vµ (θ̃) = {µi, i = 1,2, . . . ,M} ∈ R ,

where sk = ∑k
t=1 ct , ct = ‖pt+1 − pt‖ chord lengths of contour and

pt ∈ R2,t = 1, ...,n ordered collection of points approximating the
contours,

vVar(θ̃ ) = Var =
1

n−1

n
∑
k=1

(µi −
∣

∣θ̃(sk)
∣

∣)2,

vVar(θ̃ ) = {Vari, i = 1,2, . . . ,M} ∈ R .

Finally, we use the density function of the angle function in
order to have information about the quantity of big and small con-
vexities of the crown contour. For that, we calculate the histograms
of θ̃ , hθ̃ (x) = card{θ̃ (s) = x,s∈ [0,2π],x∈R}, and then Euclidean
distances

d(h1(x),h2(x)) =
√

< h1(x),h2(x) >.

Then we create the following features associated to each shape, one
distance for every class l. Such a distance is calculated as the dis-
tance to the nearest element of the class l:

dl
min(hi) = min{d(hi,h j)} j=1,...ml ∈ R,
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vd(θ̃ ) = {dl
min(hi), i = 1,2, . . . ,M, l = 1, . . . ,Nl} ∈ R ,

where Nl is the number of classes and ml is the number of shapes of
each class in the training set.

Now we are forming a long vector using individual features and
apply SVM on that feature vector. Obtained results: the average
performance P = 0.747 and the maximum of performances Pmax =
0.87. An example of confusion matrix is given as follows:

















0.833 0.167 0 0

0.167 0.833 0 0

0 0.167 0.833 0

0 0 0 1

















a

b

c

d

Shape based features allow us to improve the identification of
species within the conifers and deciduous trees.

4. CONCLUSION
In this paper we show that the performance of a classifier based on
conventional spectral and texture characteristics can be improved
by including shape descriptors in the feature set. By incorporating
shape features, the classification performance mean improved by
about 4% for 6 samples per class while the maximum performance
was 87.5%.

To create the new descriptors, the shapes of crowns were anal-
ysed using the angle function representation. Such representation
allowed us to preserve the tree crown characteristics that associate
it with one class or another.

The limits imposed by the database size did not give us much
freedom to experiment with the training to test sample size ratio. We
did, however, observe that the performance mean tended to increase
when samples were added to the training set (see fig. 5).

These results are encouraging but they need to be validated on
a larger number of images and tree crowns.

Figure 5: Performance means and maxima.
Future work will consist in automatic extraction of tree crowns

using shape information.
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