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ABSTRACT 
Functional near infrared spectroscopy (fNIRS) is a technique 
that tries to detect cognitive activity by measuring changes in 
the concentrations of the oxygenated and deoxygenated he-
moglobin in the brain. We develop Bayesian statistical tools 
for making multilevel inferences, that is, inferences gener-
alizable to a population within the context of fNIRS neuroi-
maging problem. Specifically, we present a method for multi-
level modeling of fNIRS signals using a hierarchical general 
linear model. The model is treated in the context of Bayesian 
networks. Experimental results of a cognitive task (Stroop 
test) are presented with comparison to classical approaches. 

1. INTRODUCTION 

Functional near infrared spectroscopy (fNIRS) is a non-
invasive method to monitor brain activation by measuring 
changes in the concentrations of oxygenated and deoxygen-
ated hemoglobin (Hb) [1]. Differences in the absorption 
spectra of oxy- and deoxy-Hb allows us to measure the 
transmitted and received near infrared light in multiple 
wavelengths and calculate the relative concentrations of 
these chromospheres. fNIRS has significant advantages like, 
lack of radiation, portable nature of the device, relative easi-
ness and low cost of the procedure. Although fNIRS is suc-
cessfully employed in a number of physiological measure-
ments it is still a challenging task to detect cognitive activity 
by fNIRS. 

Statistical analysis of neuroimaging data is interested in 
detecting the activation pattern of the brain under a particular 
kind of stimulus. Statistical inference generally handles a 
group of subjects to deduce results attributable to that par-
ticular population. Summary statistics approach [2] is an effi-
cient way to arrive at results generalisable to a population. 
Working with summary statistics substantially decreases the 
computational burden of the analysis because each level ac-
cepts as input the parameters estimated from the previous 
level (or observed data) and each unit in a level (session, 
subject etc.) may be analyzed isolated from the rest of the 
units at the same level. However, it is not always clear what 
the correct statistics are that summarize the data. Indeed, 
whether it is possible to work with summary statistics or not 
is still an open problem. 

General linear model (GLM) is the most commonly used 
tool to make inferences from functional magnetic resonance 
imaging data [3]. Albeit some differences between the two 
techniques, fNIRS, also tries to detect brain haemodynamic 
activity, which is based upon neurovascular coupling theory. 
Thus, it would be logical to test the validity of the GLM for 

fNIRS signals. Schroeter et al. [4] was one of the first groups 
to apply GLM for fNIRS signals. Using a visual stimulus, 
they arrived at the conclusion that GLM is feasible especially 
for deoxy-Hb. 

The main problem we address in this study is to make 
multilevel inference from fNIRS signals, i.e. we want to infer 
on upper level (group, groups of groups etc.) parameters, 
having observed some set of measurement data. We use a 
hierarchical GLM to link measurement space to the upper 
level parameters. We propose to use Bayesian networks [5] to 
define structural and functional relationships between the 
variables of the model. This will allow us to arrive at poste-
rior probability distributions for the parameters that we want 
to infer on. 

The particular experimental protocol that we used in this 
study is a variant of Stroop task which is known to be a good 
activator of prefrontal cortex [6,7]. We used the version of 
the Stroop task introduced by Zysset et al. [8], since it pro-
vides a way to separate interference that takes place at the 
conceptual level from the response preparation and also it is 
very suitable for computerized application of the test. We 
intended to show that fNIRS can detect cognitive activity in 
the prefrontal cortex using suitable statistical tools. Thus, this 
study may be seen as an effort to make a contribution to the 
ongoing studies to clarify the potential of fNIRS for cogni-
tive activity monitoring. 

2. METHODS 

2.1 Preliminaries 

We analyzed fNIRS data with the familiar two-level GLM. 
In the subsequent analysis we will call first level as the 
“subject level” and second level as the “group level”, to be 
more explicit. More levels can be added to the model if need 
be, for example, for making between-session or between-
group analysis. However, the arguments will be similar. The 
model is mass univariate, i.e. each detector’s signal is ana-
lyzed separately. The first level models the within-subject 
effects: 

 
k k k k

Y X B E= +  (1) 

where Yk is the N × 1 preprocessed fNIRS data for subject k 
from some generic detector, Xk is the N × p design matrix, Bk 
is the p × 1 vector of unknown parameters and Ek is the N × 1 
error vector. The columns of the design matrix, Xk, are con-
structed to model the hypothetical hemodynamic response 
function [3]. We are assuming that the parameter vector Bk is 
a realization from some population. Thus, 
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k gk g gk

B X B E= +  (2) 

where Xgk is the p×q group level design matrix linking the 
subject’s parameters to the group parameters,  Bg is the q × 1 
vector of group parameters and Egk is the p × 1 error vector. 
We may also analyze all the subjects together and modify (1) 
as, 

 Y XB E= +  (3) 

where, Y is the KN×1 concatenated data vector, X is the 
KN×Kp separable subject-level design matrix, B is the Kp × 
1 concatenated parameter vector and E is the KN×1 concate-
nated error. The group level model may also be written as, 

 
g g g

B X B E= +  (4) 

where Xg is the Kp × q group level design matrix, Bg is the q 
× 1 vector of group parameters and Eg is the Kp × 1 error 
vector. Note that, we carried all the parameters from the sub-
ject level to the group level, i.e., no contrasts were applied at 
the subject level. Thus, group-level model is inherently mul-
tivariate since it brings together the subject-level estimates (a 
vector) to arrive at a group-level decision. Probability density 
function (pdf) of the subject-level error vector is assumed to 
be Gaussian with no temporal correlation, i.e. 

( ) 2cov
k k N

E Iσ= . The pdf of the group-level error vector is 

also Gaussian but this time with a general covariance struc-

ture, i.e. ( )cov
gk g

E C= . Thus, the only assumption about 

the group-level error covariance is positive definiteness. 
Directed acyclic graphs (DAG) or Bayesian networks 

provide an easy route to define structural and functional rela-
tions within a model. To build a DAG, we must define the 
relevant variables, i.e. nodes and the structural relationships, 
i.e. edges. Then it becomes possible to define the functional 
relationships in terms of conditional probabilities. The hier-
archical model defined by (3) and (4) may be pictured by the 
DAG given in Figure 1. Having defined the variables and 
structural relationships, functional relationships may be 
stated by the following rule [9]: 

( ) ( )( ) ( )( )
( )

| . . | . |
m n

n n n m m

z ch z

p z r v p z pa z p z pa z
∈

∝ ∏  (5) 

where zn and zm are nodes of the DAG, pa(zn) stands for the 
parent of zn and ch(zn) stands for children of zn, and r.v. for 
the remaining variables. Thus, the pdf of any node in the 
network conditioned over the remaining variables can be 
written as in (5): 

( ) ( ) ( )2| , . . | , , . | , ,
k k g g k k k

p B M r v p B M B C p Y M B σ∝  (6a) 

( ) ( ) ( )2 2 2| , . . | . | , ,
k k k k k

p M r v p M p Y M Bσ σ σ∝  (6b) 

( ) ( ) ( )
1:

| , . . | . | , ,
g g k g g

k K

p B M r v p B M p B M B C
=

∝ ∏  (6c) 

( ) ( ) ( )
1:

| , . . | . | , ,
g g k g g

k K

p C M r v p C M p B M B C
=

∝ ∏  (6d) 

 
Figure 1 -Directed acyclic graph for the two-level hierarchi-
cal model. 
 
where M stands for the model. Equations (6b-d) state that we 
need to specify prior distributions for �k

2, Bg, and Cg to be 
able to derive conditional posterior pdf’s. Since generally we 
don’t have a prior information about the distribution of the 
parameters, we have to use uninformative priors. Note that 
we do not have to specify a prior for Bk., since once the priors 
of Bg are specified, we already know the priors for Bk. Then 
group parameters are estimated by the combination of prior 
information with the information supplied by subjects’ pa-
rameter estimates. 

2.2 Subject-level parameters: 2& kkB σ  

Conditional posterior of subject level parameters Bk: 

Let us now write (6a) explicitly using the stated Gaussian 
assumptions: 

( ) ( ) ( ){ }
( ) ( ){ }

1/ 2 1

/ 2 2

| , . . exp / 2

exp / 2

T

k g k gk g g k gk g

TN
k k k k k k k k

p B M r v C B X B C B X B

Y X B Y X Bσ σ

− −

−

∝ − − −

× − − −

 

Conditional posterior pdf of subject-level parameter esti-
mates consists of the product of two Gaussian distributions, 
which is also a Gaussian: 

( ) ( ) ( ){ }1ˆ ˆ| , . . exp / 2
T

k k k k k k
p B M r v B B B B−∝ − − ∆ −  (7) 

where, 

( ) ( )11 2 1 2ˆ T T
g g gk k k k gk k k kB C X X C X B X Yσ σ

−− − − −= + +            (8a) 

( ) 11 2 T
k g k k kC X Xσ

−− −∆ = +                         (8b) 

Equation (7) states that conditional posterior pdf of the sub-
ject level parameters has a Gaussian distribution whose mean 
and variance are, respectively, determined by the group-level 
mean and variance as well as subject-level variance of the 
given data. Thus, it is a combination of the information pro-
vided by the data and prior information provided by the 
group parameters. It may be easily seen that MLE (Maxi-
mum Likelihood Estimate) results may be obtained by setting 
Cg = �. 
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Conditional posterior of  subject level error variance, �k
2: 

The uninformative prior for �k
2 is known to be the Jeffrey’s 

prior, that is, ( ) ( ) 12 2|
k k

p Mσ σ
−

∝ . Then we can write (6b) 

as, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 / 22 2 2 2

2 / 22 2

2 / 22 2

| , . . exp / 2

exp / 2

exp / 2

N T
k k k k k k k k k k

N T
k k k k k k k k

N
k k

p M r v Y X B Y X B

Y X B Y X B

G

σ σ σ σ

σ σ

σ σ

− −

− +

− +

� �∝ − − −� �� �

� �∝ − − −� �� �

∝ −

where ( ) ( )T

k k k k k k
G Y X B Y X B= − − . Thus, conditional 

posterior pdf of noise covariance is inverse Gamma whose 
mean and mode are given by,  

 ( )2 | , . .
2

k

G
E M r v

N
σ =

−
, 

 ( )2 | , . .
2

k

G
Mode M r v

N
σ =

+
. 

2.3 Group-level parameters: 
gg CB &  

Conditional posterior of group parameters, Bg: 

The uninformative prior for the second level parameters is 
the uniform distribution:  

 ( )| constant
g

p B M ∝ . 

Then, conditional posterior pdf of Bg becomes:  

 ( ) ( )
1:

| , . . | , ,
g k g g

k K

p B M r v p B M B C
=

∝ ∏ , (9) 

which is just the likelihood for Bg. We can expand the prod-
uct term on the right hand side of (9) and, adopting the 
Kronecker product notation ⊗ , we can write: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 / 2 1

1:

11 / 2

1 / 2 1

| , . . exp / 2

exp / 2

ˆ ˆexp / 2

T

g g k gk g g k gk g

k K

T

K g g g K g g g

T

K g g g g g g

p B M r v C B X B C B X B

I C B X B I C B X B

I C B B B B

− −

=

−−

− −

− − −∝

∝ ⊗ − − ⊗ −

∝ ⊗ − − ∆ −

� �� �

� �
� �

� �
� �

∏

Thus, group level parameter vector has conditionally a Gaus-
sian posterior distribution with conditional mean and vari-
ance: 

 ( ) ( )
11 1ˆ T T

g g K g g g K g
B X I C X X I C B

−− −
= ⊗ ⊗� �
� � , 

 ( )
11T

g g K g g
X I C X

−−
∆ = ⊗� �

� � . 

Here B denotes the concatenated Bk vectors, that is, [B1 B2 … 
BK]T). 
 
Conditional posterior of group error covariance, Cg: 
 
The uninformative prior for group level error covariance is, 

 ( ) 1
|

g g
p C M C

−
∝ . 

Then (6d) may be written as, 

( ) ( )

( ) ( ) ( )11 1 / 2

1

1:

exp / 2

| , . . | , ,

T

g K g g g K g g g

g g k g g
k K

C I C B X B I C B X B

p C M r v C p B M B C

−− −

−

=

∝ × ⊗ − − ⊗ −

∝ ×

� �� �

∏

We may switch to a multivariate expression by defining Bm 
such that each of its rows is the vector of parameter estimates 
for a subject. Design matrix may also be arranged respec-
tively. Then we can write, 

( ) ( ) ( )2 / 2 1| , . . exp / 2
K

g g gp C M r v C trC W
− + −∝ −  

where “tr” stands for the trace operator and 

( ) ( )Tm m m m m m

g g g g
W B X B B X B= − − . Thus, group-level error 

variance has a conditional inverted Wishart distribution with 
mean and mode, 

 ( )| , . .
2

g

W
E C M r v

K q
=

−
, 

 ( )| , . .
2

G

W
Mode C M r v

K
=

+
. 

Mean value is defined for K > 2q, i.e., the number of subjects 
must be bigger than twice the length of the group-level pa-
rameter vector. If this is not the case, then a more structured 
covariance matrix should be chosen. 

2.4 Inference via posterior modes 

Since we have already calculated the modes of the condi-
tional posterior pdf of all the variables, we may proceed with 
an algorithm like iterated conditional modes (ICM) [10]. 
Beginning from some initial values we may cycle through 
the modes until convergence. The algorithm is summarized 
below: 

 ( ) ( )11 2 1 2ˆ T T

k g k k k g gk g k k k
B C X X C X B X Yσ σ

−− − − −= + + , (10a) 

 
( ) ( )2ˆ

2

T

k k k k k k

k

Y X B Y X B

N
σ

− −
=

+
, (10b) 

 ( ) ( )
11 1ˆ T T

g g K g g g K g
B X I C X X I C B

−− −
= ⊗ ⊗� �
� � , (10c) 

 
( ) ( )ˆ

2

Tm m m m m m

g g g g

g

B X B B X B
C

K

− −
=

+
. (10d) 

We may run (10a) for each of the K subjects and continue 
with the rest 3 equations. After convergence we may calcu-

late ( ) ( )
11ˆvar T

g g K g g
B X I C X

−−
= ⊗� �
� � . In this way, the 

mean and variance of the posterior Gaussian distribution of 
the group parameters are found. Generally, we are interested 
in the probability distribution of a linear combination of the 
parameters (for instance, difference between the parameters 
of two types of stimuli). This may be achieved by specifying 
a contrast vector, cT.  Then the mean and variance for cTBg 
are simply: 
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 { } ˆT T
g gE c B c Bµ= =  

{ } ( ) ( )
1

12var var T

g K g g

T T T

g g
X I C Xc B c B c c cσ

−
−

⊗= = = � �� �  

Then, the posterior probability of the contrasted parameters 
having a value d is: 

 ( ) ( )2

2

2
2

1
| , exp

2

d
p d

µ
µ σ

σπσ

−
= −

� �
� �
� �

 

 

3. EXPERIMENTAL RESULTS 

3.1 Experimental setup and data collection 

Subjects: We recruited 9 healthy male subjects from the uni-
versity community. Subjects had no reported neurological 
disorder and informed consent was obtained before the 
measurement. 

 fNIRS data acquisition: Experiments were performed using 
a continuous wave near-infrared spectroscopy device 
(NIROXCOPE 201) built in Biophotonics Laboratory of 
Bogazici University [11]. The device is capable of transmit-
ting near-infrared light in two wavelengths (730 nm, and 850 
nm), which are known to be able to penetrate through the 
scalp and probe the cerebral cortex. Calculation of concentra-
tion changes in oxygenated and deoxygenated (HbO2 and 
HbH) blood is based on Beer-Lambert law. Employing four 
light emitting diodes (LEDs) and 10 detectors, the device can 
sample 16 different volumes in the brain simultaneously. The 
distance between each source and detector is 2.5 cm, which 
guarantees a probing depth of approximately 2 cm from the 
scalp. LEDs and detectors were placed in a rubber band that 
was specially designed to fit the forehead. Sampling fre-
quency of the device was 1.7 Hz. 

Experimental Paradigm: Subjects were asked to perform 
color-word matching Stroop task [8].  They were presented 
with two words one written on top of the other. The top one 
was written in ink-color whereas the below one was in white 
(over a black background). Subjects were asked to judge 
whether the word written below correctly denotes the color 
of the upper word or not. If so, subjects were to press the left 
mouse button with their forefinger, and if not to the right 
mouse button with their middle finger. The stimuli stayed on 
the screen until the subject responded or at the end of three 
seconds in case the subject did not respond. 

The experiment consisted of neutral, congruent and in-
congruent trials. In the neutral condition upper word con-
sisted of four X’s (XXXX) in ink-color. In the congruent 
condition ink-color of the upper word and the word itself 
were the same whereas in the incongruent condition they 
were different. Inter-stimulus interval was 16 seconds and 
stimuli were presented in a random order. Experiments were 
performed in a silent, lightly-dimmed room. 

We expect the subjects to have more difficulty with the 
incongruent stimulus, and thus an increase in the cognitive 
activity with respect to neutral and congruent stimulus. 

3.2 Behavioral Results 

Reaction times (RT) were calculated only from the correctly 
answered trials. RTs to neutral, congruent and incongruent 
stimuli were 988.5±180.7, 1042.3±272.1 and 1190.6±369.1 
ms, respectively. Percentage error rates were 6.25±9.92, 
7.92±10.97 and 16.25±16.54, respectively. Comparing the 
RTs, there was no significant difference between neutral and 
congruent stimuli. Two-tailed paired t-test revealed a signifi-
cant difference between incongruent and neutral (t(8) = 
2.449, p = 0.040) and incongruent and congruent (t(8) = 
3.476, p = 0.008) trials which point to a clear interference 
effect. 

3.3 fNIRS results  

fNIRS data were digitally low-pass filtered with a cut-off 
frequency of 330 mHz. Low frequency trends were elimi-
nated in the temporal domain with 120 s cut-off. Stimulus 
onset vectors for each type of stimuli were formed and con-
volved with the canonical haemodynamic response function 
(HRF). Correctly answered, incorrectly answered and omit-
ted stimuli were modeled separately. Inference was based on 
the correctly answered stimuli. We eliminated some of the 
detectors which exhibit excessive noise and use 12 of the 16 
channels such that we covered the lateral and medial parts of 
the prefrontal cortex. The oxy- and deoxy-Hb data have been 
analyzed separately. fNIRS results for interference (incon-
gruent – neutral) are summarized in Table I.  We compare 
four methods, namely: Fixed effect analysis (FFX); Randox 
effect analysis (RFX); Mixed-effect analysis (MFX); Bayes-
ian estimation of group parameters (BPE). 

 
Table IA: Oxy-Hb results where the cells show parameter 
estimate / variance of the estimate (* denotes statistically sig-

nificant activation, p<0.05)  
Detector 

No: FFX RFX MFX BPE 
1 0.574 / 0.144* 0.574 / 0.564 0.535 / 0.515 0.539 / 0.409 

2 1.187 / 0.210* 1.187 / 0.612* 1.001 / 0.554* 1.015 / 0.358* 
3 -0.521 / 1.038 -0.521 / 0.908 -0.051 / 0.151 -0.015 / 0.412 

4 -0.090 / 0.120 -0.090 / 0.388 -0.065 / 0.354 -0.092 / 0.278 
7 0.454 / 0.166* 0.454 / 0.515 0.485 / 0.468 0.496 / 0.340 

8 10.073 / 6.420 10.073 / 9.708 2.535 / 7.501 7.923 / 6.258 

9 0.128 / 0.191 0.128 / 0.259 0.297 / 0.205 0.166 / 0.151 

10 -0.437 / 0.233 -0.437 / 0.495 -0.281 / 0.434 -0.408 / 0.358 
13 0.769 / 0.220* 0.769 / 0.410* 0.643 / 0.353* 0.731 / 0.262* 

14 0.150 / 0.161 0.150 / 0.663 0.131 / 0.604 0.146 / 0.488 
15 -1.333 / 0.236 -1.333 / 1.140 -1.171 / 1.040 -1.253 / 0.827 

16 -0.715 / 0.168 -0.715 / 0.733 -0.614 / 0.669 -0.624 / 0.495 
 

It can be observed that the parameter estimates are close 
to each other. The real differences of the methods show in the 
variances. While none of these variance estimates can de said 
to be wrong, their differences stem from differing assump-
tions on the data model. Notice that the smallest variances 
are obtained by the FFX which is expected for an autocorre-
lated signal. It is interesting to note that RFX, MFX and BPE 
exhibited the same activation pattern for both oxy-Hb and 
deoxy-Hb. The reason for this is that between-subject vari-
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ance dominates over within-subject variance. These three 
methods detected activation in detectors 2 and 13 for oxy-Hb 
and in detector 14 for deoxy-Hb. FFX has additionally de-
tected activation in detectors 1 and 7 for oxy-Hb and in de-
tectors 2,3,4,8 and 13.. This difference again stems from the 
inclusion of between subject variance.  

 
Table IB: Deoxy-Hb results (as above) 

Detector 
No: FFX RFX MFX BPE 

1 0.175 / 0.165 0.175 / 0.743 0.158 / 0.677 0.126 / 0.541 
2 -0.570 / 0.116* -0.570 / 0.492 -0.541 / 0.449 -0.555 / 0.350 

3 -0.526 / 0.145* -0.526 / 0.526 -0.427 / 0.480 -0.433 / 0.352 
4 -0.732 / 0.210* -0.732 / 0.658 -0.733 / 0.597 -0.745 / 0.467 

7 0.567 / 0.258 0.567 / 0.787 0.546 / 0.711 0.527 / 0.566 
8 -0.873 / 0.338* -0.873 / 0.947 -0.485 / 0.852 -0.539 / 0.487 

9 3.144 / 0.614 3.144 / 2.385 2.854 / 2.172 2.891 / 1.619 
10 8.830 / 1.806 8.830 / 8.208 6.971 / 7.483 6.337 / 4.661 

13 -0.389 / 0.150* -0.389 / 0.533 -0.391 / 0.485 -0.391 / 0.381 
14 -1.714 / 0.444* -1.714 / 0.830* -1.318 / 0.714* -1.451 / 0.482* 

15 -0.421 / 0.332 -0.421 / 0.468 -0.254 / 0.355 -0.355 / 0.278 
16 -0.291 / 0.226 -0.291 / 0.335 -0.297 / 0.258 -0.332 / 0.209 

4. DISCUSSION 

Schroeter et al. [13] used the Stroop test to detect prefrontal 
activation by fNIRS. For the normal subjects, they showed 
activation in lateral prefrontal cortex bilaterally both as an 
increase in oxy-Hb and tot-Hb and as a decrease in deoxy-
Hb. Ehlis et al. [14] showed specific activation for interfer-
ence trials for oxy-Hb and total hemoglobin (tot-Hb) in infe-
rior-frontal areas of the left hemisphere, whereas the statisti-
cal results for deoxy-Hb were much weaker and less conclu-
sive than for the oxy-Hb and tot-Hb signals. Comparing their 
findings with those of Schroeter et al. they argued that the 
differences might be due to differences in the task paradigm, 
response type or measurement device. We used the same 
version of the Stroop test as Schroeter et al. Our method has 
only detected activation for oxy-Hb in the left lateral prefron-
tal cortex and none for deoxy-Hb. Thus our results are more 
in line with those of Ehlis et al. 

This study treated the detection problem for fNIRS sig-
nals. It is a model-based approach since it assumes an a priori 
model for the hemodynamic response function. In this sense, 
its success depends on how well the practical HRF coincides 
with the theoretical HRF. We used the well known canonical 
HRF [3] which is shown to be adequate for fMRI data. Since 
fMRI and fNIRS both measure the hemodynamic activity 
related with the cognitive activity it is plausible to use the 
same HRF. However, estimation of the HRF for fNIRS sig-
nals is a topic of further study. Marrelec et al. [15] have 
shown that it was possible to estimate HRF within the 
framework of Bayesian network. Our analysis showed that 
within-subject variance is much lower than between-subjects 
variance for fNIRS signals, as attested by the variances in 
columns 3 of the Tables 1A and 1B vis-à-vis columns 1 or 2. 
This is also the case with fMRI and other types of signals 
with serial correlation. Thus, it is important for fNIRS to 
make a mixed effects analysis, i.e., to take into account both 

types of variances. An important difference of our method 
with respect to classical ones was the implementation of a 
multivariate GLM in the second level. It enabled us to in-
clude the correlations between the estimated parameters. Our 
assumption of sphericity of the error covariance in the sub-
ject level is clearly a simplification. Thus, further studies 
regarding the temporal structure of the error sequence for 
fNIRS signals should be performed. 

5. CONCLUSION 

We presented a Bayesian method for making statistical in-
ference in a multilevel setting. The main virtue of the 
method is its capability to produce posterior pdf’s of the 
parameters at any level by taking into account causal rela-
tionships among the variables of the model. It provides a 
general framework to tackle the problem of deriving gener-
alizable results for a population. The method was applied 
successfully to fNIRS signals. Results demonstrate that 
fNIRS has the capacity to monitor cognitive activity with 
suitable statistical tools. 
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