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ABSTRACT 
DNA copy number aberrations are characteristic of many genomic 
diseases including cancer. Microarray-based Comparative Ge-
nomic Hybridization (aCGH) is a recently developed high-
throughput technique used to detect DNA copy number (DCN) 
aberrations. Unfortunately, the observed copy number changes are 
corrupted by noise, making aberration boundaries hard to detect. 
In the first part of this paper, we propose a novel technique to ana-
lyze DCN aberrations based on the Sigma filter algorithm. We 
establish its superior performance for denoising DCN data and low 
computational complexity as compared to previous techniques. We 
present a comparison study between our approach and other 
smoothing and statistical approaches, the wavelet-based, LookA-
head, CGH segmentation and HMM. We provide examples using 
real data to illustrate the performance of the algorithms. In the 
second part of this paper, we extend our algorithm by considering 
the effect of nonuniform physical distance between the probes in 
the aCGH data. Finally, we provide simulated and real data exam-
ples to study this effect. 

1. INTRODUCTION 
DNA copy number aberrations are associated with the development 
and progression of many genomic diseases including cancer, where 
amplifications and deletions of DNA copy number can contribute 
to variations in the expression of oncogenes and tumor suppressor, 
respectively. Microrray-based Comparative Genomic Hybridiza-
tion (aCGH) is an approach for genome-wide scanning of differ-
ences in DNA copy numbers (DCN). It provides a high-resolution 
method to map and measure relative changes in DNA copy number 
simultaneously at thousands of genomic loci. By mapping the ge-
nomic locations of the genes responsible of genetic defects, it will 
be easier to characterize the genomics diseases as well as identify 
the targets for therapeutic involvement.  

Generally, Microarray experiments contain many sources of 
errors due to human factors, array printer performance, labeling, 
and hybridization efficiency [7]. One should therefore consider 
denoising the data as a pre-processing step to uncover the true 
DCN changes before drawing inferences on the patterns of aberra-
tions in the data samples. Smoothing techniques are particularly 
suitable for data denoising as they do not require a parametric 
model to find structures in the data. We review several of these 
techniques in the next section. In this paper, we use the Sigma filter 
algorithm to denoise the raw data because it has low computational 
complexity and useful properties for breakdown point detection. It 
is particularly well suited for handling the variations in aCGH data. 
Simulation studies show that denoising data prior to testing can 
achieve greater power in detecting the aberration regions than using 
the raw data without denoising. We present a comparison study 

between efficient techniques including the Sigma filter [10,11], 
Wavelet-based  [3,4], LookAhead [1], CGH segmentation [9], and 
HMM [2]. We illustrate these methods on a typical Bacterial Artifi-
cial Chromosome (BAC) arrays.  
In the second part of this paper, we extend our algorithm by consid-
ering the nonuniform spacing distance between the probes. In addi-
tion, we use a multidimensional Sigma filter to process the DNA 
copy number profiles. Finally, we demonstrate the extended algo-
rithm using simulated and real data examples. The rest of this paper 
is structured as follows: Prior work is presented in section 2. In 
section 3, we introduce one-dimensional Sigma filter algorithm and 
the aberration boundaries detection scheme. A comparison study of 
proposed algorithms is given in Section 4. Section 5 is devoted for 
presenting the Multi-dimensional Sigma filter with the consideration 
of physical distances between the probes of the DCN data. Finally, 
section 6 is a conclusion of our observed results. 

2. PRIOR WORK 
Generally, DNA Copy Number (DCN) variation detection tech-
niques fall into two categories: statistical model based approaches 
and smoothing techniques. In the statistical model based algorithms, 
the noise free signal and noise models are required. Unfortunately, 
these models are usually unknown or impossible to describe ade-
quately with simple random processes. As a result, the important 
details (boundaries) of the DCN aberration regions will be included 
in the smoothing process. In addition, the techniques are computa-
tionally costly. The lookAhead algorithm [1] presents the DCN data 
as simple form of optimization problem over real-valued vectors of 
signal. It seeks to maximize the scoring function over all subinter-
vals in the input vector. The CGH segmentation [9] is a likelihood 
method that avoids underestimating the number of segments in the 
data by using different penalty functions. It is pointed out that a 
homogeneous variance assumption among different regions can 
have important consequences in the model. A different kind of mod-
eling approach involves the use of Hidden Markov Models (HMMs) 
[2], in which the underlying copy numbers are the hidden states with 
certain transition probabilities. Smoothing techniques provide an 
alternative method for processing the DCN data, that are character-
ized by small and long intervals with of sharp transitions and singu-
larities at edges (starting and ending points). In these methods, local 
operators are applied to the noisy data. Only those points in a small 
local neighborhood are involved in the computation. The main ad-
vantage of these techniques is their computational efficiency. They 
can process the data in parallel without waiting for their neighboring 
points to be processed. In a one-dimensional wavelet-based denos-
ing algorithm, the wden function of [3,4] is used, with the choice of 
Haar wavelet, since it has the shortest support among all orthogonal 
wavelets and soft Stein’s Unbiased Risk Estimate (SURE) thresh-
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olding rule with maximum wavelet coefficient level of 3. More 
recent study [14] used wavelet footprints to obtain a basis for repre-
senting the DCN data that is maximally sparse then Sparse Bayesian 
Learning is applied to infer the copy number changes from noisy 
array probe intensities.  

3. SIGMA FILTER APPROACH 
In this paper, we present the Sigma filter algorithm as a local 
smoothing technique. It is motivated by the sigma probability of 
the Gaussian distribution. It is conceptually simple but effective 
noise smoothing technique. The Sigma filter algorithm had been 
used in image processing as two-dimensional image smoothing tool 
to preserve the high intensity pixels (edges) and to smooth the low 
intensity pixels [10,11]. The basic idea is to replace the center point 
to be processed by the average of only those neighboring points 
having their intensities within a fixed sigma range of that point 
excluding the points out of that range. The advantage of this dis-
criminative feature comparing to the other techniques has great 
impact on preserving the boundary points (edges) of the aberration 
regions and smoothing only the points in the neighboring of the 
boundary edges with low variance. Here we present the Sigma 
filter as a one-dimensional local smoothing technique to denoise 
the DCN data. 
 
3.1. ONE-DIMENSIONAL SIGMA FILTER 
 
A good model for describing aCGH data is: 

 
 [ ] = [ ] + iy i f i .ε        i=1,2,…,N         (1) 

 
Let y ={y[i]be a vector of size N which represents the observed 
intensities of aCGH data in our case and f ={f[i]} is the true relative 
intensity vector of aCGH data with the same size. We assume that εi 
is an additive white Gaussian noise with zero mean and standard 
deviation σ. The one-dimensional Sigma filter output ŷ vector is the 
smoothed intensities used to estimate the true relative intensity vec-
tor f from the observation vector y. The one-dimensional Sigma 
filter procedure is described as follows: 

 
1. Start with the choice of the siding window W, where W is the 

window size of odd length. 
2. Select the intensity range (yi-∆,yi+ ∆), where ∆=2σ is used as a 

threshold. Set 
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where w is a weighting function centered at yi. The obvious 
choice is w=1. 

3. Sum all copy number intensity values that lie within the intensity 
range in the window, i.e, calculate 
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4. Select a constant value K such that K is less than the half of the 

sliding window, i.e., a sliding window with 7 points, K should be 
less than 4. 

 
If L > K, then compute the average by dividing the sum of the 
number of intensities that lie in that window. 
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 If L ≤  K , then   ŷi =  the average of the four immediate 
neighbors. 

5. Continue until the entire DCN data is processed. 
6. Relax the threshold ∆ by a small amount (e.g. 10%) and go back 

to step 2 for the next iteration. 
 
Note that the value of K should be carefully selected to remove the 
isolated spot noise without destroying thin features and subtle de-
tails. The threshold range of two-sigma is generally large enough to 
include 95.5% of the DCN intensities from the same distribution in 
the window, yet in most cases it is small enough to exclude the 
DCN intensities representing high-contrast edges of the aberration 
regions.  
 
3.2. ABERRATION BOUNDARIES DETECTION 
 
After denoising the DCN data, we apply the following scoring 
scheme to detect the boundaries of the aberration intervals. Assign a 
score for each interval I⊆ N with respect to the baseline (the x-axis) 
which is the average of this interval I if it pass a given threshold 
value τ as follows: 
 
1. Start at i=0. 
2. Scan for a value ŷi such that | ŷi| > τ. Let the location of this value 
be i=io. 
3. Go back to i=io-4. 
4. Evaluate the scoring average 
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if |S(I)|>τ then increment I by 1 and go back to 4. 
if |S(I)<τ stop and go to step 5. 

 
5. We will stop adding elements to that interval if the score is below 

the threshold value. If this score S of interval I exceeds the thresh-
old value τ, then ŷ(I) is marked as an aberrant interval as follows: 

 

 
 
6. Go back to step 2 starting at I+1.  
7. Continue until the entire DCN data is processed. 

4. COMPARISON OF ALGORITHMS USING REAL 
DATA (CORIEL CELL LINES) 

In this section, we compare various algorithms for processing aCGH 
data. Obviously, it is hard to evaluate various algorithms with dif-
ferent parameters, but we can evaluate their performance based on 
the output results for detecting the DCN variation regions using the 
Receiver Operating Characteristic (ROC) curves.  

To generate the ROC curves for each noisy signal, we calcu-
lated the true positive (TPR) and false positive rates (FPR) for vari-
ous threshold levels. These levels varied from the minimum log-
ratio value to the maximum. We defined the TPR and the FPR as 
follows:  

 

H1: Amplification interval   if  S(I)   ≥  τ 
H2: Normal interval                  if  |S(I)|  <  τ 
H3: Deletion interval if S(I) ≤-τ
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(6)Number of probes  τ inside the alternation regionsTPR .          
total number of probes inside the alternation regions

≥
=  

  

(7)Number of probes τ outside the alternation regionsFPR .           
total number of probes outside the alternation regions

≥
=  

  
 

Each threshold value results in a TPR and a FPR, represented by a 
point on the ROC curve.  
 
4.1. Material 
 
In this section, we used the MDA-MB-453 sample data of the Bac-
terial Artificial Chromosomes (BACs) array cell lines [8] to demon-
strate the ROC curves of the algorithms under study. We used this 
data set because the genomic alterations were previously character-
ized by cytogenetics that is the true copy number changes are 
known for these cell lines which are easily detectable by manual 
inspection of the profiles, so that we can use it as a proof of princi-
ples. The other reason to use this data set is that it has been analyzed 
by other methods, namely, the HMM method [2] which we used as 
a reference for the real data example. Missing data (empty cells) of 
the Coriel cell line data sets were filled with the nearest neighboring 
average. 
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Figure 1. The receiver operating characteristic (ROC) curves for 
MDA-MB-453 data sample of Coriel cell line of Sigma filter, Wave-
let, LookAhead, CGH segmentation, and HMM algorithms. 
 
4.2. Results 
 
4.2.1. Performance 
 
From the ROC curves for MDA-MB-453 data sample sets of Coriel 
cell lines as shown in Figure 1, all algorithms did well for detecting 
the aberration regions of this data since it has a high-resolution ex-
cept for the HMM technique. As the threshold level increases, we 
observed that the smoothing techniques and especially the Sigma 
filter gave better detection results than the statistical models (high 
TPR values at low FPR). 

4.2.2. Computational Complexity 

The other measure of performance was the algorithm run-time. The 
statistical models, HMM, CGH segmentation and LookAhead algo-
rithms have higher order complexities comparing with the smooth-
ing techniques, Sigma filter (Sfilt), and Discrete Wavelet Transform 
(DWT) algorithms. If we have N data points corresponding to the 

number of clones (probes) in the input data set. The CGH segmenta-
tion and the HMM algorithms use O(N2) which is the complexity of 
dynamic programming, that will segment the data into a fixed num-
ber of segments. The LookAhead algorithm uses O(N1.5). The Sigma 
filter and Discrete Wavelet Transform algorithms use O(N). 

5. EXTENDED SIGMA FILTER 
In this section, we extend our algorithm from one-dimensional to 
multi-dimensional Sigma filter to process the DNA copy number 
profiles to take advantage of the parallel computation technique to 
further increase speed. In addition, we consider the nonuniform 
physical distance between the probes. Finally, we demonstrate the 
extended algorithm using simulated and real data examples. 

 
5.1. Method 
 
5.1.1. Multi-dimensional Sigma filter 
 
The extension of one dimensional Sigma filter to multi-dimensional 
cases is quite straightforward. All aspects of the one-dimensional 
Sigma filter remain the same except that the algorithm is applied to 
a two-dimensional neighborhood instead of a one-dimensional in-
terval. The only difference in this case is the standard deviation σ 
used in the threshold function (∆=2σ) which will be the standard 
deviation of the whole genome. The main reason for using the two-
dimensional Sigma filter is that it allows the parallel processing the 
chromosomes DCN data without waiting for their neighboring 
points to be processed which is computationally efficient. This is 
possible because the noise level is the same for all chromosomes 
since the data profiles are collected from the same source of errors 
and same organism. This reduces the chance of false positive or/and 
false negative points. Let, 
 

Y = F+ Є.                  (8) 

 
Figure 2. Multi-dimensional Sigma filter. 
 
In the above equation, Y is the observed DCN data matrix of size 
(MxN) and Є is the matrix of additive white Gaussian noise and 
corresponds to each chromosome vector. In Figure 2, Ŷ is the output 
matrix of the multi-dimensional Sigma filter used to estimate the 
true relative intensity matrix F of the same size, where M is the 
number of chromosomes in process and N is the number of probes 
of each chromosome. In other word, (M•N) is the length of the 
whole genome in process. 
 
5.1.2. The effect of physical distance  
 
Most prior works considered the DNA copy number profiles as 
discrete signals under the assumption that the probes are uniformly 
distributed along the chromosomes. This assumption may lead to 
wrong decisions with false positive or/and false negative points.  

More recent studies [12,13] show that considering the nonuni-
form spacing distance between the probes of the DCN data profiles 
could be beneficial for detecting and measuring the DNC variations. 
In this section, we use the smoothing techniques, Sigma filter (Sfilt) 
and Discrete Wavelet Transform (DWT), to address the effect of 
considering the nonuniform physical distance between the probes 
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because they are computationally efficient and the Receiver Operat-
ing Characteristic (ROC) analysis of the first part of this paper con-
firms the superior performance of smoothing techniques over statis-
tical models. We present the comparison study using simulated and 
real data examples. 

As we have discussed in the DCN data model in the first part 
of this paper, here we present the DCN profiles as nonuniformly 
distributed discrete signals which can be modeled as follows: 

 
i[ ] [ ]i iy x   f x   .ε= +    i=1,2,…,N            (9) 

 
,where xi in this case is the nonuniform distributed probe at ith loca-
tion along the x-axis. The xi’s are not uniformly distributed and the 
distance between two adjacent probes xi and xi+1 may vary ran-
domly. The y[xi] and f[xi] are the observed and true intensities of the 
DCN data probe location xi. The εi represent independent identically 
distributed random variable from the Gaussian distribution of zero 
mean and σ2 variance. Our goal here is to estimate the true relative 
intensities f[xi]’s such that the smoothed intensities ŷ[xi] have small 
root mean square errors (RMSE’s). We calculated the Root mean 
Square Errors (RMSE) values to evaluate the performance of differ-
ent algorithms output for the simulated data profiles as follows: 
 

2

1

N

i i
i

ˆ( y [ x ] f [ x ])
err .

N
=

−
=
∑              (10) 

 
The suggested procedure to solve this problem can be summarized 
as follows: 
 
1. Insert uniform markers between the original probes using the 

average distance between the adjacent probes as a guideline for 
the spacing of the artificial markers. Let p be the average of the 
spacing distance between the adjacent probes. Let, 
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and Ũ={ũj|ũj = kp, k=1,2, … , ⎣ ⎦pxN } be the set of locations at 
which we may insert markers along the chromosome. To avoid 
overlapping the new markers with the original markers, we only 
insert markers at location in a subset U of Ũ, such that: 
 
 U={uj: uj∈Ũ, 2/pxu ij ≥−  for all i=1,2, … ,N}. 

 
2. Apply the nearest neighbor interpolation to obtain the interpolated 

data Y(uj). Here we use the nearest neighbor interpolation instead 
of other interpolation methods such as linear, or spline interpola-
tions because the aCGH data follow a piece-wise constant func-
tion. 

3. Merge the original data and the interpolated data to obtain the 
merged data Ỹ such that:  

 
Ỹ={Y[xi] : i=1,2, … ,N}∪ {Y[uj] : uj∈U}. 

 
4. Process the interpolated data using the Multi-dimensional Sigma 

filter. 
5. Apply the scoring scheme of section 3 to detect the boundaries of 

the aberration intervals. 
 
Note that for a fair comparison the locations of the original probes 
are changed. New artificial markers are simply added along the 

chromosome in between the original nonuniform probes. When 
comparing the denoising results, only the values in the original 
probes are used. 
 
5.2. Material 
 
5.2.1. The generation of realistic simulated data  
 
We will use simulated data initially to compare the true signals with 
the denoised signals. For this, we use the same procedure used in 
[12] to generate simulated DCN profiles which is an extended de-
sign of [13]. In [13] the authors assume the probes are uniformly 
distributed along the chromosomes. In [12] they extended the model 
by placing nonuniform probes by randomly distribution. The proc-
ess of generating the simulated data can be summarized as follows:  
 
1. Construct the true DCN profile based on the distribution of a real 

data example.  
2. Add white Gaussian noise with zero mean and specified noise 

level σ.  
3. Pick the noisy DCN profile randomly at different probe distance 

locations based on the real nonuniform distance distributions be-
tween the probes of the real data. 

  
We call it realistic data generation model because it uses the distri-
butions of real DCN profiles with different noise levels and random 
probe locations. Following the same data model suggested by [13] 
which assumes the chromosomal segmentations of DCN 0, 1, 2, 3, 
4, and 5 were generated with probabilities of 0.01, 0.08, 0.07, 0.02, 
and 0.01 respectively. The length of each chromosome sample is 
determined by random sampling from the corresponding length 
distribution of real DCN profiles. Each sample was assumed to be a 
mixture of tumor and normal cells. The proportion of tumor cells Pt 
was drawn from a uniform distribution between 0.3 and 0.7. The 
expected relative true log2 ratio intensity level of the DCN profiles 
computed as log2((c Pt+2(1- Pt))/2) , where c is a constant. Next a 
white Gaussian noise with zero mean and specified noise level σ2 
added to the relative true data to generate the noisy DCN profiles. 
Then, from the uniformly distributed noisy data we randomly pick 
the probes according to the distribution obtained by [13]. Thus, the 
physical distances between the probes are randomly distributed.  

We use this model to generate 100 simulated DCN profiles 
with different noise levels σ2 of 0.1, 0.15, and 0.2 and 200 Mb 
lengths. 
 
5.3. Results of simulated and real data profiles 
 
In this section, we demonstrate the effect of considering the nonuni-
form distances between the probes on the denoising techniques 
Sigma filter and Discrete Wavelet Transform using simulated and 
real data examples.  
 
5.3.1. Simulated data results 
 
Table 1 shows that the average of the root mean square errors 
(RMSEs) values measured by (10) of 100 simulated data sets gener-
ated randomly as mentioned in the previous section at different 
noise levels using the Sigma filter and Discrete Wavelet Transform 
algorithms with and without considering the effect of nonuniform 
spacing distance between the probes of simulated DCN data pro-
files. 
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Sigma filter DWT Sigma filter DWT 
σ Without the physical dis-

tance effect 
With the physical distance 

effect 

0.1 0.0254 0.0325 0.0248 0.0297 

0.15 0.0507 0.0521 0.0345 0.0515 

0.2 0.0672 0.0753 0.0621 0.0722 

Table 1. The average of root mean square errors (RMSE’s) values 
for 100 simulated DCN data with 3 different noise levels using 
Sigma filter and DWT algorithms.      
 
From the results of the RMSE’s values in table 1, we can observe 
that on average the Sigma filter algorithm outperformes the Discrete 
Wavelet Transform approach. In addition, The Sigma filter algo-
rithm that consider the nonuniform spacing effect between the 
probes achieved better performance than the variant that does not 
consider it. 
 
5.3.2. Real data examples 
 
In this section, we present real data examples used in the first part of 
this paper with the consideration of the effect of the nonuniform 
spacing distribution between the probes in the aCGH data to con-
firm our observation results of the simulated examples. We proc-
essed the MDA-MB-453 data sample of Coriel cell line using the 
Multi-dimensional Sigma filter algorithm. 
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Figure 3. The receiver operating characteristic (ROC) curves for 
MDA-MB-453 data sample of Coriel cell line of Sigma filter, Wave-
let, LookAhead, CGH segmentation, HMM, and Sigma2 filter  algo-
rithms. 
 
Figure 3 shows the ROC curves for MDA-MB-453 data sample of 
Coriel cell line for the proposed algorithms. One can obviously see 
the advantage of considering the Multi-dimensional Sigma filter and 
the nonuniform spacing distance between the probes of the chromo-
somes on the output result of the ROC curves of Sigma2 algorithm. 

6. CONCLUSION 
In this paper, we investigated the performance characteristics and 
complexities of various algorithms. The comparison study shows 
that our proposed algorithm, Sigma filter, works very efficient due 
to the discriminative characteristic of preserving edges. The com-
parison also shows that the Sigma filter algorithm is computation-

ally efficient compared to the other evaluated algorithms. In the 
second part of the paper we show that the Sigma filter can achieve 
even better smoothing capabilities by considering the effect of the 
nonuniform physical distance between the probes of the aCGH data. 
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