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ABSTRACT

This paper investigates the performance of the Non-
Stationary Recursive Least Squares (NSRLS) algorithm in
the adaptive equalization of realistic wireless channels. As
in general the wireless channels are assumed to vary in time
according to a Markov model, the NSRLS algorithm may
represent a favorite candidate since it is designed to track
Markovian time varying channels. The Stanford University
Interim (SUI) channels are considered in this paper. To obey
the constraints of the realistic transmission context, we pro-
pose in this paper a generalized version of the NSRLS algo-
rithm. The performances of the Decision Feedback Equalizer
(DFE) updated by the proposed NSRLS algorithm are com-
pared with those of the conventional RLS-DFE through simu-
lations. The reported results demonstrate the efficiency of the
generalized NSRLS algorithm to capture the time variations
of the SUI-1 and SUI-2 channels. Indeed, the Bit Error Rate
(BER) is significantly reduced with the NSRLS-DFE. More-
over, it is shown that a high order Markov model is required
to well represent the non-stationarity of the SUI channels.

1. INTRODUCTION

In wireless transmission, the channel characteristics are un-
known and time varying, so it is difficult to design the op-
timal transmitter/receiver. An equalizer is needed to elimi-
nate Inter-Symbol Interference (ISI) introduced by the time
varying channel [1] [2]. Furthermore, the Decision Feed-
back Equalizers (DFEs) are preferred to transverse equaliz-
ers in the case of severe multipath time varying channels [2].
In this paper, we are interested in the SUI wireless channels
[3] [4]. In particular, only the Line-Of Sight (LOS) models
are considered here.

Basing on the idea that the wireless channels vary accord-
ing to a Markov model [5] [6] [7], we propose to adapt the
DFE that minimize the ISI introduced by an SUI channel by a
specific algorithm: the NSRLS algorithm. In fact, this latter
one is dedicated to track time varying Markovian channels’
impulse responses. Based on a prior knowledge of the non-
stationarity Markov structure, the NSRLS performs an adap-
tive identification of the unknown Markovian parameters fol-
lowed by an adaptive estimation of the channel impulse re-
sponse. The approach of the NSRLS algorithm is different
from Kalman algorithm. Moreover, contrary to Kalman, the
knowledge of the non-stationarity and the observation noises
statistics are not required with NSRLS [1].

The NSRLS algorithm was proposed in [8] for the adap-
tive identification of Markovian time varying channels. In
[9] it was applied to adapt the parameters of a DFE dedicated

to the equalization of a first order Markov channels. How-
ever, in [8] and [9], only a real value transmission context
and a synthetic first order Markov channel were considered.
Therefore, in this paper, a generalized NSRLS algorithm is
designed for a DFE performing in a realistic transmission
context: the transmitted input and the channel impulse re-
sponse are complex. Moreover, the equalized channel is as-
sumed to vary according to a Markov model of orderP that
can be higher than one.

Furthermore, the proposed equalization approach allows
not only the reduction of the BER but also the characteriza-
tion of the Markovian non-stationarity of the considered SUI
channels.

The remainder of the paper is organized as follows. In
Section2, the non-stationary equalization context as well as
the test SUI channels models are presented. In Section3,
the generalized NSRLS algorithm is developed. Section4
presents several simulation results to illustrate the efficiency
of the NSRLS-DFE in the presence of the SUI channels.

2. ADAPTIVE EQUALIZATION
FOR SUI CHANNELS

2.1 Equalization problem

For transmission over a wireless channels, the underlying
signal space is one-dimensional and the equalizer has com-
plex taps. The structure of such equalizer is shown in Fig-
ure1.
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Figure 1: Functional block diagram of the Decision Feed-
back Equalizer
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X(n) =
[
x(n−1), ...,x(n−N)

]T
is the input data vector.

The signaly(n) is the received symbols, it is a noisy version
of the channel outputr(n). The observation noiseb(n) is
assumed to be an i.i.d., zero mean value and independent of
x(n).

The equalizer modeled by a Feedback filter is character-
ized by its finite complex impulse responseH(n) of length
N. The input of the decision device is

c(n) = y(n)−HH(n)X̂(n), (1)

whereX̂(n) =
[
x̂(n− 1), ..., x̂(n−N)

]T
is the feedback fil-

ter input vector, and̂x(n) is an estimation of the transmitted
symbolx(n).

The time evolution of the adaptive filterH(n) is con-
trolled by the errorε(n). The adaptive equalizer operates
in two modes. In the training mode, (1 in Figure1), a known
sequence of symbols is transmitted and a synchronized ver-
sion is locally generated in the receiver. The true transmitted
symbols are then used to compute the error:

ε(n) =
(
y(n)−HH(n)X(n)

)−x(n). (2)

The tap coefficients are adjusted in order to obtain the de-
sired response. Once the tap coefficients converge, the equal-
izer is switched to a decision directed mode (2 in Figure1).
The error signal derived from the estimated symbols is given
by:

ε(n) =
(
y(n)−HH(n)X̂(n)

)− x̂(n). (3)

As shown by Figure1, only the Feedback filter of a con-
ventional DFE is used. Two reasons explain this choice.
Firstly, in the more general structure, it is usually possible
to separate the adaptation of the FIR section from the Feed-
back one. Secondly, the aim of this paper is to investigate
the behavior of the generalized NSRLS algorithm facing to
realistic SUI-1 and SUI-2 channels, that are assumed to vary
in time according to a Markov model.

2.2 SUI channel models

The SUI channel models are proposed in [3] to simulate,
design, develop, and test a system suitable for fixed broad-
band wireless applications. In general, for SUI channels, it
is noted that the shape of the used Doppler power spectral
density is not similar to Jake’s spectrum. It is given by equa-
tion (4) where f0 = f

fm
and fm is the Doppler frequency. The

SUI characterization is inspired by real measurements done
in urban and suburban multipath conditions.

S( f ) =
{

1−1.72f 2
0 +0.785f 4

0 | f0| ≤ 1
0 | f0|> 1 (4)

There are six types of SUI channels with different param-
eters corresponding to typical terrain types of the continental
US. The SUI-1, SUI-2 and the SUI-6 models correspond to
channel with Line Of Sight (LOS). However, SUI-3, SUI-4,
and SUI-5 are models for Non Line Of Sight (NLOS) chan-
nels [3]. In this paper the SUI-1 and SUI-2 LOS channels
are considered for the evaluation of the generalized NSRLS
algorithm.

3. DESIGN OF THE GENERALIZED
NSRLS ALGORITHM

The generalized NSRLS algorithm is designed to outper-
form the traditional RLS algorithm, when tracking aP−order
Markov time varying channel. Indeed, the filter representing
such channel is assumed to vary in time,n, as following:

F(n) =
P

∑
i=1

βiF(n− i)+Ω(n), (5)

where the vectorF(n) =
[

f (1), ..., f (N)
]T

represents the
time varying channel filter and0 < (βi)i=1..P ≤ 1 are
the Markovian parameters. The vectorΩ(n) is the non-
stationarity noise. The components ofΩ(n) are assumed to
be Gaussian white processes.

The algorithm is designed in such way to take into ac-
count the prior knowledge of the Markovian channel model
structure [8]. Hence, the classical RLS with forgetting factor
is modified as follows:

H(n+1)=
P

∑
i=1

β̂i(n)H(n+1− i)+ ε∗(n)K(n), (6)

where theN-by-1 vectorK(n) is referred to the gain vector,

K(n)=
P(n)X̂(n)

λ + X̂
H(n)P(n)X̂(n)

, (7)

and theN-by-N matrix P(n) is referred to the inverse corre-
lation matrix,

P(n+1)=λ−1
(

P(n)−K(n)X̂H(n)P(n)
)

. (8)

λ is the forgetting factor close to, but less than,1. The
parameters

(
β̂i(n)

)
i=1..P are the adaptive estimates of the un-

known Markovian parameters
(
βi

)
i=1..P. At time n, the esti-

mation ofβi is based on the minimization of the cost func-
tion Jn

(
β̂i

)
= ∑n

k=1 |ε(k)|2. The principal computing details
leading the adaptive estimation of the Markovian parameters(
β̂i(n)

)
i=1..P are presented in the appendix. Therefore, the

generalized NSRLS algorithm is described by:

1. H(n+1) = ∑P
i=1 β̂i(n)H(n+1− i)+ ε∗(n)K(n),

2. K(n) = P(n)X̂(n)

λ+X̂
H

(n)P(n)X̂(n)
,

3. P(n+1) = λ−1
(

P(n)−K(n)X̂H(n)P(n)
)

,

4. β̂i(n) = numi(n)
deni(n) ,

5. numi(n) = numi(n−1)+Re
[(

y(n)− x̂(n)

−ε(n−1)KH(n−1)X̂(n)
−∑P

j=1, j 6=i β̂ jHH(n− j)X̂(n)
)
HT(n− i)X̂∗(n)

]
,

6. deni(n) = deni(n−1)+ |HH(n− i)X̂(n)|2.

Note that, in the training mode the symbolx̂(n) is re-
placed byx(n) its actual value.
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4. SIMULATION RESULTS

The presented simulation results aim to investigate the per-
formance of the NSRLS equalizer facing to SUI channels and
also to characterize the assumed Markovian non-stationarity
of the considered channels. The proposed equalizer perfor-
mances were tested by several experiments based on SUI-1
and SUI-2 omni antenna channels. The reported results are
obtained for the following considerations:
• The noise level added to the channel output was fixed by

the Signal to Noise Ratio (SNR[dB] = 10log10
(

Pr
Pb

)
),

wherePr = E[r2(n)] is the power of the output of the
channel andPb = E[b2(n)] is the noise power.

• An independent and identically distributed input with
a Quaternary Phase-Shift Keying (QPSK) constellation
was used.

• The DFE operates in training mode (≈ 1000 symbols),
after which it switches to a decision directed mode.

• The length of the DFE filter is fixed toN = 4. In fact, it
is equal to the paths number of the considered SUI chan-
nels.

4.1 SUI channel characteristics

Table1 and Table2 show the time domain attribute of the
SUI-1 and SUI-2 channels respectively. These tables show
that the Doppler frequencies values are higher in the case of
SUI-1 than in the case of SUI-2. Therefore, one can deduce
that the SUI-1 non-stationarity is more severe than the one of
SUI-2.

SUI-1
Tap1 Tap2 Tap3 Units

Delay 0 0.4 0.9 µs
Power (omni ant.) 0 −15 −20 dB
90%K-fact. (omni) 4 0 0
Power (30◦ ant.) 0 −21 −32 dB
90%K-fact. (30◦) 16 0 0
Doppler 0.4 0.3 0.5 Hz

Table 1:SUI-1 channel model

SUI-2
Tap1 Tap2 Tap3 Units

Delay 0 0.4 1.1 µs
Power (omni ant.) 0 −12 −15 dB
90%K-fact. (omni) 2 0 0
Power (30◦ ant.) 0 −18 −27 dB
90%K-fact. (30◦) 8 0 0
Doppler 0.2 0.15 0.25 Hz

Table 2:SUI-2 channel model

4.2 Tracking ability of the generalized NSRLS

Here, we analyze the tracking ability of the generalized
NSRLS algorithm. The variations of the Mean Square Er-
ror (MSE= E[ε2(n)]) versus the forgetting factorλ are pre-
sented in Figure2, for the two test channels, SUI-1 and SUI-
2. For these results, the first order NSRLS algorithm (P = 1)
is used to update the filter equalizer. The SNR is set to30
dB.
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Figure 2:MSE versus the forgetting factorλ for SUI-1 and
SUI-2 channels (P = 1, SNR= 30dB)

Figure 2 shows that, for the two SUI channels, the
NSRLS algorithm presents better tracking ability than the
conventional RLS algorithm (gain' 0.7 dB). The optimum
forgetting factor values(λopt) corresponding to the minimum
mean square error are:λopt = 0.75 for SUI-1 channel and
λopt = 0.8 for SUI-2 channel.
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Figure 3:Convergence of the Markovian parameterβ̂1(n) for
SUI-1 and SUI-2 channel (P = 1)

Figure 3 illustrates the time variations of the adaptive
Markovian parameter̂β1(n) corresponding to the two chan-
nels test. The forgetting factor is fixed to its optimal value.
This figure shows that the Markovian parametersβ̂1(n) con-
verge, in almost500 simples, to an average value close to
0.86 for SUI-1 channel and0.8 for SUI-2 channel. There-
fore, the first order Markovian model can represent the time
variation of SUI-1 and SUI-2 channels.

©2007 EURASIP 1528

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

Without Equalizer

RLS: SUI-1

NSRLS: SUI-1

Figure 4:Superiority of the NSRLS-DFE over the RLS-DFE
in term of BER (SUI-1 channel,P = 1)
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Figure 5:Superiority of the NSRLS-DFE over the RLS-DFE
in term of BER (SUI-2 channel,P = 1)

4.3 Equalization performances

In order to evaluate the equalization performances, the BER
variations are analyzed versus the SNR values for different
orders of the Markov model. Note that, for the following
results, the forgetting factor is set to its optimal value for
each value ofP and of the SNR.

At a first stage, a first order NSRLS algorithm is used.
In Figures4 and 5 a comparison in term of BER of the
RLS-DFE and the NSRLS-DFE is presented. These figures
present the variations of the BER versus the SNR for the con-
sidered channels SUI-1 and SUI-2. It is shown that the BER
given by NSRLS-DFE is lower than the one performed by
the RLS-DFE. Moreover, the BER reduction is more signif-
icant with SUI-2 channel than with SUI-1. Such result was
expected as the SUI-2 represents a moderate time variations,
however, the SUI-1 corresponds to a relatively fast varying
channel. In all studied cases, the gain in SNR realized is
very important. For example, by setting the BER at4 10−3,
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Figure 6:Influence of the Markov orderP on the BER (SUI-
1 channel case)
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Figure 7:Influence of the Markov orderP on the BER (SUI-
2 channel case)

the gain in SNR is equal to10dB for SUI-1 channel and5 dB
for SUI-2 channel. Although, in view of the Markovian pa-
rameters mean values computed in Subsection4.2, we expect
to enhance the performance of the equalizer by increasing the
orderP of the Markov model.

At a second stage, the non-stationarity of the channels
is modeled by a high order Markov model (P > 1). There-
fore, a second and a third order NSRLS algorithm were used.
Figure6 and Figure7 display the BER performance of the
equalizer forP = 1, P = 2 andP = 3. These results show
that the BER is remarkably reduced by the increase of the
Markov orderP. Also, these results confirm the ability of
the NSRLS algorithm to identify the Markovian parameters.
Moreover, they can be helpful for the characterization of the
considered SUI channels non-stationarity. Indeed, in view of
the obtained results, one can deduce that a Markov model of
order higher than three (P≥ 3) is suitable for SUI channels.
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5. CONCLUSION

In this paper, the generalized NSRLS algorithm designed for
a general Markovian time varying channel is proposed and
used for the equalization of realistic SUI channel models. It
was shown that a NSRLS-DFE exhibits better performance
than a conventional RLS-DFE. A significant BER reduction
is obtained. Moreover, the BER is all the most reduced as the
Markov model order increases. The reported results confirm
the efficiency of Markov model to represent the time varia-
tion of these channels. In particular, a Markov model of order
higher than three is more suitable.

APPENDIX

An estimate of the Markovian parameter is the solution
of:

∂
∂ β̂i

Jn(β̂i)=2
n

∑
k=1

εR(k)
∂εR(k)

∂ β̂i
+2

n

∑
k=1

εI (k)
∂εI (k)

∂ β̂i
,

=0, (9)

whereεR(k) = Re
[
ε(k)

]
and εI (k) = Im

[
ε(k)

]
. In a blind

mode,ε(k) is described by (3) and then the partial derivation
of εR(k) with respect toβ̂i is given by:

∂
∂ β̂i

εR(k)=
∂

∂ β̂i

(
ε(k)+ ε∗(k)

2

)
,

=
1
2

∂
∂ β̂i

{
y(k)−HH(k)X̂(k)− x̂(k)+y∗(k)

−HT(k)X̂∗(k)− x̂∗(k)
}

,

=−Re
[
HH(k− i)X̂(k)

]− β̂i
∂

∂ β̂i
Re

[
HH(k− i)X̂(k)

]

− ∂
∂ β̂i

Re
[
ε∗(k−1)KT(k−1)X̂∗(k)

]

− ∂
∂ β̂i

P

∑
j=1, j 6=i

Re
[
HH(k− j)X̂(k)

]
. (10)

Based on classical approximation which aim to simplify
the gradient, we can write the following:

∂
∂ β̂i

εR(k)=−Re
[
HH(k− i)X̂(k)

]
. (11)

In the same manner, one can obtain the following:

∂
∂ β̂i

εI (k)=−Im
[
HH(k− i)X̂(k)

]
. (12)

Finally, in view of (11) and (12) and by replacingεR(k)
andεI (k) by their expressions in (9), one obtains,

∂
∂ β̂i

Jn(β̂i)
∣∣∣
β̂i=β̂i(n)

=−2
n

∑
k=1

Re
[
ε(k)HT(k− i)X̂∗(k)

]
,

=−2
n

∑
k=1

Re
[(

y(k)− x̂(k)

−ε(k−1)KH(k−1)X̂(k)

−
P

∑
j=1, j 6=i

β̂ jHH(k− j)X̂(k)
)
HT(k− i)X̂∗(k)

]

+2β̂i

n

∑
k=1

|HH(k− i)X̂(k)|2. (13)

Thus, it follows from (9) and (13) that

β̂i(n)=
numi(n)
deni(n)

, (14)

where

numi(n)=numi(n−1)+Re
[(

y(n)− x̂(n)

−ε(n−1)KH(n−1)X̂(n)

−
P

∑
j=1, j 6=i

β̂ jHH(n− j)X̂(n)
)
HT(n− i)X̂∗(n)

]
,(15)

and

deni(n)=deni(n−1)+ |HH(n− i)X̂(n)|2. (16)
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