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ABSTRACT
In this paper, we propose an adaptive blind channel shortening

algorithm for MCM systems such as ADSL. The algorithm is com-
posed of two phases. In the first phase, a stochastic gradient de-
scent algorithm is utilized to search the minimum of the proposed
cost function. It is demonstrated that the cost surface is multimodal
and not all minima attain good performance. In the second phase
of the procedure, genetic algorithms are employed to find the best
solution according to a pilot deviation criterion among all solutions
to the cost function.

The major advantage of the proposed algorithm is, it inherently
provides shortened channel information in contrast to similar algo-
rithms in the literature in which channel estimation has to be per-
formed separately after shortening, employing either training se-
quences or blind channel estimation.

1. INTRODUCTION

Multicarrier Modulation (MCM) has recently been deployed as
the modulation technique for several communication systems, e.g.,
IEEE 802.16 (WiMAX), ADSL, ADSL/2+, etc. The reason for this
choice is the ease of combatting intersymbol interference. However,
this easiness comes in the expense of appending a cyclic prefix to
the MCM frame. For proper operation of MCM, the cyclic prefix
has to be longer than the order of the communication channel which
is related to the time duration of the impulse response of the chan-
nel. Therefore, for a relatively long channel, the cyclic prefix has to
be long too. However, this is undesirable because the cyclic prefix
does not convey any usable information and increasing its length
will decrease the throughput of the system.

In practice the length of the cyclic prefix is set to a fixed value,
for example for ADSL it is 32 samples. However, the length of
the channel can be much longer than this figure as in the CSA loop
models. This causes severe inter-carrier interference (ICI) in the
operation of MCM hence significantly decreases the system perfor-
mance. In this case, the common practice is to employ a channel
shortening equalizer to effectively shorten the channel ‘visible’ to
MCM to a length less than the length of the cyclic prefix.

Channel shortening filtering is a widely examined topic in the
literature. A very thorough investigation of algorithms can be found
in [1] which joins most of these algorithms in a common frame-
work. Although they do not give optimum solutions, among these
algorithms the Minimum Mean Squared Error (MMSE) [2] and
the Maximum Shortening Signal-to-Noise Ratio (MSSNR) [3] are
possibly the most widely considered ones due to their analytical
tractability.

Most of the channel shortening equalizer proposals in the lit-
erature depend on perfect channel state information (CSI). How-
ever, this information can be attained by performing channel es-
timation at the receiver, and this may not be possible for several
reasons. Channel estimation requires the transmission of training
signals which reduces the valuable channel capacity. Similarly, the
receiver may not possess the knowledge of the training signal.

In cases where channel estimation is not desirable or possible,
equalization can still be performed by blind signal processing tech-
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Figure 1: Block diagram of MMSE channel shortening equalizer.

niques. Although blind equalization is a well-studied field, blind
channel shortening is a rather unexplored field in the literature [4].
MERRY is a technique depending on the equality of the cyclic pre-
fix and the signal at the end of the MCM frame. SAM [5], SLAM
[6] and [7] can be considered as the members of a family of blind
equalizers. They basically depend on the fact that if the span of the
autocorrelation of the shortened channel impulse response has the
same length as the shortened channel itself.

The algorithms mentioned above have a major shortcoming.
The algorithms operate as the Time domain EQualizer (TEQ) front-
end of the MCM receiver [8]. In order to properly combat the
ISI/ICI, TEQ has to jointly operate with a Frequency domain
EQualizer (FEQ) which requires the CSI of the shortened chan-
nel. However, although the algorithms mentioned above shorten
the channel, this information is not explicitly provided and has to
be obtained by further channel estimation. Clearly, this is in con-
trast to the philosophy of blind signal processing.

In this paper we propose a novel blind channel shortening tech-
nique which also provides the CSI of the shortened channel and
is named as BACS-SI (Blind, Adaptive Channel Shortening Algo-
rithm with shortened channel State Information). The basic idea of
BACS-SI is a combination of the MMSE and SAM channel short-
ening methods. Roughly speaking, MMSE aims at minimizing the
difference between the shortened channel impulse response (which
is the convolution of the actual channel and the equalizer) and a Tar-
get Impulse Response (TIR). Here, we aim at minimizing the differ-
ence between the autocorrelation of the shortened channel impulse
response and the autocorrelation of the TIR in an iterative manner.
At the end of the iterations, both the shortening equalizer and the
corresponding TIR are obtained, and this TIR can later be used in
the FEQ.

Some of the notation used throughout the paper is as follows. A
scalar, a vector and a matrix will respectively be denoted by a lower-
case italic, a lower-case boldface and an upper-case boldface letter.
The convolution operator is represented by (·)∗ (·), and (·)T is used
for matrix transpose and transpose. All signals and coefficients are
assumed to be real valued.

2. MMSE CHANNEL SHORTENING

The block diagram of the MMSE channel shortening algorithm is
given in Figure 1. The main purpose of the MMSE channel short-
ening equalizer is to reduce the length of the shortened channel, i.e.
the convolution of the actual channel and the equalizer, to a pre-
determined shorter length by satisfying the MSE criterion.
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On the upper branch, the signal arriving at the receiver, r(n),
can be modeled as the convolution of the zero mean, unit vari-
ance data symbols, x(n), with the actual channel, h(n) , of length
nh which is represented by the vector h = [h0 h1 · · · hnH−1]

T

and zero-mean additive white Gaussian noise v(n) with variance σ2
v

added on top. Data symbols and noise samples are assumed to be
statistically independent .

Next, this signal is processed by the equalizer w =
[w0 w1 · · · wnw−1]

T of length nw generating the output signal
y(n)

y(n) = wT rn = wT Hxn +wT vn

= cT xn +wT vn (1)

where rn = [r (n) r (n−1) · · · r (nw−1)]T ,
xn = [x(n) x(n−1) · · · x(nh +nw−1)]T , vn =
[v(n) v(n−1) · · · v(nw−1)]T , and H is the Toeplitz
convolution matrix, e.g. [9].

As can be infered from (1), the convolution of the communi-
cation channel and the equalizer, i.e. the nc × 1 vector c can be
considered as the shortened channel, where nc = nh +nw−1.

The lower branch of Figure 1 can be visualized as a virtual
one which does not physically exist. Together with the delay ∆ the
nb× 1 TIR vector b = [b0 b1 · · · bnb−1]

T can be included in
an (nh +nw−1)×1 augmented TIR vector b̃ =

[
01×∆ bT 0

]T

where 0 is the all-zeros vector of proper dimensions. Therefore the
output of the augmented TIR is

ŷ(n) = b̃T xn.

The error term ε (n) is defined as the difference between the
output of the equalizer and the TIR, and the MSE criterion can be
written as

J = E
{

(ε (n))2
}

= E
{

(y(n)− ŷ(n))2
}

(2a)

= E
{((

cT − b̃T
)
xn +wT vn

)2
}

(2b)

which is minimized over w and b under some constraint, for exam-
ple the unit norm constraint (bT b = 1), in order to avoid the trivial
solution.

In other words, the MMSE criterion minimizes the difference
between the impulse response of the shortened channel and TIR
while considering noise enhancement also. Evidently, optimization
of the MMSE criterion requires the channel coefficients h which
has to be obtained by channel estimation.

3. PROBLEM FORMULATION

If channel estimation is not possible or desirable, one can opt for
blind channel shortening equalization. For this purpose, we follow
the framework of the MMSE algorithm, however, we change the
signals y(n) and ŷ(n) with their autocorrelation functions Ryy (l)
and Rŷŷ (l) , respectively, in (2a).

Then, refering to Figure 1, the error sequence is defined as

e(l) = Ryy (l)−Rŷŷ (l) . (3)

Hence, the proposed cost function, J, for BACS-SI is defined as

J =
nc−1

∑
l=0

(
Ryy (l)−Rŷŷ (l)

)2
. (4)

The auto-correlation function of the sequence y(n) is

Ryy(l) = E {y(n)y(n− l)} (5)

= E
{(

cT xn +wT vn

)(
xT

n−lc+vT
n−lw

)}

= cT Rxx (l)c+wT Rvv (l)w (6)
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Figure 2: Cost surface of the proposed blind channel shortening
equalization algorithm.

where the (nh +nw−1) × (nh +nw−1) signal and the
nw × nw noise covariance matrices respectively are
Rxx (l) = E

{
x(n)xT (n− l)

}
and Rvv (l) = E

{
v (n)vT (n− l)

}
.

If both x(n) and v(n) are assumed i.i.d., it can be shown that
both Rxx (l) and Rvv (l) are Toeplitz matrices with only one
(off-)diagonal of nonzero entries determined by the lag l.

Then, Ryy(l) becomes

Ryy(l) =
nc−1

∑
k=0

c(k)c(k− l)+σ2
n

nw−1

∑
k=0

w(k)w(k− l)

, Rcc(l)+σ2
v Rww(l) (7)

Similarly, the autocorrelation of the sequence ŷ(n) is

Rŷŷ (l) = E [ŷ(n) ŷ(n− l)]

= E[
(
b̃T xn

)(
xT

n−lb̃
)
] (8)

= b̃T Rxx (l) b̃ (9)

, or, it is straightforward to show that

Rŷŷ (l) =
nb−1

∑
k=0

b(k)b(k− l) , Rbb (l) . (10)

Hence the cost function, J, can be rewritten as

J =
nc−1

∑
l=0

(
Ryy (l)−Rŷŷ (l)

)2

=
nc−1

∑
l=0

(
Rcc (l)+σ2

n Rww (l)−Rbb (l)
)2

. (11)

As usual with other blind signal processing algorithms, the
cost surface in (11) is multimodal which is demonstrated in Fig-
ure 2. Here, the channel is h = [1 0.3 0.2]T and for demon-
stration purposes, the TIR is kept fixed at b = [1 0.5]T . The
equalizer has three taps w = [w1 w2 w3]

T and the norm of the
equalizer taps is assumed to be unity, i.e. wT w = 1. Therefore
these coefficients can be represented by two axes defined as the

horizontal axis θ = tan−1
(√

w2
1 +w2

2/w3

)
and the vertical axis

φ = tan−1 (w2/w1) . It is interesting to observe that the minima of
the cost function are related in a certain way.
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Proposition 1: An autocorrelation function (e.g. Ryy (l), Rcc (l)
and Rbb (l) in (11)) is invariant to taking the conjugate-reciprocal of
any zero of the related sequence with respect to the unit circle.

Proof: The outline of the proof is as follows. The Fourier
transform of an autocorrelation function is the power spectral den-
sity (PSD) of the related sequence. Since the PSD provides only
the squared-magnitude information, a zero in the z-plane or its
conjugate-reciprocal with respect to the unit circle has the same
magnitude response on the unit circle. Hence there are 2nz different
combinations of the zeros of a sequence which result in the same
PSD where nz is the number of zeros.

Proposition 2: The autocorrelation function of the convolution
of two sequences is equal to the convolution of the two seperate
autocorrelation functions of these sequences.

Corollary 1: A direct result of Propositions 1 and 2 is, there are
2nw combinations for w which give the same autocorrelation func-
tion Rcc (l), including the negatives. Similarly, there are 2nb combi-
nations for b which give the same autocorrelation function Rbb (l) ,
including the negatives. Therefore, there are 2nw+nb minima of (4)
with the same value, and all these minima can be generated from a
single minimum by simple zero reciprocal and order-reversal oper-
ations. This property will later be used to find the optimum w and
b pair which give the maximum bit rate amongst all combinations.

4. ADAPTIVE ALGORITHM

In order to find a minimum of the cost surface defined in (11), we
will employ a stochastic gradient descent algorithm. In order to
avoid an all-zeros solution, a constraint must be imposed on this
cost function. Therefore, for the present work, because of the reason
explained in Proposition 1, we assume that the equalizer has unit
norm, i.e. wT w = 1.

The variables of this optimization problem are the equalizer and
TIR coefficients, w and b, respectively. Although two separate up-
date equation could be written for these variables, the convergence
of the algorithm would be determined by the slowest one. There-
fore in the sequel, we define a composite variable f = [w b]T for
notational clarity.

Remark: Note that since this is a blind algorithm, we only have
access to the signal at the channel output. We also assume that the
data symbols are i.i.d. random variables known to be zero mean
with unit variance and the noise also has zero mean. Apart from
these assumption, there is no access to neither the CSI nor the noise
variance, i.e. the operating SNR.

The update equation of the stochastic gradient descent algo-
rithm can be written as

fn+1 = fn− 1
2

µ∇f J (n)

∇f J (n) =
[

∇wJ (n)
∇bJ (n)

]

∇wJ (n) = ∇w

(
nc−1

∑
l=0

(
Ryy (l)−Rbb (l)

)2
)

= 2
nc−1

∑
l=0

(
Ryy (l)−Rbb (l)

)
∇wRyy (l) (12)

recall that Ryy(l) = E {y(n)y(n− l)} , then using the fact y(n) =
wT rn

∇wJ (n) = 2
nc−1

∑
l=0

(E {y(n)y(n− l)}−Rbb (l))

(E {rny(n− l)}+E {y(n)rn−l}]) .

Similarly,

∇bJ (n) = ∇b

(
nc−1

∑
l=0

(
Ryy (l)−Rbb (l)

)2
)

=−2
nc−1

∑
l=0

(
Ryy (l)−Rbb (l)

)(
bup (l)+bdn (l)

)
(13)

where µ is the step size, and ∇f , ∇w and ∇b are the gradi-
ents of J w.r.t f , w and b, respectively. The vectors bup (l)
and bdn (l) are obtained from the gradient ∇bRbb (l), and their
structure are bup (l) = [bl · · · bnb−1 01×l ]

T and bdn (l) =
[01×l b0 · · · bnb−l−1]

T . Then, the update rule for f can be
written as

fn+1 = fn−µ
nc−1

∑
l=0

(
Ryy (l)−Rbb (l)

)

[
(E {rny(n− l)}+E {y(n)rn−l}])

−(
bup (l)+bdn (l)

)
]

(14)

where the first vector component of the right-most vector corre-
sponds to the update of the equalizer coefficients whereas the sec-
ond vector component corresponds to the update of the TIR.

To finalize the update rule, the expectation terms in (14) has
to be calculated. Since direct access to the CSI is not possible,
these expectations have to be calculated over signal samples. As
stated in [8] there are several unbiased estimates for this calculation.
In the sequel, we will investigate the moving average (MA) and
autoregressive (AR) estimates.

4.1 Moving Average (MA)

For a fair comparison, we will follow the methodology in [8], and
calculate the expectations in a block-by-block manner, where each
block contains N samples. Hence for the k-th block Ryy (l) is

Ryy (l) =
1
N

(k+1)N−1

∑
n=kN

y(n)y(n− l) (15)

Similarly, we have

E {rny(n− l)}=
1
N

(k+1)N−1

∑
n=kN

rny(n− l) (16a)

E {y(n)rn−l}=
1
N

(k+1)N−1

∑
n=kN

rn−ly(n). (16b)

Substituting (15) and (16b) into (14) the update rule with mov-
ing average estimates can be obtained.

4.2 Auto-regressive (AR)

Another method to calculate the expectations in (14) is to use auto-
regressive (AR) estimates. Again following the methodology in [8],
in this case the calculations are carried out in a sample-by-sample
manner. In order to achieve this, for each lag l, first define the
following
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Figure 3: Structure of a chromosome. Genes are binary valued.

an+1 (l) = (1−α)an (l)+αy(n)




r (n− l)
r (n− l−1)

...
r (n− l− (Lw +1))




bn+1 (l) = (1−α)bn (l)+αy(n− l)




r (n)
r (n−1)

...
r (n− (Lw +1))




cn+1 (l) = wT bn+1 (l)

where α ∈ (0,1) can be considered as a forgetting factor. De-
creasing the value of α will increase the contribution of the past
estimates to the AR estimates. By using these definitions, the
auto/cross-correlation functions are obtained as E {y(n)rn−l} =
an+1 (l), E {rny(n− l)}= bn+1 (l) and Ryy (l) = cn+1 (l).

5. MATCHING EQUALIZER AND TIR PAIR

As discussed in Corollary 1, there are 2nw+nb combinations of the w
and b pairs which give the same minimum value for (11). Therefore
minimizing the proposed cost function does not necessarily give a
good solution. Indeed, in parallel with the discussion in [8], half
of the minima do not even perform channel shortening. Moreover,
the TIR may not match the channel shortened by the equalizer, both
found at the end of the iterative algorithm. However, among these
pairs, one of them performs the maximum shortening and provides
the highest bit rate. If no a priori information related to the channel
is present, it may not be possible to determine the best initialization
point for obtaining this solution at the end of the descent algorithm.

Nevertheless, even if it is not optimum, a solution starting from
an arbitrary point will constitute a basis for further optimization,
since all minima are related according to the rule explained in
Corollary 1. Therefore, the zeros of the equalizer w and the coef-
ficients of the TIR b are extracted from this possibly non-optimum
solution.

Since the length of the TIR is limited, the equalizer yielding
the shortened channel same as the TIR will form the matching
equalizer-TIR pair. One can employ the pilot tone present in the
downstream of the MCM transmission to determine this pair. For
example in ADSL the 64-th tone in the downstream range is fixed
to symbol ‘1’ as the pilot signal.

Let the Fourier transforms of the shortened channel and the TIR
be represented by C(k) and B(k), respectively. Ultimately, the TIR
B(k) should be equal to the shortened channel C(k), hence it can be
used as the FEQ, i.e. Q(k) = B∗(k)/ |B(k)|2 . Then after TEQ, FFT
and FEQ operations, the signal observed at the output of the re-
ceiver is R(k) =

[
C(k)B∗(k)/ |B(k)|2

]
X(k).where X(k) is the sym-

bol transmitted from the k-th bin. Also let the pilot symbol transmit-
ted at the l-th bin be X(l) = 1. Then only if the shortened channel
and the TIR matches, R(l) = 1. Hence by minimizing the criterion
|R(63)−1|2 among possible w-b pairs, one can find the matching
w-b pair.
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Figure 4: Shortened channel impulse response of the proposed
BACS and the SAM algorithms compared to the CSA 1 ADSL
channel model.

As the second phase of the optimization, to overcome the prob-
lem of finding this matching w-b pair, we employ genetic algo-
rithms. Genetic algorithms are global search techniques based on
the principles of genetics and natural selection. The parameters
to be optimized are represented by ‘genes’ and the combination of
genes for a particular solution is called a ‘chromosome’ [10].

For searching the whole parameter space, one needs nw + nb
genes in a chromosome. However, in order to narrow down the
search space, observing that the equalizer and TIR solutions are real
values, hence, complex zeros of w and b will be in conjugate pairs,
we can only alter the position of one of these zeros, and the other
zero will automatically change position.

Hence, for the present problem, there are a variable number of
binary valued genes in a chromosome as demonstrated in Figure 3.
There are at most nw−1 genes (zw,i) representing the position of the
zeros of w with respect to the unit circle, e.g. a zero of the prospect
solution remains inside the unit circle if the corresponding gene is
set to 1 and it is transfered to outside if the gene is 0. Similarly;
there are at most nw−1 genes (zb,i) representing the position of the
zeros of b. The remaining gene (sb) represent the relative sign of
the searched equalizer and TIR solutions.

First, an initial population consisting of 10 chromosomes is
generated randomly. Then at each iteration, two choromosomes are
selected from the population to produce two new offsprings. Se-
lection methods can be in several ways such as top to bottom, ran-
dom, weighted random, etc [10]. After selecting two chromosomes,
a crossover point is randomly selected within the w and b parts
separately between the last and the first bits of the parents’ choro-
mosome and bits are swapped mutually at crossover point. Also,
random mutations alter the bits of a selection of a percentage of the
new population with a rate of 15% and the selection probability is
50%. Finally, the number of iterations depends on whether an ac-
ceptable solution or a set number of iterations exceeded. Here we
use the maximum iteration number as 500.

6. SIMULATIONS AND RESULTS

solution.
For the simulations we consider an ADSL environment de-

scribed in [8]. The cyclic prefix consists of 32 samples and the
FFT size is 512. The TEQ has 16 taps, and the channel is chosen to
be CSA test loop 1 [11]. The operating SNR is 40 dB. The initiliza-
tion for the equalizer is all-zeros with a single one in the middle,
whereas the TIR is initialized to all-zeros but the first entry is one.
The step size is taken as µ = 10−4.

The first results provide the shortened channel impulse response
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as seen in Figure 4. It can be observed that both the proposed
BACS-SI and SAM algorithm can successfully shorten the CSA
1 model for the relatively longer ADSL channel. Moreover, they
converge to almost the same

Figure 5 demonstrates the bit rate comparison of the BACS and
SAM algorithms as well as the matched filter bound. The price
of blind channel shortening can be considered as the loss in the
bit rate as compared to the matched filter bound. However, as seen
from the figure, BACS-SI can considerably overcome this loss since
the loss of SAM is around 25 % whereas for BACS-SI this loss is
approximately 10%. Therefore it can be concluded that BACS-SI
provides better bit rate efficiency compared to SAM.

In addition to the improvement in the bit rate, the main contri-
bution of the present study is finding the shortened channel impulse
response. Hence, Figure 6 demonstrates the improvement achieved
by the genetic algorithm. The genetic algorithm also has the abil-
ity to find the optimum delay caused by the shortening equalizer.
Note that, even if the outcome of the iterative algorithm may not
have the ability to shorten the channel, the genetic algorithm can
successfully find the shortening counterpart. The genetic algorithm
is initialized with the outcome of the iterative algorithm. Working
on a single ADSL frame, the result in Figure 6 is obtained after 500
iterations.

Therefore, although it is not possible to directly find the short-
ened channel impulse response in the SAM or SLAM algorithms (or
even a successful shortening equalizer), the proposed BACS-SI al-
gorithm provides this information as the TIR without any additional
effort.

7. CONCLUSION

A blind, adaptive channel shortening algorithm (BACS-SI) is pro-
posed which has two phases. In the first phase a stochastic gra-
dient algorithm is employed to find some solution to the defined
cost function. In the second phase this solution is fine tuned by a
genetic algorithm to find the optimum equalizer-target impulse re-
sponse pair which satisfies a criterion based on the pilot tone. The
main advantage of this method is, in addition to performing chan-
nel shortening, it can provide the shortened channel information in-
herently due to the existence of the target impulse response in the
algorithm. This is a major contribution when compared to similar
algorithms SAM and SLAM where the shortened channel has to be
obtained by further channel estimation. It is also demonstrated that
the BACS-SI algorithm has better bit rate performance compared to
the SAM algorithm.
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Figure 6: (a) Initial c-b pair, (b) c-b pair after the genetic algo-
rithm.
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