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ABSTRACT
In this paper, we consider the blind joint identification and

equalization of Wiener-Hammerstein nonlinear communication
channels. By considering a special design of the input signal, we
show that output data can be organized into a third-order tensor. We
show that the obtained tensor has a PARATUCK-2 representation.
We derive new results on uniqueness of the PARATUCK-2 model
by considering structural constraints such as Toeplitz and Vander-
monde forms for some of its matrix factors. We also constrain the
input signal to belong to a finite alphabet. Then an Alternating
Least Squares (ALS) algorithm is proposed for estimating the fac-
tors of the PARATUCK-2 model and therefore the parameters of the
Wiener-Hammerstein channel and the unknown input signal. The
performances of the proposed joint identification and equalization
method are illustrated by means of simulation results.

1. INTRODUCTION

Linear approximation is often inappropriate or inadequate for mod-
elling practical systems. Therefore, it is necessary to consider non-
linear models. Among them the Volterra model has been the subject
of several works [1]. However, Volterra model suffers generally
of a huge parametric complexity. By taking the structural prop-
erty of the considered nonlinear plant into account, it is sometimes
possible to use block-structured nonlinear models such as Wiener-
Hammerstein models. These models that combine a memoryless
nonlinearity with linearly dispersive elements have been success-
fully employed in various areas including digital communications
systems [2, 3, 4].

There are relatively few works in the area of blind identifica-
tion of Wiener-Hammerstein or block-structured nonlinear systems.
Existing identification methods mainly concern the stochastic case,
the input signal being generally assumed to be Gaussian (see [5]
for example), and make use of higher order statistics, or exploit the
cyclostationarity of the input signal [6]. In this paper, we consider
a deterministic approach based on a third-order tensor decomposi-
tion.

Tensor analysis is used in many areas of science and engineer-
ing. Since few years, the use of tensor concepts in signal processing
has gained more attention, motivated by the field of higher order
statistics. When dealing with tensors, two families of models are
generally encountered: PARAFAC [7, 8] and TUCKER models [9].
Different models sharing some properties of both PARAFAC and
TUCKER models have been proposed in the dedicated literature,
as for instance the PARATUCK-2 model [10]. In this paper, we
show that the output data of a Wiener-Hammerstein communica-
tion channel can be organized into a third-order PARATUCK-2 ten-
sor with structural constraints for its matrix factors in Toeplitz and
Vandermonde forms. After deriving uniqueness properties of this
constrained PARATUCK-2 decomposition, a blind joint identifica-
tion and equalization algorithm is proposed for such communication
channels.

The paper is organized as follows. In Section 2, we briefly

recall some tensor models. The link between Wiener-Hammerstein
model and the PARATUCK-2 decomposition is stated in Section
3. Then in Section 4, the PARATUCK-2 uniqueness properties are
considered before describing the estimation procedure in Section 5.
Some simulation results are provided to illustrate the performances
of the proposed algorithm in Section 6. Conclusions and future
work are given in Section 7.

Notations:
† Matrix pseudo− inverse T Matrix transpose
¯ Khatri−Rao product ‖.‖F Frobenius norm
IN (N×N) Identity matrix

A.p (resp. Ap. ): pth column (resp. row) of the matrix A.
Dp(A): Operator that forms a diagonal matrix from the pth row of
the matrix A.
D(a): Operator that forms a diagonal matrix from the elements of
the vector a. So, we have Dp(A) = D(Ap.).
xp denotes a vector with the entries of x = (x1 x2 · · ·xM)T raised to
power p, i.e. xp = (xp

1 xp
2 · · ·xp

M)T .

2. TENSOR DECOMPOSITIONS

Let X be a three-way array, also called a I1 × I2 × I3 third-order
tensor, the elements of which are xi1,i2,i3 , i j = 1,2, · · · , I j , j = 1,2,3.
In analysis of X the difference between independent and interacting
factors is illustrated by the two following decompositions:

xi1,i2,i3 =
N1

∑
n1=1

ai1,n1 bi2,n1 ci3,n1 ,

xi1,i2,i3 =
N1

∑
n1=1

N2

∑
n2=1

N3

∑
n3=1

ai1,n1 bi2,n2 ci3,n3 hn1,n2,n3

The first representation is called PARAFAC(PARallel FACtors
analysis)[7] or CANDECOMP (CANonical DECOMPosition)[8].
It exhibits independence between factor contributions to each data
point. On the contrary, in the second representation, called
TUCKER-3 [9], the factors interact in their contributions to the
data. The TUCKER-3 representation is then more general than
PARAFAC. In general, TUCKER models are not unique whereas
uniqueness conditions exist for PARAFAC [11]. A family of mod-
els sharing features of the two above mentioned models has been
suggested in the literature: the so-called PARATUCK-2 model [10]
given by

xi1,i2,i3 =
N1

∑
n1=1

N2

∑
n2=1

ai1,n1 cA
i3,n1

hn1,n2 cB
i3,n2

bi2,n2 . (1)

By slicing the I1× I2× I3 tensor X along its third mode, we get the
following matrix representation of the PARATUCK-2 model:

X..i3 = ADi3(C
A)HDi3(C

B)BT ∈ℜI1×I2 , i3 = 1,2, · · · , I3, (2)
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where A, B, CA, and CB are matrices with the respective dimen-
sions I1×N1, I2×N2, I3×N1, and I3×N2. H is a N1×N2 matrix
called kernel-matrix. Uniqueness of the PARATUCK-2 decompo-
sition has been proved when N1 = N2 provided A, B, and H are full
column rank matrices and H has no zero elements [10].

To the best of the authors knowledge, few applications and
works are devoted to the PARATUCK-2 decomposition. In the se-
quel, we show how this decomposition can be used for jointly iden-
tifying and equalizing Wiener-Hammerstein channels, and we give
uniqueness conditions when N1 6= N2.

3. PARATUCK-2 MODELLING OF
WIENER-HAMMERSTEIN COMMUNICATION

CHANNELS

The Wiener-Hammerstein model, depicted in Fig. 1, is one of
commonly used block-oriented nonlinear structures. We denote
by u(n), y(n), v1(n), v2(n), and e(n), the input signal, the out-
put signal, intermediate variables, and the additive noise respec-
tively. Assuming that the nonlinearity is continuous within the
considered dynamic range, then, from the Weierstrass theorem,
it can be approximated to an arbitrary degree of accuracy by
a polynomial C(.) of finite degree P, the coefficients of which
are cp. So, the Wiener-Hammerstein model is constituted by

)(1 nv )(2 nv
(.)l (.)g

)(nu )(ny
(.)C

Wiener model

Hammerstein model

Figure 1: Wiener-Hammerstein model

a polynomial C(.), sandwiched between two linear filters with
impulse response l(.) and g(.) and memory Ml and Mg respec-

tively, i.e., v1(n) =
Ml−1

∑
i=0

l(i)u(n − i), v2(n) =
P
∑

p=1
cpvp

1(n), and

y(n) =
Mg−1

∑
i=0

g(i)v2(n− i)+ e(n). For characterizing the paramet-

ric representation of each block of the Wiener-Hammerstein sys-
tem, we define the following vectors: l = (l(0) l(1) · · · l(Ml −1))T ,
g =

(
g(0) g(1) · · ·g(Mg−1)

)T , and c = (c1 c2 · · ·cP)T . One can
note that if the linear subsystems l(.) and g(.) are respectively
scaled by α1 and α2 then the polynomial defined by the coefficients
c̃p = cp

α p
1 α2

leads to the same input-output equation. In other words,
the linear subsystems can be defined up to a scaling factor. In order
to remove such an indeterminacy we enforce the linear subsystems
to be monic, i.e. l(0) = g(0) = 1. This constraint is not restrictive.
Indeed, if the actual linear subsystems are not monic then they can
be determined up to the first coefficient of their respective impulse
responses. One can also note that this constraint ensures the unicity
of the polynomial subsystem. With these specifications, the equiva-
lent Volterra representation is given by:

y(n) =
P

∑
p=1

M−1

∑
j1,··· , jp=0

hp( j1, · · · , jp)
p

∏
k=1

u(n− jk)+ e(n), (3)

where M = Ml +Mg, and

hp( j1−1, · · · , jp−1) = cp

Mg

∑
j=1

g( j−1)
p

∏
k=1

l( jk− j), (4)

with jk = 1, · · · ,M, and k = 1, · · · , p.

To remove the effect of the non-diagonal Volterra kernel co-
efficients on the output signal, assuming that the memory M and
the nonlinearity degree are well-known, the input signal is designed
such that:

u((nR+ r−1)M +m−1) =
{

φrs(n) i f m = 1
0 i f m = 2, · · · ,M

where φr, r = 1,2, · · · ,R, are distinct non-zero real valued known
coefficients whereas s(n) are the informative unknown symbols to
be transmitted, belonging to a finite alphabet set Λ =

{±λq
}Q/2

q=1.
This choice of the input signal corresponds to a data transmission
by block. Each block r associated with a symbol s(n), is of dimen-
sion M and contains this symbol coded by a constant φr and (M−1)
zeroes that allow to remove the non-diagonal Volterra kernel coef-
ficients effect on the output signal. Then, the output signal is given
by:

y((nR+ r−1)M +m−1) =
P
∑

p=1
hp(m−1,m−1, · · · ,m−1)φ p

r sp(n)+ e((nR+ r−1)M +m−1) .

By using (4) and denoting ym,n,r = y((nR+ r−1)M +m−1) and
em,n,r = e((nR+ r−1)M +m−1), we get:

ym,n,r =
P

∑
p=1

Mg

∑
j=1

cpg( j−1)lp(m− j)φ p
r sp(n)+ em,n,r, (5)

or equivalently

ym,n,r =
Ml

∑
j=1

P

∑
p=1

cpg(m− j)lp( j−1)φ p
r sp(n)+ em,n,r. (6)

The indices m, r, and n represent respectively the position m in the
block r associated with the symbol s(n). By defining the following
correspondences:

(i1, i2, i3,n1,n2, I1, I2, I3,N1,N2)⇔ (m,n,r, j, p,M,N,R,Ml ,P),

and ai1,n1 = g(m − j), cA
i3,n1

= φrl( j − 1), hn1,n2 = lp−1( j−1),

cB
i3,n2

= cpφ p−1
r , and bi2,n2 = sp(n), we can conclude that (6) is a

PARATUCK-2 model of the form (1).
We first reduce our discussion to the noiseless case. We define

the M×N matrices Y..r as:

Y..r =




y1,1,r y1,2,r · · · y1,N,r
y2,1,r y2,2,r · · · y2,N,r

...
...

. . .
...

yM,1,r yM,2,r · · · yM,N,r


 .

Using the above stated correspondences and their equivalent matrix
formulations, i.e.(A,CA,H,CB,B)⇔ (G,F,L,C,S) , equation (2)
becomes :

Y..r = GDr(F)LDr(C)ST , (7)

where
• G is a M ×Ml Toeplitz matrix the first row and column of

which are respectively given by G1. = ( g(0) 0 · · · 0 ) and
G.1 =

(
gT 0 · · · 0

)T ,we also note G = T (g),
• S is a N × P column-wise Vandermonde matrix:

S =
(

s s2 · · · sP
)
, s = ( s(1) s(2) · · · s(N) )T ,

• L is a Ml × P column-wise Vandermonde matrix:
L =

(
l0 l1 · · · lP−1

)
,

• F is a R×Ml rank one matrix: F = φφφ lT , φφφ = ( φ1 φ2 · · · φR )T

• C is a R×P matrix: C = ΦΦΦD(c), ΦΦΦ =
(

φφφ 0 φφφ 1 · · · φφφ P−1
)
.
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The M × N × R tensor Y, defined by the slices Y..r,
r = 1,2, · · · ,R, is a PARATUCK-2 model characterized by struc-
tural constraints concerning the matrix factors G, L, and S that
are in Toeplitz and Vandermonde forms respectively. One can note
that uniqueness results given in [10] cannot be applied for such a
PARATUCK-2 model since Ml 6= P in general. In the sequel we in-
vestigate uniqueness properties of the PARATUCK-2 model (7) by
exploiting structural constraints on the involved matrices.

4. UNIQUENESS ISSUE OF THE PARATUCK-2 MODEL
WITH STRUCTURAL CONSTRAINTS

Before considering the uniqueness issue, we recall the useful prop-
erty of admissibility in the Vandermonde sense of a given alphabet
and a lemma on a related identifiability result concerning bilinear
decompositions [12].
Definition: Let VP be the Pth-order Vandermonde matrix associ-
ated with the finite alphabet Λ =

{±λq
}Q/2

q=1 defined by

VP =




λ1 −λ1 · · · λQ/2 −λQ/2
λ 2

1 λ 2
1 · · · λ 2

Q/2 λ 2
Q/2

...
...

. . .
...

...
λ P

1 (−1)Pλ P
1 · · · λ P

Q/2 (−1)Pλ P
Q/2




.

The alphabet Λ is said to be admissible of order P in the Vander-
monde sense if Q≥ P and if the only admissible permutation matri-
ces ΠΠΠ of order Q satisfying VPΠΠΠ(V†

PVP− IQ) = 0 are ΠΠΠ = IQ and
ΠΠΠ = JQ, JQ being a Q×Q block diagonal matrix constituted with

Q/2 blocks defined as J2 =
(

0 1
1 0

)
.

Lemma 1 Let Y = HUT , where H is an arbitrary full rank matrix,
U is a column-wise Vandermonde matrix, constructed from a finite
alphabet set Λ =

{±λq
}Q/2

q=1. If the alphabet Λ is admissible of
order P in the Vandermonde sense and if each symbol of Λ appears
at least once in the first column of U then U and H can be uniquely
identified up to a diagonal matrix T = diag(β , β 2, · · · ,β P),
β =±1.

In the sequel, we consider the following assumptions:
A1: g(0) = 1 and g(Mg− 1) is nonzero. This implies that any bi-

linear decomposition as GK, G being in Toeplitz form and K
with no particular structure, is unique [13].

A2: Λ is an admissible alphabet of order P in the Vandermonde
sense and each symbol of Λ appears at least once in the sequence
{s(n)}n=1,2,··· ,N .

A3: The weights φr, r = 1,2, · · · ,R, and the coefficients of the poly-
nomial cp, p = 1,2, · · · ,P are nonzero.

A4: At least P coefficients of the impulse response l(.) are distinct
and non zero, and (Ml ≥ P).

The uniqueness property of the PARATUCK-2 model is stated in
the theorem below.

Theorem 1 Consider a M×N ×R third-order tensor Y with the
PARATUCK-2 structure given in (7). Suppose there is an alternative
representation of Y with matrices of the same size and structural
form

Y..r = ḠDr(F̄)L̄Dr(C̄)S̄T ,r = 1,2, · · · ,R.

Then, according to assumptions A1-A4, the two representations are
necessarily linked by the following relations:

Ḡ = G, F̄ = F, L̄ = L, S̄ = S∆∆∆, C̄ = C∆∆∆−1, (8)

with ∆∆∆ = diag(β , β 2, · · · ,β P), β =±1.

Proof: see the Appendix.
Thanks to the uniqueness property of the PARATUCK-2 de-

composition stated by the Theorem 1, we can estimate the vectors g,
l, and c describing the different blocks of the Wiener-Hammerstein
system. Obviously, both g and l are uniquely determined from G
and L respectively. From C = ΦΦΦD(c) we can deduce c. ΦΦΦ be-
ing known, the coefficients of the polynomial subsystems are then
blindly estimated up to a sign.

5. ESTIMATION OF THE PARATUCK-2 FACTORS

As for PARAFAC and TUCKER decompositions, the estima-
tion of the PARATUCK-2 decomposition factors can be car-
ried out using the Alternating Least Squares (ALS) algo-
rithm, as it was first proposed in [14] where the differ-
ent factors were obtained by minimizing the cost function

f (G,F,L,C,S) =
R
∑

r=1

∥∥Ỹ..r−GDr(F)LDr(C)ST
∥∥2

F , Ỹ..r being the

noisy version of Y..r. In this section, we propose a new method for
estimating the matrix factors of the PARATUCK-2 model. We de-
fine the matrices L2 = D(l)L and C2 = D(φφφ)C. Then the slices Y..r
and the unfolded matrix YR defined in (14) can be rewritten as:

Y..r = GL2Dr(C2)ST , YR = (C2¯GL2)ST .

We also consider the unfolded matrices associated with the
first and second modes. For the first mode, the slices
are given by Ym.. = SDm(GL2)CT

2 , m = 1, · · · ,M and we
have YM =

(
YT

1.. · · ·YT
M..

)T = (GL2¯S)CT
2 . For the second

mode, we have Y.n. = C2Dn(S)LT
2 GT , n = 1, · · · ,N, and

YN =
(
YT

.1. · · ·YT
.N.

)T = (S¯C2)LT
2 GT . For estimating the factors

S, G, L2, and C2, we alternatively minimize the cost functions
JR =

∥∥ỸR− (C2¯GL2)ST
∥∥2

F , JN =
∥∥ỸN − (S¯C2)LT

2 GT
∥∥2

F ,

and JM =
∥∥ỸM − (GL2¯S)CT

2
∥∥2

F , where ỸR, ỸN , and ỸM are re-
spective noisy versions of YR, YN , and YM . Then, we can deduce
C and F. The proposed parameter estimation algorithm is now de-
scribed.

5.1 Estimation of S
By minimizing JR with respect to S, we get:

ŜLS =
(
(C2¯GL2)†ỸR

)T
.

In order to enforce the Vandermonde structure, Ŝ is constructed
from the first column of ŜLS after its projection onto the alphabet
Λ:

Ŝ = (ŜLS,.1 Ŝ2
LS,.1 · · · ŜP

LS,.1). (9)

5.2 Estimation of G
One can note that YT

N = GL2(S ¯ C2)T = GX, with
X = L2(S¯C2)T . We define ΘΘΘ =

(
T (X.1)T · · ·T (X.RN)T )T ,

where T (X.k) denotes the M ×Mg Toeplitz matrix constructed
from X.k. G being a Toeplitz matrix, we get: vec(YT

N) = ΘΘΘg. Then

JN can equivalently be written as: JN =
∥∥vec(ỸT

N)−ΘΘΘg
∥∥2

2. Its
minimization with respect to g yields:

ĝ = ΘΘΘ†vec(ỸT
N). (10)

The entries of ĝ are first divided by the first entry and then
Ĝ = T (ĝ).

5.3 Estimation of C
Since C2 = D(φφφ)C = D(φφφ)ΦΦΦD(c), for estimating
C, it is necessary to get c. One can note that
YM = (GL2¯S)CT

2 = (GL2¯S)D(c)C̄T , with C̄ = D(φφφ)ΦΦΦ. Then
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JM can be rewritten as JM =
∥∥vec(ỸM)− (

C̄¯ (GL2¯S)
)

c
∥∥2

2. As
a consequence:

ĉ =
(
C̄¯ (GL2¯S)

)† vec(ỸM), (11)

and Ĉ = ΦΦΦD(ĉ).

5.4 Estimation of L and F
By minimizing JN with respect to L2, we get:

L2,LS = G†ỸT
N

(
(S¯C2)

T
)†

Noticing that the estimated vector l̂ is given by the first column of
L2,LS:

l̂ =
(

G†ỸT
N

(
(S¯C2)

T
)†

)

.1
, (12)

all the entries of this vector are divided by its first element be-
fore constructing the following estimated factors : F̂ = φφφ l̂T and
L̂ =

(
l̂0 l̂1 · · · l̂P−1

)
.

5.5 Wiener-Hammerstein identification algorithm
• Step 0: Initialize g,c, l, with random values and deduce the ini-

tial values for G, C2, and L2.
• Step 1: Estimate S using (9). If a threshold value σ1 is reached

by the cost function JR, project the elements of the first column
of S into the finite alphabet Λ.

• Step 2: Estimate g using (10) and then construct Ĝ = T (ĝ).
• Step 3: Estimate c using (11) and then deduce C2.
• Step 4: Estimate l using (12) and then construct L2.
• Step 5: If a convergence criterion is reached, the algorithm is

stopped. Else, return to Step 1.
The algorithm is stopped when the estimates of both g and l do not
significantly vary during consecutive iterations.

6. SIMULATIONS

We consider a Wiener-Hammerstein system such that the linear
filters and the polynomial coefficients are, respectively, given by
l = (1, −0.3 0.1), g = (1, 0.5 0.2), c = (2, 0.8 0.5). The input
signal is a 6-PAM one, which is admissible of order P = 3 in the
Vandermonde sense. We evaluate the performance of the proposed
algorithm by means of two measures: the output normalized mean
square error, i.e.

∥∥ỸR− (Ĉ2¯ ĜL̂2)ŜT
∥∥2

F /‖YR‖2
F , and the para-

meters normalized mean square error. We consider the transmission
of N = 60 unknown symbols with a repetition factor R = 3. A white
Gaussian noise was added to the channel output.
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Figure 2: Output NMSE in the noiseless case.

In Fig. 2, corresponding to a noiseless case, the output NMSE
is plotted with respect to the number of iterations. These results are
averaged over 100 random initializations. One can note the con-
vergence behavior of the algorithm. The convergence speed of the
proposed algorithm increases with the convergence threshold value
σ1. In the sequel we set σ1 = 0.1. In presence of noise, the choice of
the estimated parameters initial values becomes more crucial. We
consider 10 random initializations and for each one 100 noise se-
quences are generated. The results given in the following plots are
averaged values over all of the initializations and noise sequences.
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Figure 3: Output NMSE in noisy cases.

In Fig. 3, one can note the effect of the projection on the al-
phabet, which leads to get an NMSE corresponding to the additive
noise level. However, this projection can deteriorate the algorithm
performances especially for lower SNRs.
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Figure 4: Parameters NMSE in a noisy case (SNR=30 dB).

In Figure 4, we can see convergence on the estimation of the
subsystems parameters. The estimation of the polynomial subsys-
tem is less precise than that of the linear ones. In Figure 5, we
evaluate the equalization performance in terms of symbol error rate.
We compare the proposed scheme with a non-blind one suggested
in the literature [15]. In such approach, the channel parameters are
assumed known. One can note that the performance significantly
lowers when the SNR decreases. For high SNR the proposed algo-
rithm gives performances close to those obtained with the non-blind
scheme.

7. CONCLUSION

In this paper, we have proposed a blind joint identification
and equalization algorithm for a Wiener-Hammerstein type chan-
nel.This algorithm uses a particular input design or precoding that
yields a tensorial representation of output data. We have shown
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Figure 5: Error probability on symbols detection.

that the obtained tensor is a constrained PARATUCK-2 one. Its
factors exhibit the Toeplitz and Vandermonde structures. We have
established uniqueness conditions for such a PARATUCK-2 tensor
model. Then an iterative LS type algorithm has been proposed for
estimating the factors of the tensor model. From these factors we
deduce the channel parameters and the input signal. The initial-
ization of the proposed algorithm remains a crucial question. We
intend to study this issue and that of the robustness to noise of the
proposed scheme.

8. APPENDIX

For any slice Y..r, we can write: Y..r = GZr, with
Zr = Dr(F)LDr(C)ST . By concatenating all the R slices from left
to right, we get:

Y = (Y..1 · · · Y..R) = GZ, Z = (Z1 · · · ZR) . (13)

Then according to assumption A1 and using the result in [13], we
know that this bilinear decomposition is unique, i.e. Ḡ = G. In the
same way, by concatenating the slices from up to down, we get

YR =
(
YT

..1 · · · YT
..R

)T = WST , (14)

where

W =




GD1(F)LD1(C)
...

GDR(F)LDR(C)


 (15)

Thanks to assumptions A3 and A4, by construction W is a full col-
umn rank matrix. Therefore, using assumption A2 and Lemma 1,
the above bilinear decomposition is unique up to a diagonal matrix
∆∆∆1 = diag(β ,β 2, · · · ,β P), β =±1. Thus we can write:

Y..r = ḠDr(F)LDr(C)∆1∆1∆1
−1S̄T ,r = 1,2, · · · ,R.

Let Tr and Xr be non-singular matrices. An alternative representa-
tion of the tensor Y can be obtained by defining

Dr(F̄) = Dr(F)T−1
r (16)

L̄ = TrLXr (17)

Dr(C̄) = X−1
r Dr(C)∆∆∆−1

1 (18)

In order to keep the matrices in the left side of (16) and (18) diag-
onal, it is obvious that Tr and Xr must be diagonal. Recall that L
is a column-wise Vandermonde matrix with 1’s in its first row and
column. Since L̄ must have the same Vandermonde structure, then

L̄.1 =




t1,1;r x1,1;r
...

tMl ,Ml ;r x1,1;r


 =




1
...
1


 , and L̄T

1. =




t1,1;r x1,1;r
...

t1,1;r xP,P;r


 =




1
...
1


 ,

where ti,i;r, and xi,i;r denote respectively the diagonal entries of
Tr and Xr. As a consequence, t1,1;r = t2,2;r = · · · = tMl ,Ml ;r =

1
x1,1;r

and x1,1;r = x2,2;r = · · ·= xP,P;r = 1
t1,1;r

, i.e. t1,1;rx1,1;r = 1.

Then equations (16)-(18) can be written as: Dr(F̄) = 1
t1,1;r

Dr(F),

L̄ = x1,1;rt1,1;rL = L, and Dr(C̄) = 1
x1,1;r

Dr(C)∆∆∆−1
1 . By considering

all values of r, we get: F̄ = ∆∆∆2F and C̄ = ∆∆∆−1
2 C∆∆∆−1

1 . We also have
F̄ =∆∆∆2φφφ lT = φ̄φφ l̄T . Since from L, l can be uniquely determined, nec-
essarily φ̄φφ = φφφ and then ∆∆∆2 = IR. As a consequence: C̄ = C∆∆∆−1

1 .¥
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