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ABSTRACT

In this paper, a channel identification technique using Sec-
ond Order Statistics (SOS) is proposed for memoryless multiuser
Volterra communication channels. The Parallel Factor (PARAFAC)
decomposition of a third order tensor formed from spatio-temporal
covariance matrices of the received signals is considered by using
the Alternating Least Squares (ALS) algorithm. Modulation codes
(constrained codes) are used to ensure some orthogonality con-
straints of the transmitted signals. That constitutes a new applica-
tion of modulation codes, aiming to introduce temporal redundancy
and ensure some statistical properties. Identifiability conditions for
the problem under consideration are addressed and simulation re-
sults illustrate the performance of the proposed estimation method.

1. INTRODUCTION

In this paper, a channel estimation technique for memoryless mul-
tiuser Volterra communication systems is proposed. The chan-
nel is modelled as a complex-valued linear-cubic Multiple-Input-
Multiple-Output (MIMO) Volterra filter, consisting of a generic rep-
resentation of instantaneous linear-cubic polynomial mixtures. The
nonlinear polynomial mixtures models have important applications
in the field of telecommunications to model wireless communica-
tion links with nonlinear power amplifiers [1] and uplink channels
in Radio Over Fiber (ROF) multiuser communication systems [2].
The ROF links have found a new important application with their
introduction in microcellular wireless networks [3, 4]. In such sys-
tems, the uplink transmission is done from a mobile station towards
a Radio Access Point, the transmitted signals being converted in
optical frequencies by a laser diode and then retransmitted through
optical fibers. Important nonlinear distortions are introduced by the
electrical-optical (E/O) conversion [3, 4]. When the length of the
optical fiber is short (few kilometers) and the radio frequency has
an order of GHz, the dispersion of the fiber is negligible [5]. In this
case, the nonlinear distortion arising from the E/O conversion pro-
cess becomes preponderant [3, 4, 5]. Up to several Mbps, the ROF
channel can be considered as a memoryless link [2, 3]. Thus, the
channel is composed of a wireless link, which can be modelled as
a linear instantaneous mixture, followed by electrical-optical (E/O)
conversions, which can be modelled as memoryless nonlinearities
[2]. Moreover, in this application, the channel nonlinearity is mod-
elled as a third order polynomial [2, 3]. So, the overall channel
corresponds to a third order memoryless multiuser Volterra system.

There are few works dealing with the problem of blind source
separation or/and identification of nonlinear systems in the context
of multiuser communication channels. Among them, we cite [6]
that proposes a blind Zero Forcing technique for Code Division
Multiple Access (CDMA) systems and [7], where semi-blind and
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blind source separation algorithms are developed for memoryless
Volterra channels in ultra-wide-band systems.

The technique proposed in this paper exploits the use of Second
Order Statistics (SOS) of the received signals. Modulation codes
(constrained codes) [8] are used to ensure the orthogonality of non-
linear combinations of the transmitted signals for several time de-
lays, allowing the application of the Parallel Factor (PARAFAC)
decomposition [9] of a third order tensor formed from estimated
spatio-temporal covariance matrices. A two-step Alternating Least
Squares (ALS) algorithm [9, 10] is used to estimate the chan-
nel. The proposed modulation codes introduce redundancy by ex-
panding the signal constellation, generating multilevel modulations.
Modulation expanding is often used in bandwidth-constrained chan-
nels, where a performance gain can be achieved without expanding
the channel bandwidth or the transmission power [8]. Modulation
codes have applications in magnetic record, optical recording and
digital communications over cable systems, with the goal of achiev-
ing spectral shaping and minimizing the DC content in the baseband
signal [8]. This kind of coding was also used in [11] to reduce in-
trachannel nonlinear effects in high-speed optical transmissions. In
this paper, the modulation codes are explored with a different pur-
pose: the nonlinear channel identification. The redundancy pro-
vided by the codes introduces temporal correlation in a controlled
way, in order that the transmitted signals verify some statistical con-
straints associated with the channel nonlinearities.

Blind channel identification and source separation using
PARAFAC has been addressed earlier by some authors in the case
of linear channels. In [12], a time-varying user power loading is
proposed to enable the application of the PARAFAC analysis, in
order to perform blind estimation of spatial signatures. PARAFAC
decompositions have also been considered in the context of Code
Division Multiple Access (CDMA) systems, with parameter estima-
tion and/or source separation purposes [10]. In the case of nonlinear
channels, a deterministic blind PARAFAC-based receiver was pre-
sented for Single-Input-Multiple-Output (SIMO) channels in [13].

2. SYSTEM MODEL

The discrete-time baseband equivalent model of the communication
channel under consideration is assumed to be expressed as complex-
valued linear-cubic polynomials of the form:

x(i)(n) =
M

∑
m1=1

h(i)
1 (m1)sm1(n) +

M

∑
m1=1

M

∑
m2=m1

M

∑
m3=1

m3 6=m1

m3 6=m2

h(i)
3 (m1,m2,m3)sm1(n)sm2(n)s∗m3

(n)+υ(i)(n), (1)

where x(i)(n) is the received signal by the antenna i (i = 1,2, ..., I)
at the time instant n, I is the number of antennae, M is the number
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of users, h(i)
2k+1(m1, . . . ,m2k+1), for k = 0,1, are the channel coeffi-

cients, sm(n), for 1 ≤ m ≤ M, are the unknown stationary and sta-
tistically independent transmitted signals and υ (i)(n) is the Additive
White Gaussian Noise (AWGN). The noise components υ (i)(n) are
assumed to be zero mean, independent from each other and from the
input signals sm(n).

The cubic terms corresponding to m3 = m1 and m3 = m2 are
absent in (1) due to the fact that, for constant modulus signals,
like Phase-Shift Keying (PSK) modulated signals, they have the
form: sm j (n) |sm3(n)|2, j ∈ {1,2}, where |sm3(n)|2 is a multiplica-
tive constant absorbed by the channel coefficients. As a conse-
quence, some cubic terms degenerate in linear terms. In addition,
the quadratic terms are absent in (1) due to the fact that distortions
generated by even-power terms produce spectral components lying
outside the channel bandwidth, which can be eliminated by band-
pass filters at the receiver.

The channel model (1) represents a complex-valued truncated
triangular MIMO Volterra filter, the inputs of which are user in-
dexed signals, instead of time indexed inputs as in traditional
Single-Input-Single-Output (SISO) Volterra filters. It represents
a general representation of instantaneous linear-cubic polynomial
mixtures.

The signals received on the I antennae, at the time instant n, can
also be expressed in a compact way:

x(n) = Hs(n)+v(n), (2)

where x(n) = [x(1)(n) . . .x(I)(n)]T ∈ C
I×1, v(n) = [υ(1)(n)

. . .υ(I)(n)]T ∈C
I×1 and H = [h(1) . . .h(I)]T ∈C

I×MV , with the vec-

tor h(i) (1 ≤ i ≤ I) containing the parameters h(i)
2k+1(m1, . . . ,m2k+1)

and MV being the number of coefficients of each subchannel in (1).
Moreover, s(n) ∈ C

MV×1 is the input vector containing the linear
{sm1(n)} (1 ≤ m1 ≤ M) and cubic terms {sm1(n)sm2(n) s∗m3

(n)}
(1 ≤ m1,m2,m3 ≤ M, m1 6= m3, m2 6= m3, m2 ≥ m1). Note that
MV = M

2 (M2 −M +2).

3. SOS TENSOR

The proposed channel identification method relies on the
PARAFAC decomposition of a tensor composed of spatio-temporal
covariances of the received signals, given by:

R(τ) = E

[

x(n+ τ)xH(n)
]

= HC(τ)HH +σ2IIδ (τ), (3)

with

C(τ) = E

[

s(n+ τ)sH(n)
]

, (4)

where τ ∈ ϒ = {τ1,τ2, ...,τT}, T is the number of covariance ma-
trices taken into account, the superscript H denotes the complex
conjugate transpose of a matrix, δ (τ) is the Kronecker symbol, σ 2

is the AWGN variance and II is the I × I identity matrix. The noise
variance σ 2 can be estimated as the mean of the (I −MV ) smallest
eigenvalues of R(0), allowing the subtraction of the noise term in
(3). Thus, we may ignore, from now on, this noise term.

A three-way tensor R ∈ C
T×N×N can be defined from the ma-

trices R(τ), for τ ∈ ϒ, in such a way that the first-mode slices of R,
denoted by Rk··, have the form:

Rk·· = R(τk), k = 1, ...,T, (5)

where a first-mode slice of R is obtained by fixing the first dimen-
sion index of R and varying the indices of the two other modes. In
order to enable the application of the PARAFAC decomposition of
the tensor R, the matrices C(τ) must be diagonal for τ ∈ ϒ, leading
to the following scalar notation:

rk,p,l =
MV

∑
q=1

hp,qh∗l,qcq,q(τk) , (6)

where rk,p,l = [R]k,p,l = E[xp(n + τk)x
∗
l (n)], hp,q = [H]p,q and

cq,q(τk) = [C(τk)]q,q. To satisfy this property, the components of
the nonlinear regression vector s(n) must be uncorrelated for τ ∈ ϒ.
The following theorem states sufficient conditions to ensure this
constraint.

Theorem 1: Let us assume that all the signals transmitted by
the users are mutually independent and have constant moduli. The
following conditions are sufficient to ensure the diagonality of the
covariance matrices C(τ), τ ∈ ϒ:
(i). E [sm(n)] = 0, for all the users;

(ii). E
[

s2
m(n)

]

= 0, for (M−1) users;

(iii). E
[

s2
m(n+ τ)sm(n)

]

= 0 and E
[

s2
m(n)sm(n+ τ)

]

= 0, for (M −
1) users, ∀τ ∈ ϒ;

(iv). E [sm(n+ τ)sm(n)] = 0, for (M−1) users, ∀τ ∈ ϒ.

The proof is omitted due to a lack of space. It can be derived
by writing each non-diagonal term of the matrix C(τ) as a product
of the individual contributions of each user.

The following theorem proves that some conditions of Theorem
1 are verified if all the users transmit uniformly distributed PSK
signals with more than 2 symbols in the constellation.

Theorem 2: Let us assume that all the users transmit uniformly
distributed PSK signals with Rm > 2, ∀m ∈ {1,2, ...,M}, where Rm

is the number of constellation symbols of the mth user. Then, con-
ditions (i) and (ii) of Theorem 1, and conditions (iii) and (iv), for
τ = 0, are verified.

Proof: If sm(n), m = 1, ...,M, takes an equiprobable value from

the set
{

Am.e j2π(r−1)/Rm ;r = 1,2, ..., Rm;Rm > 2}, then we have

E [sp
m(n)] =

Ap
m

Rm

Rm

∑
r=1

e j2π(r−1)p/Rm =
Ap

m
(

e j2π p −1
)

Rm
(

e j2π p/Rm −1
) , (7)

which is equal to zero for p = 1,2,3 and Rm > 2. �

4. DESIGN OF CODING SCHEMES

In this section, some modulation codes are designed to ensure that
the transmitted signals satisfy the constraints listed in Theorem 1.
In these modulation code schemes, the modulation makes part of
the encoding process and it introduces redundancy by expanding
the signal constellation. This means that a modulation memory is
introduced in a controlled way with the purpose of keeping the or-
thogonality between nonlinear combinations of the transmitted sig-
nals.

This constitutes a new application of modulation codes, since
they are used to ensure some statistical properties associated with
the channel nonlinearities. Moreover, the code redundancy could
also be explored in the symbol recovery process to provide Bit Error
Rate (BER) improvements, by exploiting the fact that introduced re-
dundancy imposes some constraints on the symbol transitions. This
subject will be investigated in future works.

The modulated signals are characterized by Discrete Time
Markov Chains (DTMC) with Rm states, given by the PSK symbols
ar = {Am· e j2π(r−1)/Rm}, for r = 1,2, ...,Rm, where Am is the ampli-
tude of the signal of the mth user. The state transitions are defined

by a block of km bits, denoted by Bn = {b(1)
n ,b(2)

n , ..., b(km)
n }, where

b(k)
n , for k=1, ...,km, is uniformly distributed over the set {0,1} and

2km < Rm. In addition, it is assumed that b(k)
n (k=1, ...,km) are mu-

tually independent. For each of the Rm states, the block of bits Bn

defines 2km equiprobable possible transitions. Therefore, the coding
imposes some restrictions on the symbol transitions. For each state,
there is

(

Rm −2km
)

not assigned transitions. The code rate of the
mth user is then given by (km/lm), where lm = log2 Rm.

Let us denote by T = {Tr1,r2}, with r1, r2 ∈ {1,2, ...,Rm} the
Transition Probability Matrix, Tr1,r2 being the probability of a tran-
sition from the state r1 to the state r2. Note that ∑Rm

r2=1 Tr1,r2 = 1
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Fig. 1. Miller Code State diagram.

and Tr1,r2 ∈ {0,1/2km}. So, the matrix T defines which are the pos-
sible state transitions for each state. An example of mapping from
the bits Bn to the corresponding PSK symbols is illustrated in Fig.
1 for a 4-PSK signal, where {a1, a2, a3, a4} are the constellation
symbols (states) and km = 1. This state diagram corresponds to the
run-length-limited code known as Miller Code, associated with the
transition probability matrix T2,B given in (20). The Miller Code is
widely used in digital magnetic recording and in Binary-PSK car-
rier modulation systems [8]. Similar state diagrams can be obtained
for the other transition probability matrices given in the Appendix.

According to Theorem 2, if all the users transmit uniformly dis-
tributed PSK signals, then conditions of Theorem 1 are verified for
τ = 0. So, the following theorem proposes some constraints in the
transition probability matrix T in such a way that the corresponding
user transmits an uniformly distributed PSK signal.

Theorem 3: Let us assume that the DTMC associated with the
coding is irreducible and aperiodic. If ∑Rm

r1=1 Tr1,r2 = 1, for 1 ≤ r2 ≤
Rm, then, for a large number of time steps, the average fraction of
time steps in which the DTMC is in the state ar1 converges to 1/Rm,
for 1 ≤ r1 ≤ Rm.

Proof: The aperiodicity and irreducibility properties assure that
[14]: (i) all the limiting probabilities of a DTMC exist and are pos-
itive, (ii) the stationary distribution exists and is unique, and (iii)
the limiting probabilities distribution is equal to the stationary dis-
tribution. So, the limiting probabilities P = [p1 p2 ... pRm ] can be
obtained by solving the following system of equations:

{

PT = P,

∑Rm
r=1 pr = 1.

(8)

It can be easily verified that if ∑Rm
r1=1 Tr1,r2 = 1, then P = [1/Rm

... 1/Rm] is a solution of the system (8). And finally, it can be
proved (the proof is omitted due to a lack of space) that if the lim-
iting probability of a state ar1 exists, then it is equal to the long-run
time average spent in the state ar1 , i.e. for a large number of time
steps, the average fraction of time steps that the DTMC spends in
the state ar1 converges to the limiting probability of the state ar1 . �

Now we develop some restrictions to the transition probability
matrix so that the conditions of Theorem 1 be verified for τ 6= 0. Let
T n

r1,r2
be the (r1,r2)

th entry of Tn. By definition, T n
r1,r2

represents the
probability of being in the state ar2 after n transitions, supposing
that the current state is ar1 . So, we may write:

E

[

sk
m(n+ τ)sl

m(n)
]

=
1

Rm
aT

l Tτ ak, (9)

where a = [a1, a2, ...aRm ]T and ak =
[

ak
1, ak

2, ...a
k
Rm

]T
. Thus, the

conditions (iii) and (iv) of Theorem 1 can be rewritten as:

aT Tτ a2 = 0, aT
2 Tτ a = 0 and aT Tτ a = 0. (10)

The results of this section may be summarized in the following
corollary.

Corollary 1: If the following conditions hold for all the users:
(i). the transition probability matrix corresponds to an irreducible

and aperiodic DTMC;

(ii). ∑Rm
r1=1 Tr1,r2 = 1, ∀r2 , 1 ≤ r2 ≤ Rm;

and, in addition, equations (10) are verified for (M−1) users ∀τ ∈
ϒ, then all the conditions of Theorem 1 are satisfied and, therefore,
the covariance matrix C(τ) is diagonal ∀τ ∈ ϒ.

It should be highlighted that equations (10) only depend on the
matrix T and the constellation order. That means that the transition
probability matrices can be a priori designed to verify these equa-
tions. In the Appendix, some examples of matrices verifying these
constraints are listed, with the corresponding admissible delays.

5. CHANNEL ESTIMATION ALGORITHM

Let us denote respectively by R1 ∈ C
NT×N and R3 ∈ C

NT×N the
first and third-mode unfolded matrices of the tensor R, defined as:

R1 =







R1··
...

RT ··






, R3 =







R··1
...

R··N






, (11)

where the matrices Ri··, and R··k are respectively the first and third-
mode slices of R. Provided that the conditions of Corollary 1 are
satisfied, these slice matrices can be expressed respectively by:

Ri·· = Hdiagi[Cd ]HH and R··k = Cddiagk[H
∗]HT , (12)

where the rows of the matrix Cd ∈ C
T×MV contain the diagonal

components of C(τ) and diagi[A] is the diagonal matrix formed
from the ith row of A. So, the unfolded matrices are given by:

R1 = (Cd �H)HH and R3 = (H∗ �Cd)HT , (13)

where � denotes the Khatri-Rao (column-wise Kronecker) prod-
uct. The following theorem imposes a sufficient condition for the
uniqueness of the considered blind estimation problem.

Theorem 4: Let the two pairs of matrices (Ĥa,Ĥb) and
(Ĥ

′
a,Ĥ

′
b) be solutions to (13) for a given matrix Cd . If

2kH + kCd
≥ 2MV +2, (14)

then Ĥa = Ĥ
′
aΛ and Ĥb = Ĥ

′
bΛ−1, where Λ is a MV ×MV diagonal

matrix and kA is the k-rank of matrix A, i.e. the greatest integer k
such that every set of k columns of A is linearly independent.

Proof: The proof of the above theorem is a direct result of the
Kruskal Theorem [15]. Denoting by (Ĥa,Ĥb, Ĉd) and(Ĥ

′
a,Ĥ

′
b, Ĉd

′
)

two solutions of (13) for Cd unknown, the Kruskal Theorem says
that if kH +kH∗ +kD ≥ 2MV +2, then Ĥa = Ĥ

′
aΠΛa, Ĥb = Ĥ

′
bΠΛb

and Ĉd = Ĉd
′ΠΛc, where Λa, Λb and Λc are diagonal matrices such

that ΛaΛbΛc = IMV and Π is a permutation matrix. If we assume

that Cd is known, then Ĉd = Ĉd
′
= Cd and, therefore, Π = IMV ,

Λc = IMV and Λb = Λ−1
a = Λ−1.

The scaling ambiguity in the channel estimation introduced by
the matrix Λ does not represent an effective problem, as it can be
removed by a gain control at the receiver. In the Appendix, some
examples of configurations of transition probability matrices for 2
users are shown, verifying kCd

= MV . In this case, (14) becomes
min(I,MV ) ≥ MV /2+1.

The channel estimation is obtained by using the ALS algorithm
[9, 10], the principle of which is to estimate, in the least square
sense, a subset of the parameters by using a previous estimation of
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other subsets of parameters. This process continues until the conver-
gence of the parameters is achieved. The ALS algorithm is mono-
tonically convergent but it may require a large number of iterations
to converge [16]. For the proposed technique, each ALS iteration
corresponds to two updating steps. It computes two estimates, de-
noted by Ĥa and Ĥb, for the matrices H and H∗, respectively, while
the matrix Cd is assumed to be known, due to the fact that the matri-
ces C(τ) only depend on the modulation codes and the transmission
power of the users. The algorithm does not take the fact that Ĥa is
the complex conjugate of Ĥb into account. The channel estimation
problem is solved by minimizing the following least squares cost
function:

J =
∥

∥

∥
R̂1 −

(

Cd � Ĥa
)

Ĥ
T
b

∥

∥

∥

2

F
=

∥

∥

∥
R̂3 −

(

Ĥb �Cd
)

Ĥ
T
a

∥

∥

∥

2

F
, (15)

where R̂1 and R̂3 are the sample estimated unfolded matrices and
‖ · ‖F denotes the Frobenius norm. Thus, the it th iteration of the
ALS algorithm can be described by the following steps:

Ĥ
(it)
b =

[

(

Cd � Ĥ
(it−1)
a

)†
R̂1

]T

, (16)

Ĥ
(it)
a =

[

(

Ĥ
(it)
b �Cd

)†
R̂3

]T

, (17)

where Ĥ
(0)
a and Ĥ

(0)
b are I × MV Gaussian random matrices and (·)†

denotes the pseudo-inverse. This process continues until the conver-
gence of the estimated parameters is achieved. Each iteration of this
ALS algorithm corresponds to about (MV +8M2

V )2IT +2I2T MV +
22
3 M3

V + 2M2
V multiplications. Three channel estimates can be then

obtained: Ĥ
(it)
a , (Ĥ

(it)
b )∗ and 0.5 · [Ĥ

(it)
a +(Ĥ

(it)
b )∗]. The final chan-

nel estimate is chosen as the one providing the small value of the
cost function (15).

6. SIMULATION RESULTS

In this section, the proposed channel estimation method is evaluated
by means of computational simulations. The considered channel is
a memoryless MIMO Wiener filter corresponding to the model of
an uplink channel of a Radio Over Fiber (ROF) multiuser commu-
nication system [4]. The wireless interface is a memoryless I ×M
MIMO linear channel, consisting in an uniform spaced array of I
antennae. The antennae are half-wavelength spaced and the trans-
mitted signals are narrowband with respect to the array aperture.
Moreover, the propagation scenario is characterized by two users,
the angles of arrival of which are 30◦ and 70◦. The E/O conver-
sion in each antenna is modelled by the linear-cubic polynomial [4]:
−0.291x + 1.078|x|2x. The used modulation is 4-PSK and all the
results were obtained via Monte Carlo simulations using NR = 100
independent data realizations.

The channel estimation method is evaluated by means of the
(Normalized Mean Squared Error) NMSE of the estimated channel
parameters, defined as:

eH =
1

NR

NR

∑
l=1

‖ H− Ĥl ‖
2
F

‖ H ‖2
F

(18)

where ‖ · ‖F denotes the Frobenius norm and Ĥl ∈ C
N×MV repre-

sents the channel matrix estimated at the jth Monte Carlo simula-
tion. Fig. 2 shows the NMSE versus SNR for the configurations
of transition probability matrices given in Table 1 of the Appendix,
for M = 2, I = 4, T = 5 and Ns = 3000, Ns being the length of the
data block used in the estimation of the covariance matrices. We
remark that all the tested schemes provide roughly similar NMSE
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Fig. 2. NMSE versus SNR using the configurations of transition
probability matrices of Table 1, for M=2, I=4, T=5 and Ns = 3000.
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Fig. 3. NMSE versus SNR for various values of Ns using the Config.
2, M = 2, I = 4 and T = 5.

performances. In this case, the ALS algorithm takes approximately
15 iterations to achieve the convergence .

The influence of the data block length Ns used in the estima-
tion of the covariance matrices, is illustrated in Fig. 3. It shows
the NMSE versus SNR using the Config. 2 of Table 1, with M = 2,
I = 4 and T = 5. The quality of the channel estimation can be con-
siderably improved by increasing the value of Ns, which indicates
that the errors in the estimation of the covariance matrices constitute
one of the main sources of the degradation in this channel estima-
tion technique. In fact, if the theoretical values of the covariance
matrices R(τ) are used, the estimation algorithm can attain very
low NMSE values, limited by the machine precision. Moreover, we
have also found that the number of ALS iterations needed to achieve
the convergence decreases when Ns increases.

It should be highlighted from these results that the proposed
channel estimator has a good robustness to AWGN, having no great
performance degradation for low SNR’s.

Fig. 4 shows the Symbol Error Rate (SER) versus SNR pro-
vided by the Minimum Mean Square Error (MMSE) receiver, given

by ŴMMSE = C(0)Ĥ
H

[

ĤC(0)Ĥ
H

+σ2II

]−1
∈ C

MV×N . We have

used Config. 2, M = 2, I = 4, T = 5 and Ns = 3000. In order
to have a performance reference for our estimation technique, we
have also simulated the MMSE receiver assuming perfect channel
knowledge. Note that the SER performance using the estimated
channel is very close to the one using the perfect channel.
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Table 1. Examples of Configurations of transition probability ma-
trices for 2 users.

Config. User 1 User 2

1 T1,A T2,B

2 T1,A T2,A

3 T1,B T2,B

4 T1,B T2,A
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Fig. 4. SER versus SNR using the Config. 2, M = 2, I = 4, T = 5
and Ns = 3000.

7. CONCLUSION

The problem of blind estimation of memoryless multiuser Volterra
channels has been studied in this paper. The proposed method is
based on the PARAFAC decomposition of a tensor formed of spatio-
temporal covariance matrices. Some constraints for the transmitted
signals are developed to ensure the application of the PARAFAC
analysis, using a two-step version of the ALS algorithm. Modula-
tion codes are used to achieve these constraints, constituting a new
application of this kind of coding. The proposed technique was
applied to the identification of an uplink channel in a ROF mul-
tiuser communication system, providing good and consistent per-
formances. The proposed blind identification method is robust to
AWGN and the estimation errors of the covariance matrices are the
main source of the performance degradation. In future works, other
estimation algorithms will be tested and the impact of the modula-
tion codes in the bit recovery process will be investigated.

A. APPENDIX - EXAMPLES OF CONFIGURATIONS OF
TRANSITION PROBABILITY MATRICES

As pointed out, the transition probability matrices can be a priori
designed to verify the conditions listed in Corollary 1. In the fol-
lowing, we present some examples of such matrices corresponding
to 1/2-code rate for 4-PSK signals. It can be proved by mathemati-
cal induction that the following matrices:

T1,A = 0.5









1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1









,T1,B = 0.5









0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0









, (19)

verify all the conditions of Corollary 1 ∀τ ∈ N. In this case a =
[1 j −1 − j]T . In addition,

T2,A = 0.5









1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1









,T2,B = 0.5









0 1 0 1
0 0 1 1
1 1 0 0
1 0 1 0









(20)

verify conditions (i) and (ii) of Corollary 1.
The identifiability test in Theorem 4 depends on the covariance

matrices C(τ), for τ ∈ ϒ, which can be calculated from the transi-
tion probability matrices by using (10) and:

E

[

sk
m(n+ τ)sl∗

m(n)
]

=
1

Rm
aH

l Tτ ak. (21)

Thus, it can be verified that the configurations of transition probabil-
ity matrices for 2 users given in Table 1 verify kCd

= MV . The cor-
responding admissible delays are ϒ = {0,1, ...,T −1}, with T ≥ 4.
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