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ABSTRACT
In this paper we present a locally adaptive super resolution
Bayesian methodology for pansharpening of multispectral images.
The proposed method incorporates prior local knowledge on the ex-
pected characteristics of the multispectral images, uses the sensor
characteristics to model the observation process of both panchro-
matic and multispectral images, and includes information on the
unknown parameters in the model in the form of hyperprior dis-
tributions. Using real and synthetic data, the pansharpened mul-
tispectral images are compared with the images obtained by other
parsharpening methods and their quality is assessed both qualita-
tively and quantitatively.

1. INTRODUCTION

Nowadays most remote sensing systems include sensors able to
capture, simultaneously, several low resolution images of the same
area on different wavelengths, forming a multispectral image, along
with a high resolution panchromatic image. The main character-
istics of such remote sensing systems are the number of bands
of the multispectral image and the resolution of those bands and
the panchromatic image. For instance, the Landsat 7 satellite
(http://landsat.gsfc.nasa.gov/), equipped with the ETM+ sensor, al-
lows for the capture of a multispectral image with six bands (three
bands on the visible spectrum plus three bands on the infrared) with
a resolution of 30 meters per pixel, a thermal band with a resolution
of 60 meters per pixel and a panchromatic band (covering a large
zone on the visible spectrum and the near infrared), with a resolu-
tion of 15 meters per pixel.

The main advantage of the multispectral image is to allow for
a better land type and use recognition but, due to its lower resolu-
tion, information on the objects’ shape and texture may be lost. On
the other hand, the panchromatic image allows for a better recogni-
tion of the objects in the image and their textures but provides no
information about their spectral properties.

Throughout this paper the term multispectral image recon-
struction will refer to the joint processing of the multispectral and
panchromatic images in order to obtain a new multispectral image
that, ideally, will exhibit the spectral characteristics of the observed
multispectral image and the resolution and quality of the panchro-
matic image. The use of such an approach, also named pansharp-
ening, will allow us to obtain, in the case of Landsat 7 ETM+, a
multispectral image with a resolution of 15 meters per pixel.

A few approximations to multispectral image reconstruction
have been proposed in the literature. See, for instance, [1, 2, 3,
4, 5, 6]. Recently a few super-resolution based methods have also
been proposed. Eismann and Hardie [7] proposed a MAP approach
that makes use of a stochastic mixing model of the underlying spec-
tral scene content to achieve resolution enhancement beyond the
intensity component of the hyperspectral image. Akgun et. al.
[8] proposed a POCS based algorithm to reconstruct hyperspectral

images where the hyperspectral observations from different wave-
lengths are represented as weighted linear combinations of a small
number of basis image planes.

In this paper we follow the hierarchical Bayesian in providing a
solution to the super resolution reconstruction of multispectral im-
ages problem and include as a part of the innovation of the proposed
approach the utilization of spatially varying image models. Then,
by applying variational methods to approximate probability distri-
butions we estimate the unknown parameters, and the high resolu-
tion multispectral image.

The paper is organized as follows. In section 2 the Bayesian
modeling and inference for super resolution reconstruction of multi-
spectral images is presented. The required probability distributions
for the Bayesian modeling of the super resolution problem are for-
mulated in section 3. The Bayesian analysis and posterior probabil-
ity approximation to obtain the parameters and the super resolution
reconstructed image is performed in section 4. Experimental results
on a real Landsat 7 ETM+ image are described in section 5 and,
finally, section 6 concludes the paper.

2. BAYESIAN PROBLEM FORMULATION

Let us assume that y, the multispectral image we would observe
under ideal conditions with a high resolution sensor, has B bands
yb, b = 1, . . . ,B, that is,

y = [yt
1,y

t
2, . . . ,y

t
B]t ,

where each band is of size p = m×n pixels and t denotes the trans-
pose of a vector or matrix. Each band of this image is expressed
above as a column vector by lexicographically ordering the pixels
in the band.

In real applications, this high resolution image is not available.
Instead, we observe a low resolution multispectral image Y with B
bands Yb, b = 1, . . . ,B, that is,

Y = [Yt
1,Y

t
2, . . . ,Y

t
B]t ,

where each band is of size P = M×N pixels with M < m and N < n.
Each band of this image is also expressed as a column vector by
lexicographically ordering the pixels in the band.

The sensor also provides us with a panchromatic image x of
size p = m×n, obtained by spectrally averaging the unknown high
resolution images yb.

The objective of the high resolution multispectral image recon-
struction problem is to obtain an estimate of the unknown high reso-
lution multispectral image y given the panchromatic high resolution
observation x and the low resolution multispectral observation Y.
The Bayesian formulation of this problem requires the definition of
the joint distribution p(Ω,y,Y,x), where Ω denotes the set of hy-
perparameters needed to describe the required probability density
functions.
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Figure 1: Pixel and inverse variance notation.

For Ω, y, Y, and x the following joint distribution is defined
(we utilize in this paper the hierarchical Bayesian paradigm see, for
example, [9]).

p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y,x|y,Ω), (1)

and inference is based on p(Ω,y|Y,x).
The distribution p(Ω,y|Y,x) is calculated (approximated) in

this paper using variational distribution approximation (see chap-
ter II in [10] for an excellent introduction to variational methods
and their relationships to other inference approaches). Recent years
have seen a growing interest in the application of variational meth-
ods [11, 12] to inference problems. These methods attempt to
approximate posterior distributions with the use of the Kullback-
Leibler cross-entropy [13]. Applications of variational methods to
Bayesian inference problems include, for instance, graphical mod-
els and neural networks [11], independent component analysis [12],
and blind deconvolution problems [14, 15].

In the coming sections we address the modeling as well as the
inference steps in our Bayesian formulation of the super resolution
reconstruction of multispectral images.

3. HYPERPRIORS, PRIORS, AND OBSERVATION
MODELS USED IN SUPER RESOLUTION

MULTISPECTRAL IMAGE RECONSTRUCTION

In this paper we do not use the correlation between different high
resolution bands and concentrate on modeling the local variation at
each band. In the definition of the image model we use the notation
i1, i2, . . . , i8 to denote the eight pixels around pixel i (see Fig. 1).
Then following the approximation in [16] which extends Condi-
tional Auto-Regressions [17] to take into account local variability
we write

p(y|Ω) =
B

∏
b=1

p(yb|αb)

∝

B

∏
b=1

p

∏
i=1

4

∏
l=1

αb(i, il)1/8 exp
{
−1

2
αb(i, il) [yb(i)− yb(il)]

2
}

,

(2)

where αb(i, il) controls, for the b-band, the smoothness of the
restoration between pixels i and il and

αb = (αb(i, il) | i = 1, . . . , p, l = 1, . . . ,4).

We assume that Y and x, for a given y and a set of parameters
Ω, are independent and consequently write

p(Y,x|y,Ω) = p(Y|y,Ω)p(x|y,Ω) . (3)

Each band, Yb, is related to its corresponding high resolution
image by

Yb = DHyb +nb, ∀b = 1, · · · ,B, (4)

where H is a p× p blurring matrix and D is a P× p decimation
operator.

Given the degradation model for multispectral image super-
resolution described by Eq. (4) and assuming independence be-
tween the noise observed in the low resolution images, the distri-
bution of the observed Y given y and a set of parameters Ω is

p(Y|y,Ω) =
B

∏
b=1

p(Yb|yb,βb)

∝

B

∏
b=1

βb
P/2 exp

{
−1

2
βb ‖Yb −Hyb ‖2

}
. (5)

As already described, the panchromatic image x is obtained by
spectral averaging the unknown high resolution images yb. This
relation is modeled as

x =
B

∑
b=1

λbyb +v, (6)

where λb ≥ 0, b = 1,2, · · · ,B, are known quantities that can be ob-
tained, as we will see later, from the sensor spectral characteristics,
and v is the capture noise that is assumed to be Gaussian with zero
mean and variance γ−1. Note that, usually, x does not depend on all
the multispectral image bands but on a subset of them, i. e., some of
the λb’s are equal to zero. For example, for Landsat ETM+ images,
the panchromatic image only covers the region from the end of band
1 to the end of band 4 and the rest of the bands have no influence on
x.

Using the degradation model in Eq. (6), the distribution of the
panchromatic image x given y, and a set of parameters Ω is given
by

p(x|y,γ) ∝ γ
p/2 exp

{
−1

2
γ ‖ x−

B

∑
b=1

λbyb ‖2

}
. (7)

Although the estimation of the parameter vector (γ,β1, . . . ,βB)
can be easily incorporated in the estimation process to be described
next, we will assume here that these parameters have been estimated
in advance and concentrate on gaining insight into the distribution
of the prior parameters. The set of hyperparameters then becomes

Ω = (α1, . . . ,αB) . (8)

A large part of the Bayesian literature is devoted to finding hyper-
prior distributions p(Ω) for which p(Ω,y|x,Y) can be calculated
in a straightforward way or can be approximated. These are the
so called conjugate priors [18]. Conjugate priors have, as we will
see later, the intuitive feature of allowing one to begin with a cer-
tain functional form for the prior and end up with a posterior of
the same functional form, but with the parameters updated by the
sample information.

Taking the above considerations about conjugate priors into ac-
count, we will assume that each of the hyperparameters in Ω has as
hyperprior the gamma distribution, that is,

p(αb(i, il) | ao
b,c

o
b) ∝ [αb(i, il)]

ao
b−1 exp[−co

bαb(i, il)], (9)

where co
b > 0 and ao

b > 0 (note that the same hyperprior is assumed
for all the α’s in the same band). This gamma distribution has the
following mean and variance

E[αb(i, il)] =
ao

b
co

b
, var[αb(i, il)] =

ao
b

(co
b)

2 . (10)

We will then use the following distribution on the hyperparam-
eters

p(Ω) =
B

∏
b=1

p

∏
i=1

4

∏
l=1

p(αb(i, il) | ao
b,c

o
b), (11)

©2007 EURASIP 1498

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Finally, combining the first and second stage of the problem
modeling we have the global distribution

p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y|y,)p(x|y), (12)

where p(Ω), p(y|Ω), p(Y|y) and p(x|y) have been defined in
Eqs. (11), (2), (5), and (7), respectively.

Note that we have removed the dependency of p(Y|y) and
p(x|y) on Ω because, as we have already explained, we assume
that the variance of the different observation noises have been pre-
viously estimated.

4. BAYESIAN INFERENCE AND VARIATIONAL
APPROXIMATION OF THE POSTERIOR DISTRIBUTION

FOR SUPER RESOLUTION RECONSTRUCTION OF
MULTISPECTRAL IMAGES

For our selection of hyperparameters in the previous section, the set
of all unknowns is given by

(Ω,y) = (α1, . . . ,αB,y). (13)

As already known, the Bayesian paradigm dictates that infer-
ence on (Ω,y) should be based on

p(Ω,y|Y,x) =
p(Ω,y,Y,x)

p(Y,x)
, (14)

where p(Ω,y,Y,x) is given by Eq. (12).
Since p(Ω,y|Y,x) can not be found in closed form, we will

apply variational methods to approximate this distribution by the
distribution q(Ω,y).

The variational criterion used to find q(Ω,y) is the minimiza-
tion of the Kullback-Leibler divergence, given by [19, 13]

CKL(q(Ω,y) ‖ p(Ω,y|Y,x))

=
∫

Ω,y
q(Ω,y) log

(
q(Ω,y)

p(Ω,y|Y,x)

)
dΩdy

=
∫

Ω,y
q(Ω,y) log

(
q(Ω,y)

p(Ω,y,Y,x)

)
dΩdy+ const,

(15)

which is always non negative and equal to zero only when q(Ω,y) =
p(Ω,y|Y,x).

We choose to approximate the posterior distribution
p(Ω,y|Y,x) by the distribution

q(Ω,y) = q(Ω)qD(y), (16)

where q(Ω) denotes distribution Ω and qD(y) denotes a degenerate
distribution on y, that is,

qD(y) =
{

1 if y = y
0 otherwise , (17)

where y represents a known image.
Note that other distribution approximations are also possible.

However, as we will see later the one used here alleviates the prob-
lem of having to estimate an enormous amount of hyperparameters.

We now proceed to find the best of these distributions in the
divergence sense.

Let us assume that yk is the current estimate of the multispectral
image where qD(y) is degenerate. That is, the current estimation of
qD(y) is given by

qk
D(y) =

{
1 if y = yk

0 otherwise . (18)

Given qk
D(y), we can obtain an estimate of q(Ω) which reduces the

KL-divergence by solving

qk+1(Ω) = arg min
q(Ω)

CKL(q(Ω),qk
D(y) ‖ p(Ω,y|Y,x)). (19)

Differentiating the integral in the right hand side of Eq. (19)
with respect to q(Ω) and setting it to zero we have that qk+1(Ω)
satisfies

qk+1(Ω) ∝ p(Ω,yk,Y,x), (20)

which produces

qk+1(Ω) ∝

B

∏
b=1

p

∏
i=1

4

∏
l=1

αb(i, il)ao
b−1e−co

αb
αb(i,il)

αb(i, il)
1
8 e[− 1

2 αb(i,il)[yb(i)−yb(il)]
2] (21)

From Eq. (21) we have that

qk+1(Ω) =
B

∏
b=1

p

∏
i=1

4

∏
l=1

qk+1(αb(i, il)),

where

qk+1(αb(i, il)) = p
(

αb(i, il) | ao
b +

1
8
,

1
2
[yb(i)− yb(il)]2 + co

b

)
where the definition of the gamma distribution has been provided in
Eq. (9). These distributions have the following means

E[αb(i, il)]qk+1(Ω) =
ao

b + 1
8

co
b + 1

2 [yk
b(i)− yk

b(il)]
2

= α
k+1
b (i, il) (22)

Given now qk+1(Ω) we can obtain an estimate of yk+1

(the value where qk+1
D (y) is degenerate) which reduces the KL-

divergence by solving

yk+1 = argmin
y

{
−E[logp(Ω,y,Y,x)]qk+1(Ω)

}
= argmin

y

(
B

∑
b=1

βb ‖Yb −Hyb ‖2

+
B

∑
b=1

p

∑
i=1

4

∑
l=1

α
k+1
b (i, il) [yb(i)− yb(il)]

2

+ γ ‖ x−
B

∑
b=1

λbyb ‖2

)
.

The convergence of the parameters defining the distributions
qk+1(Ω) and qk+1

D (y) can be used as stopping criterion for the iter-
ative procedure that alternates between the estimation of both dis-
tributions.

Finally we note that Eq. (22) can be rewritten as

1
E[αb(i, il)]qk+1(Ω)

= µb
co

b
ao

b
+(1−µb)4[yk

b(i)− yk
b(il)]

2, (23)

where

µb =
ao

b

ao
b + 1

8
. (24)

The above equations indicate that µb can be understood as a
normalized confidence parameter taking values in the interval [0,1).
That is, when it is zero no confidence is placed on the given hyper-
parameters, while when it is asymptotically equal to one it fully
enforces the prior knowledge of the mean (no estimation of the hy-
perparameters is performed).
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(a) (b)

(c) (d)
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Figure 2: (a) Original HR color image; (b) Observed LR multispec-
tral image; (c) Panchromatic image. (d) Bicubic interpolation of (b);
(e) Reconstruction by the method in [20]; (f) Best reconstruction by
the proposed method.

5. EXPERIMENTAL RESULTS

The proposed super resolution reconstruction algorithm has been
tested on a synthetic color image and a set of Landsat ETM+ im-
ages.

In the first experiment, the color image in Fig. 2(a) was de-
graded using the model in Eq. (4) considering that each pixel (i, j)
of the low resolution image is obtained according to (for m = 2M
and n = 2N)

Yb(i, j) =
1
4 ∑

(u,v)∈Ei, j

yb(u,v)+nb(i, j), (25)

where Ei, j consists of the indices of the four high resolution pix-
els Ei, j = {(2i,2 j),(2i + 1,2 j),(2i,2 j + 1),(2i + 1,2 j + 1)}. and
nb(i, j) follows a Gaussian distribution with zero mean and vari-
ance equal to four, thus obtaining the observed multispectral low
resolution image depicted in Fig. 2(b). Note that the low resolution
image has been resized by zero-order hold to the size of the high
resolution image for displaying purposes. The panchromatic im-
age, depicted in Fig. 2(c) was obtained from the original HR color
image using the model in Eq. (6) with λb = 1/3, for b = 1,2,3, and
Gaussian noise with variance 6.25.

In order to evaluate the quality of the reconstructions we used
two different measures: the peak signal-to-noise ratio (PSNR)
which measures the similarity between the reconstructed and origi-
nal multispectral image bands, and the coefficient of correlation of
the high frequency components (COR) which measures the simi-
larity between each reconstructed multispectral image band and the
panchromatic image. The COR index takes values between 0 and
1, the higher the value the better. Bicubic interpolation of each low
resolution multispectral image band, the method presented in [20]
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Figure 3: PSNR evolution as a function of co
b and µb.

PSNR COR
band 1 2 3 1 2 3
Bicubic int. 14.7 14.7 14.7 0.55 0.56 0.56
method in [20] 15.0 15.0 15.0 0.61 0.62 0.62
proposed 18.9 19.2 19.1 0.98 0.99 0.99

Table 1: PSNR and COR values for the color image reconstructions.

and the proposed method were compared using these two objective
measures and visual inspection of the resulting images.

The bicubic interpolation of the multispectral low resolution
image (depicted in Fig. 2(d)) was used as initial reconstruction for
the method in [20]. The method in [20] provided us with the re-
construction in Fig. 2(e) and with an estimate of the model param-
eters. In order to run the proposed method we used the estimates
of βb, b = 1,2,3, and γ obtained by the method in [20], and to es-
timate the set of parameters αb(i, il) in Eq. (23) we used different
values for co

b ranging from 10−2 to 102 times the estimate of αb ob-
tained by the method in [20]. We also used different values for µb
in Eq.(24) ranging from 0 to 1. Figure 3 plots the obtained PSNR
values for the different combinations of co

b and µb. The best recon-
struction in terms of PSNR is depicted in Fig. 2(f). Table 1 shows
the PSNR and COR values for bicubic interpolation, the method in
[20], and the best reconstruction obtained by the proposed method.
From this table it is clear that the proposed method outperforms all
previous methods both in terms of both the PSNR and correlation
of the high frequency components metrics. A visual inspection of
the reconstructions makes clear that the proposed method provides
much higher resolution increase than bicubic interpolation and the
method in [20].

We also tested the method in real Landsat ETM+ images. Fig-
ure 4(a) depicts an 128× 128 pixels false RGB color region of in-
terest composed of bands 4, 3, and 2 of the Landsat ETM+ multi-
spectral image and, Fig. 4(b), its corresponding 256×256 panchro-
matic image. As before, the multispectral image has been resized by
zero-order hold to the size of the panchromatic image for displaying
purposes.

The contribution of each band to the panchromatic image, that
is, the values of λb, b = 1,2, . . . ,4, was obtained from the spectral
response of the ETM+ sensor producing the values displayed on
Table 2 (see [20] for details). Reconstructions using the method in
[20] and the proposed method are shown in Fig. 4(c) and 4(d), re-
spectively. The parameters for the proposed method were chosen
as described previously for the color image. We are assuming, for
this experiment, that the multispectral and panchromatic images has
been already registrated. Note, however, that if this were not the
case, the registation parameters could be easily included into the
definition of H in Eq. (5). From these results it is clear that the pro-
posed method successfully incorporates the high frequencies from
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λ1 λ2 λ3 λ4
0.0078 0.2420 0.2239 0.5263

Table 2: Values for λb, b = 1, . . . ,4.

(a) (b)

(c) (d)

Figure 4: (a) Observed low resolution multispectral image; (b)
Panchromatic image; (c) Reconstruction by the method in [20]; (d)
Reconstruction by the proposed method.

the panchromatic image while preserving the spectral properties of
the multispectral image.

6. CONCLUSIONS

In this paper the reconstruction of multispectral images has been
formulated from a superresolution point of view. A hierarchical
Bayesian framework has been presented to incorporate local prior
knowledge on the expected characteristics of the multispectral im-
ages, model the observation process of both panchromatic and low
resolution multispectral images, and also include information on the
unknown parameters in the model in the form of hyperprior distribu-
tions has been presented. The method has been tested experimen-
tally and it was shown to greatly outperform other methods both
objectively and subjectively.
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