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ABSTRACT
In this work, a wavelet-based anisotropic diffusion par-

tial differential equation (PDE) is developed. The new model
makes use of a multiscale structure tensor as an extension of
the single-scale structure tensor proposed by Di Zenzo [1].
The multiscale structure tensor allows for accumulating mul-
tiscale gradient information of local regions. Thus, averag-
ing properties are maintained while preserving edge struc-
ture. This structure tensor is used in an anisotropic diffusion
process of multispectral images, namely, in the Perona-Malik
model [2]. Therefore, a more efficient and accurate formula-
tion for edge-preserving diffusion is obtained.

1. INTRODUCTION

Since the formulation of anisotropic diffusion introduced
by Perona and Malik [2], the use of partial differential equa-
tion (PDE) in image processing has become a raising re-
search area. Some of these researches have been oriented
toward developing stable equations [3] [4] [5], others toward
extending and modifying anisotropic diffusion for fast im-
plementations and modifying the diffusion equations for spe-
cific applications [6].
All of these approaches model the image in a continuous
spatial domain so that it takes the advantages of effective
treatments from PDE’s theory and obtains high accuracy
and stability of the processing with the help of numerical
analysis. One of the most influential work in this aspect is
the anisotropic diffusion introduced by Perona and Malik in
1990 [2]. Although based on a directional diffusion that pre-
serves edges, the Perona and Malik model meets several seri-
ous practical and theoretical difficulties such as the sensitiv-
ity to noise and the existence of a local backward diffusion as
discussed later. The motivation of this work is to introduce
a new regularization in which the gradient of the image is
adjusted by the wavelet coefficients. Therefore, providinga
more efficient and accurate formulation for edge-preserving
diffusion.
The paper is organized as follows. In section 2 a review of
the multiscale edge representation by the wavelet transform
is presented. In section 3, a description of the Perona-Malik
formulation of the anisotropic diffusion is given. Section4
is a summary of the single-scale structure tensor of DiZenzo
and the extension of the perona-Malik diffusion equation to
the multivalued images. In section 5 the new wavelet-based
PDE is described. In section 6 some experimental results are
presented. Section 7 presents some concluding remarks.

This work was supported by the INTERREG III B PIMHAI project.

2. MULTISCALE EDGE REPRESENTATION

We employed the multiscale edge representation described
in [7] and [8]. In this approach,x and y−directional
wavelets are given by the partial derivatives of a sepa-
rable, nonorthogonal scaling functionθ(x,y) as follows:
(
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)
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/
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Whereψ l
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The symbol∗ indicates the convolution operation. The direc-
tion of the gradient vector at a point(x0,y0) indicates the di-
recion along which the imageI has the steepest slope. There-
fore, a pointx is regarded as an edge point at scalej if the
magnitude of the wavelet coefficient attains a local maximum
along the gradient direction.
This stipulates that the wavelet transform of an image
consists of the components of the gradient of the image,
smoothed by the dilated smoothing functionθ j .

3. ANISOTROPIC DIFFUSION: PERONA-MALIK
FORMULATION

Diffusion algorithms remove noise from an image by mod-
ifying the image via a PDE. For example, consider apply-
ing the heat equation given by∂ I (x,y, t)

/

∂ t = div(∇I), us-
ing the original noisy imageI(x,y,0) as the initial condition,
where∇I is the image gradient. Modifying the image us-
ing this isotropic diffusion is equivalent to filtering the image
with a gaussian filter. Perona and Malik [2] replaced the clas-
sical isotropic diffusion equation with

∂ I (x,y, t)
∂ t

= div[g(‖∇I‖)∇I ] (2)

Where‖∇I‖ is the gradient magnitude, andg(‖∇I‖) is an
edge stopping function satisfyingg(x) → 0 whenx → ∞ so
that the diffusion is "stopped" across edges.
However, as mentioned in the introduction, the Perona-Malik
model meets several serious practical and theoretical difficul-
ties. The first difficulty is that it is very sensitive to noise.
Assume an image carries strong noise. The Perona-Malik
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model will conserve the noise in the processing. Another
difficulty arises from the existence of the local backward dif-
fusion in the area where(c(‖∇I‖)∇I) < 0. There is no exis-
tent theory supports the uniqueness of the solutions of equa-
tion (2). Examples show that (2) is unstable in the sense that
very close images could produce divergent solutions [5].

4. STRUCTURE TENSOR OF DI ZENZO

Extending differential-based operations to color images is
hindered by the multi-channel nature of color images. The
derivatives in different channels can point in opposite direc-
tions, hence cancelation might occur by simple addition. The
solution to this problem is given by the structure tensor for
which opposing vectors reinforce each other.
In [1] Di Zenzo pointed out that the correct method to com-
bine the first order derivative structure is by using a local
tensor. Analysis of the shape of the tensor leads to an ori-
entation and a gradient norm estimate. For a multichannel
imageI =

(

I1, I2, ....., In
)T

the structure tensor is given by

M =

(

IT
x Ix IT

x Iy
IT
y Ix IT

y Iy

)

(3)

The multichanel structure tensor describes the 2D first order
differential structure at a certain point in the image.
The use of the Di Zenzo’s structure tensor had permitted the
extension of the Perona-Malik anisotropic diffusion for the
case of multivalued images. The extended model for an m-
valued image can be written as:











∂ Ii
∂ t = div(g(‖M‖)∇Ii)
Ii (x,y,0) = Ii0 (x,y) f or i = 1,2.....,m
∂ Ii
∂n

∣

∣

∣

∂Ω
= 0

(4)

WhereΩ is the image’s domain.

5. WAVELET BASED ANISOTROPIC DIFFUSION

The Perona-Malik model tries to regularize∇I to reduce
the influence of noise. The effectiveness of a regularization
depends on the type of noise on the image. For instance, if
the noise does not obey Gaussian distribution, then the model
does not provide a good regularization. The motivation of
this work is to make the regularization of∇I adjusted by the
coefficients of the wavelet transform defined in (1). Based on
the theory of the singularity detection by the wavelet trans-
form proposed by Mallat et al. in [7] a multiscale multistruc-
tural diffusion tensor can be constructed. For an m-valued
image, this structure tensor is defined at a scalej in terms of
wavelet coefficients by:
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(5)

WhereWk
n, j,i is the undecimated wavelet coefficient com-

puted at scalej and positionn for the image channeli.

The norm ofG j
w is defined in terms of its eigenvalues,

∣

∣

∣G j
w

∣

∣

∣ =
√

λ+ +λ−, and it describes the total local derivative energy.
Figure 1 shows the norms of the multistructure tensor of Di

Zenzo (Fig. 1(b)) and the norm of the multiscale multistruc-
ture tensor defined in (5) (Fig. 1(c)) of the noisy ’Lenna’
image.
It is clear that the multiscale structure tensor provides a bet-

(a) Noisy Lenna Image (b) Norm of the Di Zenzo tensor

(c) Norm of the multiscale structure tensor

Figure 1: Norms of the Di Zenzo structure tensor and the
multiscale structure tensor defined in (5)

ter characterization of the image edges. Recall that the noise
distribution is singular everywhere, which can be character-
ized by negative Lipschitz orders [7]. Letn(x,y) be a station-
ary, white noise random field of varianceσ2. Let Mψ,sn(x,y)
be the modulus of the wavelet transform ofn(x,y) at a scale
s (s= 2 j ), and letE(X) be the expected value of a random
variableX. The author of [7] proved that:

E
(

(

Mψ,sn(x,y)
)2

)

=
σ2
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∥

∥ψ1
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∥

2
+

∥
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∥

∥

2
)

s
(6)

Whereψ1 andψ2 are the wavelets defined in section 2. Thus,
we can discriminate the image singularity (which occurs at
edge) from the noise singularity by their wavelet transform
modulus across scales: as the scales increases, the wavelet
transform modulus of edge points increase while the modulus
created by noise decrease. It is that behavior of the wavelet
transform coefficients that pioneered the edge detection ca-
pability of the multiscale structure tensor.
The wavelet-based regularization is therefore defined by:
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That is, at each PDE scale, the multivalued structure tensor
is computed using equations (1) and (5). The multivalued
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structure tensor affords a good edge characterization despite
of the presence of noise. This edge characterization will, in
turn, provide a good orientation for the image gradient during
the regularization process. Therefore, a better edge preserv-
ing anisotropic diffusion is obtained.
It is to be noted that the multiscale structure tensor should
be computed at an optimized scale where the noise singular-
ity is well distinguished from edges singularity as explained
above.
The edge stopping functiong (also called diffusivity func-
tion) always ensures that region boundaries are less blurred
than flat regions. Common diffusivity functions are proposed
by Perona [2], German and Reynolds [13], Aubert et al. [14]
and Saint-Marc et al [15]. For example, the one proposed by
Perona and Malik is defined by [2]:

exp

(

−
(

∇I
k

)2
)

The k parameters in these functions, also called edge
threshold parameter, controls the shape of the diffusivity
function, balancing the degrees of inter-region smoothing
and edge enhancement in the diffusion process. Perona and
Malik proposed to compute the histogram and then letk
equals to 90% of the integral of the histogram. In our scheme,
thek parameter is computed according to the noise level.
It can be shown that:

σ2
√

λ+
j +λ−

j

≈ Nσ2
j (8)

with N the number of pixels in the image andσ2
j the noise

variance at scalej. σ2
j is given by:

σ2
j =

∥

∥ψ j
∥

∥

2 σ2 (9)

whereσ2 is the noise variance of the image, and
∥

∥ψ j
∥

∥

2
is

the norm of the wavelet function. Thek parameter is made
proportional toσ j :

k = c
√

Nσ j (10)

Wherec is a constant.

6. EXPERIMENTAL RESULTS

This section is devoted to comparing the wavelet-based
anisotropic diffusion scheme that is presented in this paper
with previous work on image restoration.
To achieve this, the noisy image shown in figure 2(b) is
processed by equation (7) as well as by the Perona-Malik
scheme. The noisy image is obtained by adding a white gaus-
sian noise to the image of figure 2(a) whose variance is equal
to 0.2.

In figures 3(a) and 3(b), the results obtained by filtering
the noisy images (fig. 2(b)) by the Perona-Malik approach
(equation 2) and the wavelet-based regularization (equation
7) are shown respectively.
If both, figure 3(a) and figure 3(b) are compared, one can ob-

serve a better denoising performance, less blurring and better
edge structures preservation.
We have also processed the noisy image of figure 2(b) with
the edge enhancement diffusion [9], the coherence enhance-
ment diffusion [10], the Tikhonov diffusion [12], the color

(a) (b)

Figure 2: Original image and the noisy image
(SNR=27.21dB) obtained by adding a white gaussian
noise

(a) (b)

Figure 3: Filtered image obtained by: (a) The Perona-
Malik approach (SNR=31.59dB), (b) the wavelet-based ap-
proach(SNR=33.61dB)

total variation schemes [11] and the undecimated wavelet co-
efficients hard thresholding and soft thresholding. The re-
sults are shown in figure 4. The hard and soft thresholding
schemes work in three steps: (1) compute anM-level un-
decimated wavelet transform. (2) Modify the detail coeffi-
cients by hard and soft thresholding and (3) compute the in-
verse wavelet transform. Both methods set the coefficients
below the thresholdT to zero. Soft thresholding addition-
ally reduces the amplitude of the other coefficients byT, a
procedure called shrinkage. The problem with wavelet coef-
ficient thresholding is that setting coefficients to zero leads
to smooth image (Fig. 4(f)) and destroy details which cause
blur and artifacts (Fig. 4(e)).
Compared to all the other listed schemes, the wavelet-based
anisotropic diffusion showed better details preserving, less
blurring and better image restoration.
The quality of the filtered images is also evaluated us-
ing CIEDE2000 color difference equations [16] [17]. The
CIEDE2000 evolved from traditional colorimetry and color
difference calculations is tested using several psychophysi-
cal datasets. The color differences between the original im-
age (Fig. 2(a)) and each of the filtered images obtained using
different denoising schemes are shown in figure 5. The PDE
wavelet based approach showed the lowest color difference
and therefore it approaches the original image more than the
other denoising techniques. Therefore, it respects the colori-
metric characteristics of the original image.
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Figure 5: CIEDE2000 color difference between the original image and the filtered image obtained by: (a) wavelet based
approach, (b) Wavelet hard thresholding, (c) Perona and Malik approach (d)Color Total Variation

7. CONCLUSION

In this paper, a wavelet-based anisotropic diffusion is de-
scribed. It uses a multiscale structure tensor that is computed
from the wavelet coefficients of the image being processed.
Based on the theory of the singularity detection using the
wavelet transform [7], the multiscale structure tensor pro-
vides a better edge characterization than the structure tensor
of Di Zenzo. The use of the multiscale multistructure tensor
in the anisotropic diffusion affords a better orientation of the
gradient toward the maximal direction of intensity variation
in the diffusion process in spite of the presence of noise. Asa
result, a better edge preserving and less blurring are obtained
in the processed image. The proposed scheme is compared
with other anisotropic diffusion schemes proposed in early
work and with the wavelet thresholding techniques.
A future perspective could be to introduce an optimized
scheme in which the scale of the wavelet transform used
to compute the multiscale structure tensor is automatically
computed in accordance with the noise level. Another per-
spective could be to study the efficiency of the proposed
approach in denoising images contaminated with impulsive
noise.
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