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ABSTRACT
The Thermical InfraRed (TIR) channel contains wave lengths
sensitive to the emission of heat. The forest fires can be char-
acterized by intensity peaks on TIR images. We present a
fully automatic method of forest fire detection from TIR satel-
lite images based on the random field theory. First, prepro-
cessing is used to model the image as a realization of a Gaus-
sian field which presents interesting properties. The fire ar-
eas which are supposed to be a minority are considered as
anomalies of that field. We present a statistical analysis of
Gaussian field to determine a degree of belonging of a clus-
ter to the image background (i.e. a realization of a Gaussian
field). We then extend this application to the estimation of the
fire propagation direction.

1. INTRODUCTION

The forest fires cause a lot of damage and participate to the
deterioration of the Earth ecosystem, especially to the global
warming. One of the main issues is to quickly locate them
in an automatic way. With the recent progress in the spa-
tial domain, this detection problem can nowadays be tackled
through satellite images.
In this domain, various methods have been proposed. Most
of them are based on radiometric analysis from Thermical
InfraRed (TIR) images as the work of Flannigan and Vonder
Haar [3]. Such algorithms allow to estimate the ground tem-
perature and efficiently detect fires using thresholding tech-
niques. Hybrid approaches have also been developed such
as [7] where TIR data are coupled with varied kinds of in-
formation. Other works such as [6] try to detect the forest
fires through the emitted smokes by using learning methods.
However, most of these methods need either training sets or
a priori knowledge concerning the used sensors or the ob-
served areas.
We present a new method which does not use this kind of
information. The proposed approach allows to automatically
detect the forest fires from TIR satellite images. TIR chan-
nel contains wave lengths sensitive to the emission of heat.
It means that forest fires can be characterized by intensity
peaks on this kind of images. However, all intensity peaks
of a TIR image are not necessary forest fires. The main dif-
ficulty, as we can see on Figure 1, consists in making the
distinction between peaks due to fire and other peaks of the
image background which can correspond to industrial activ-
ities for example. An anomaly detection method is proposed
to achieve this distinction. Such an approach is particularly
efficient to extract image irregularities, as it can be seen in
[2].
The proposed method is especially adapted to the extraction
of anomalies specified by intensity peaks in remote sens-

ing data. The idea consists in modeling the image as a re-
alization of a Gaussian field and determining a degree of
belonging of the peaks to the field with respect to both ra-
diometric and spatial characteristics. Such a principle has
been used in functional MRI by Worsley, Friston and Poline.
The proposed approach is based on their works, especially
on [4, 9, 10].

Figure 1: Height-map of a piece of TIR image

First, definitions and interesting properties concerning the
Gaussian fields are mentioned. Then, a preprocessing is set
up in order to consider the image as a realization of a Gaus-
sian field. A statistical analysis allowing to detect the forest
fires is presented in a third part. We then propose an exten-
sion to the estimation of the fire propagation direction. Fi-
nally, results are shown.
The proposed method is tested on TIR satellite images
(BIRD satellite - 300 meter resolution) representing Portu-
gal in May 2003.

2. GAUSSIAN FIELDS

In this section, definitions and properties related to the Gaus-
sian field theory are presented. More details are available in
[1] and [5].

Definition 1 Let (Ω,F ,P) be a complete probability space
and T ⊂R

N a topological space. A N-dimensional real val-
ued random field is a measurable mapping X : Ω → R

T .
X is homogeneous if ∀τ , t1, ..., tk ∈ R

N , the vector
(X(t1), ...,X(tk)) follows the same distribution that the vector
(X(t1 + τ), ...,X(tk + τ)).

The collection of measures Ft1,...,tn defined by Ft1,...,tn(B) =
P((X(t1), ...,X(tn)) ∈ B) where B ∈

� n (
�
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R) is called the family of the Fd (finite dimensional) distri-
butions.

Definition 2 A random field is Gaussian if its Fd distribu-
tions are Gaussian vectors.

Definition 3 Let F(t) : R
N → R be a function. ∀u ∈ R and

S ⊂ R
N , the excursion set of F in S over the threshold u is

defined by :

Au(F,S) = {t ∈ S : F(t) ≥ u} (1)

In imagery, Au represents the set of clusters of an image F at
the threshold u (see Figure 2). Adler [1] proposes an estima-

Figure 2: A realization of a 2-dimensional random field (left)
associated with 2 excursion sets at different thresholds (right)

tion of the number mu of clusters in the excursion set Au. For
a 2-dimensional homogeneous Gaussian field (centered and
reduced), the expectation of mu is given by:

E[mu] = S(2π)
3
2 |Λ|

1
2 exp−

u2

2
(2)

where S represent the volume of the field (i.e the number of
pixels in the image) and Λ, the covariance matrix of the field
derivatives. This matrix allows to characterize the smooth-
ness of the field.
This equation is a key point in the proposed method. How-
ever, in order to be able to use it in the imagery domain, the
image must verify some hypothesis. In particular, the image
must be modeled as a realization of a homogeneous Gaus-
sian field. To do so, we approximate a Gaussian field by
considering its Fd distributions as Gaussian. It represents
an acceptable approximation since the covariance matrix Λ
has a minor importance in the algorithm that we propose. In
other words, the pixel distribution of the image must, by ap-
proximation, be Gaussian (i.e. the image histogram must be
Gaussian).

3. PREPROCESSING

Preprocessing must be applied on the image in order to sat-
isfy equation (2). The image must be modeled as a realiza-
tion of an homogeneous Gaussian field, which imposes that

at least the pixel distribution must be well approximated by
a Gaussian law.
To do so, the first step consists in separating the various im-
age modes (ground, clouds, sea,...) and in keeping the mode
which have the highest intensity mean (i.e. the ”ground”
mode which is the closest to pixels representing forest fires).
An iterated ”2-means” algorithm, detailed in [5], is used to
extract the mode of interest. The obtained sub-image has a
unimodal distribution which includes potential forest fires.
The forest fires are supposed to be rare events which means
that their surface is negligible with respect to the surface as-
sociated with the considered mode. This hypothesis, which
is necessary to obtain a correct separation of the modes, is
acceptable since the complete TIR images represent vast ar-
eas of countries such as Portugal.
Then, the obtained class is regularized by using mathematical
morphology. This regularization allows to delete the isolated
elements of the class and ”to fill in the holes”.
Finally, the last stage consists in normalizing the resulting
distribution by a histogram specification. The obtained sub-
image has a pixel distribution which is Gaussian. So, This
sub-image can be considered, by approximation, as a real-
ization of an homogeneous Gaussian field.
These three stages are illustrated in Figure 3 where both the
histogram of the image and a piece of the image are shown
for each preprocessing steps.

Figure 3: Preprocessing steps - (a): initial histogram of the
complete image (top) associated with a piece of the image
(bottom) - (b): extraction of the mode of interest - (c): regu-
larization of the extracted mode (d): histogram specification
by a Gaussian distribution

4. STATISTICAL ANALYSIS

The forest fires correspond to intensity peaks in the sub-
image obtained in the previous section. The idea consists
in considering this sub-image as a background (which is rep-
resented by a realization of a Gaussian field) where some
anomalies (i.e. intensity peaks which represent forest fires)
can exist. In this context, results concerning the Gaussian
field theory, especially the equation (2), can allow to esti-
mate whether a cluster belongs to the realization of a Gaus-
sian field (i.e. the background). To do so, both radiometric
and spatial information related to the cluster are used to de-
fine probabilities of belonging.©2007 EURASIP 1448



4.1 Radiometric information

The belonging of a cluster to the background can be esti-
mated in function of the maximal intensity of this cluster. Let
us consider Cx0

u , a cluster at the threshold u having a maximal
intensity x0 (see Figure 4 - (left)). In the following, a cluster
established at the threshold u is called a u-cluster. The prob-
ability that Cx0

u belongs to the realization of a Gaussian field
(noted B as background) is given through the equation (2)
by the expectation of the number of x0-clusters to the expec-
tation of the number of u-clusters ratio:

P(Cx0
u ∈ B) =

E[mx0 ]

E[mu]
=

xo

u
exp

u2 − x2
0

2
(3)

This probability is noted PH . The behavior of PH in function
of u is particularly interesting: it has an unique minima which
allows to fix a reference threshold u0. In the following, this
threshold allows to extract all the clusters which correspond
to potential forest fires. More details about the computation
of u0 are available in [5].

4.2 Spatial information

The spatial characteristics of a cluster and more precisely its
surface can also allow to estimate whether the cluster belongs
to the background.
Let Nu be the number of pixels with an intensity superior to
u, mu be the number of u-clusters , and nu be the surface (i.e.
the number of pixels) of a u-cluster. Nosko [8] has estab-
lished that nu follows an exponential distribution. We aim
at estimating the parameter of this exponential distribution,
i.e. the inverse of the expectation of nu. These variables are
linked by the following expression [4]:

E[nu] =
E[Nu]

E[mu]
(4)

The pixel distribution is Gaussian, so the expectation of Nu
is given by:

E[Nu] = S
∫ ∞

u
(2π)−

1
2 e−

x2
2 dx = SΦ(−u) (5)

The equation (2) allows to estimate the expectation of mu.
Then, the expectation of nu can be expressed by the following
equation:

E[nu] =
E[Nu]

E[mu]
=

Φ(−u)

(2π)
3
2 |Λ| 1

2 exp− u2

2

(6)

Let us consider Cn0
u , a u-cluster having a surface n0 (see Fig-

ure 4 - (left)). The probability that Cn0
u belongs to the back-

ground corresponds to the probability that nu is superior to
n0:

P(Cn0
u ∈B) = P(nu ≥ n0) = e−

n0
E[nu] = e

(2π)
3
2 |Λ|

1
2 n0exp− u2

2
Φ(−u) (7)

This probability is noted PS. In practice, Λ is computed using
the empirical estimators of the variances and co-variances of
the field derivatives.

Figure 4: Left: Scheme of a u-cluster having a maximal in-
tensity x0 and a surface n0 (profile and top views of the inten-
sity peak) - Right: Family of sub-clusters and sup-clusters
related to the threshold family U

4.3 Algorithm
The probabilities PH and PS allow to estimate the belonging
of a cluster to the background using two different characteris-
tics of this cluster (i.e. its maximal intensity and its surface).
We aim at defining a decision law taking into account both
probabilities.
This decision law consists in considering the cluster as for-
eigner to the background if:

min(PH ,PS) < α (8)

where α is the limit probability, i.e. a confidence coefficient
on the result which acts as a ”P-value”. In practice, α is close
to 10−2. This decision law mainly relies on the probability
PH (i.e. on the radiometric characteristic of the cluster). The
probability PS is tested only if the test on PH is rejected.
The decision law allows to locally analyze a cluster. We
aim at defining a global algorithm dealing with the complete
image. First, we extract all the clusters at the threshold u0
(defined in section 4.1) which correspond to potential for-
est fires. Then, each detected cluster is extended to a fam-
ily of sub-clusters with respect to the family of thresholds
U = (u−k, ...,u0, ...,uk). This extension allows to have a bet-
ter precision concerning the location of forest fires. In prac-
tice, we take k = 2 (see Figure 4 - (right)). Finally, the de-
cision law is applied to all these clusters. This algorithm is
summed-up as follows:

Algorithm 1 .

1. Fix the limit probability α ,
2. Extract the set of u0-clusters,
3. For each detected cluster,

- Establish the family of clusters w.r.t. the threshold set
U,

- For each element of this family, compute PS and PH ,
4. Keep the cluster accepted by the decision law (equation

(8)).

5. ESTIMATION OF THE FIRE PROPAGATION
DIRECTION

The detected areas can provide additional information by
studying the topography of their intensity peaks. Figure
5 represents the typical topography of an intensity peak©2007 EURASIP 1449



corresponding to a forest fire. This peak is composed of
two parts. The first one represents the pixels of very high
intensity (right side) which present high discontinuities with
the neighboring pixels: it corresponds to the fire fronts. The
second part (left side) represents lower intensity pixels which
refers to the burned area. By considering the alignment
of these two areas, the fire propagation direction can be
estimated. It provides interesting information related to the
evolution of the fires, which can be useful for firebrigades
for instance.
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Figure 5: Typical topography of an intensity peak corre-
sponding to a forest fire

In order to estimate the fire propagation direction, we pro-
pose a very simple but efficient process which consists in
comparing the intensity weighted center to the spatial center
of the cluster. Let C be the spatial center of a cluster and M,
its intensity weighted center (i.e. M = ∑s s×xs

∑s xs
where the s and

xs are respectively the pixels and the pixel intensities of the
cluster). The fire propagation direction θ̂ is estimated by the
following expression:

θ̂ = arg(
−→
CM) (9)

where arg is the argument of a 2D-vector. The value of the
modulus of

−→
CM can be seen as a confidence coefficient on

the estimated orientation. Figure 7 shows results obtained
on different clusters. We remark that neighboring clusters
have similar orientations. It can be explained by the local
influence of the wind in the propagation of the forest fires.

6. RESULTS

The proposed approach has been tested on TIR satellite
images (BIRD satellite - 300 meter resolution - 1000×4000
pixels) representing Portugal acquired at various dates of
May 2003.
Figure 8 shows a result on a piece of image associated
with the ground truth. On the ground truth (which has a
lower quality), the white clusters (corresponding to forest
fires) have been voluntarily enlarged in order to make
a better distinction. 16 forest fires are present on the
ground truth. We detect 15 of the 16 forest fires with a
confidence coefficient α = 0.05. One false alarm is located.
This result is convincing compared to results obtained by [3].

Figure 6: (top): Detection rate (red) and false alarm rate
(blue) vs the confidence coefficient α - (bottom): the corre-
sponding ROC curve

Figure 7: Various clusters detected as forest fires (red to yel-
low : intensity value) associated with the estimation of their
propagation direction (black arrow)

Generally speaking, Figure 6 presents the detection rate and
false alarm rate (in term of number of clusters) in function
of the confidence coefficient. This figure also shows the
ROC (Receiver-Operator Characteristics) curve. The optimal
performances are obtained for a confidence coefficient con-
tained between 0.05 and 0.01. For instance, α = 0.01 allows
to detect 85% of the forest fires with 15% of false alarms.©2007 EURASIP 1450



Figure 8: (left): Extract of the result obtained on a TIR image (BIRD c©DLR), white clusters represent the detected forest
fires - (right): ground truth provided by Alcatel Alenia Space

However, the choice of α mainly depends on the applica-
tion. For example, firemen will prefer a low confidence co-
efficient (i.e. detecting as many forest fires as possible even
if many false alarms are located).
The computing time is acceptable: two minutes are neces-
sary to detect the forest fires using a 2Ghz processor on a
1000×4000 image (i.e. an area corresponding to the surface
of Portugal).

7. CONCLUSION

The proposed method allows to automatically extract the for-
est fires from TIR satellite images. The results only depend
on α which acts as a confidence coefficient. Both detection
rate and false alarm rate provide convincing values. Interest-
ing information, related to the evolution of the fires, can also
be obtained through the estimation of fire propagation direc-
tion.
However, the radiometric and spatial information, which al-
low to define the decision law, are set up independently. It
could be interesting to introduce the probability P(Cx0,n0

u ∈
B) (i.e. the probability that a u-cluster having both a maxi-
mal intensity x0 and a surface n0 belongs to the background)
in the decision law in order to get a more robust method. In
the future, we should work on this point.
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