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ABSTRACT 
In this paper we develop a new approach to ECG analysis, 
combining Pitch Synchronous Wavelet Transform (PSWT) 
and Hidden Semi-Markov Model (HSMM) for tracking the 
typical ECG cycle. 
The combination of these two techniques was examined in a 
way that the PSWT of an ECG signal was an input for the 
HSMM. This approach was tested and evaluated on the 
manually annotated QT database.  Experimental results 
show the accuracy of the proposed technique for all 
corrupted ECG tested reaching a sensitivity Se=99,95% for 
QRS detection and Se=97,79% for T detection. 

1.  INTRODUCTION 

The ElectroCardioGram (ECG) is an electrical activity 
recording of the hearth. The ECG is widely used for 
diagnosing many cardiac diseases. Most of the clinically 
useful information from the ECG is found in the amplitude 
and intervals defined by its characteristic points. These 
characteristic points are the P, QRS and T waves. 

Much research has been done in the past on automatic 
ECG analysis. Two main approaches to ECG analysis can be 
distinguished: QRS detection algorithms and ECG 
delineation algorithms. QRS detection focuses on the 
detection of the peak of the QRS wave. A wide diversity of 
algorithms has been proposed in literature [1]. The QRS 
complex detection is necessary to determine the heart rate, 
which is essential for modern pacemakers. 

In this paper, we focus on a new technique for ECG 
delineation, namely the Pitch Synchronous Wavelet 
Transform (PSWT) with Hidden Semi Markov Models 
(HSMM). 

 The Pitch Synchronous Wavelet Transform (PSWT) is 
based on a modelling concept, which is able to capture 
period to period fluctuation of the signal by means of basis 
elements that are comb-like in the frequency domain. This 
technique relies primarily on the positions of high peaks 
corresponding to the R wave of the ECG. The principle 
consists in estimating the periodicity (pitch period) with the 
autocorrelation function and dividing the original signal into 
pseudo-periodic segments using the time points obtained 
from the considered pitch detector algorithm. This 
segmentation leads to the pitch synchronous representation. 
By applying the wavelet transform to this representation and 
synthesis only the approximation component we can obtain 

the dominating pitched signal's behaviour, so the ECG 
estimation [2]. 

Hidden Markov Models (HMM) allow us to characterize 
the occurrences of ECG patterns (P, QRS,T) waves with a 
probability density function, and still preserve the cyclic 
structural properties of the ECG by its underlying Markov 
chain. In [3] a thorough overview of Hidden Markov Models 
is given and in [4] the theory of Hidden Markov Models is 
applied to ECG analysis. 

The paper is organized as follows: in section 2, Pitch 
Synchronous Wavelet Transform (PSWT) is presented, in 
section 3 we describe the Hidden Semi Markov Model 
(HSMM) with the combination of the PSWT. Results and 
discussion were given in section 4. Finally, section 5 
concludes this work.  

2.     PITCH SYNCHRONOUS WAVELET 
TRANSFORM 

This section considers applying the wavelet transform in a 
pitch-synchronous fashion as originally proposed in [2],[5]. 
The pitch-synchronous wavelet transform (PSWT) is 
developed as an extension of the wavelet transform that is 
suitable for pseudo periodic signals like speech signals; 
electroencephalogram (EEG) signals; seismic signals and so 
more. 

Electrocardiogram (ECG) signals, i.e. heartbeat signals, 
exhibit pseudo-periodic behaviour. Nearby pulses are very 
similar in shape, but of course various evolutionary changes 
in the behaviour are medically significant [6]. 

Pitch synchronous schemes have often been used to 
describe speech and musical sounds. These differ from 
standard block-based approaches in that they do not analyse a 
fixed amount of samples but a varying number that depends 
on the pitch of the signal. This idea was combined with the 
theory of wavelets by G. Evangelista in [2].  

Pitch synchronous wavelet transform is a periodic and 
pseudo periodic signals decomposition approach. It is based 
on a pitch synchronous technique which leads to convert the 
signal into a whole of vectors having variable length and to 
apply thereafter to the sequence obtained a traditional 
wavelet transform. This shows its capacity on one hand to 
analyze according to a periodic approach and on several 
scales the signals with periodic behaviour and on the other 
hand to take account of signal variabilities period per period 
[5],[6].   
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Wavelet analysis achieves a good balance between time 
and frequency resolution across a number of bands by 
decomposing the ECG signal into elementary functions at 
different scales, well localized in both domains. This 
approach characterizes the local regularities of signals, 
pivotal to distinguishing ECG waves from serious noise; 
artifacts and baseline drift [7]. QRS complex is the most 
prominent wave in an ECG signal; this is why detection of 
QRS complex is the very first job to be done. Throughout the 
whole data if we can locate the positions of the QRS 
complexes, then detection of other waves such as P-wave can 
be done [9]. 

The wavelet transform represents the signal in a scale-
time space, where each scale can be seen as the result of a 
pass band filtering. The frequency bands depend on the scale 
and also on the type of the chosen wavelet function. From the 
mother wavelet 2 ( )Lψ ∈ with zero mean, the class of 
wavelets is then [8]: 

*1( ) ( )a
tt

aa
ψ ψ −

=                      (1) 

Where ψa(t) is a wavelet in the scale a and ψ* represents the 
wavelet complex conjugate. Thus, the wavelet transform is 
given by: 

*1( , ) * ( ) ( ) ( )a
tW x t a x t x t d

aa
τψ ψ τ

+∞

−∞

−
= = ∫      (2) 

This equation shows that the wavelet transform is the 
convolution between the signal and the wavelet function at 
scale a. Moreover, it can also be viewed as the correlation 
computation between the wavelet function and the ECG 
signal. 

A pseudo-periodic signal x[n] is first converted into a 
sequence [ ] { [ ]}qv k v k= of variable length vector [ ]qv k , each 
containing the sample of one period signal. The 
indexes* 0, ..., [ ] 1q p k= − and k are respectively the inter-
period and the period count index and p[k] is a sequence of 
integer local pitch periods extracted from x[n]. Based on this 
representation the sequences of components are, then, 
analysed by means of an array of wavelet transform. 

Given a set of decomposition levels 1, 2, ...,l L= , the 
pitch synchronous wavelet expansion of the signal x[n] is 
defined by the following sum: 

1
[ ] [ ] [ ]

L

l L
l

x n w n r n
=

= +∑                      (3) 

Where the scaling residue (estimation) rL[n] represents 
the average behaviour of x[n] while the partial (details) wl[n] 
represents the fluctuations at scale 2l local periods. In the 
transform domain the scaling residue and the partial are 
represented by the expressions: 

, , , ,
,

[ ] [ ]L L m q L m q
m q

r n nσ ϑ= ∑                      (4) 

, , , ,
,

[ ] [ ]l l m q l m q
m q

w n S nξ= ∑                      (5) 

Where , , [ ]l m q nξ , , , [ ]L m q nϑ  (m,q integers adapted to the 

periodicity of the signal x[n]), , ,L m qσ and , ,l m qS represent a 
finite scale pitch synchronous wavelet, L level scaling 
sequences and the expansion coefficients, respectively [10].  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – One period (cycle) estimation by PSWT for different 
signals taken from QT database   
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We have chosen those signals from QT database because 
they show many kinds of pathological ECG signals (noise, 
baseline drift, ambiguous waves, Artefacts, etc). 
We show in figure 1 the one period (cycle) estimation by 
PSWT for different types of ECG signals taken from QT 
database: the first one from healthy patient (Signal 
sel16539.dat), the second (Signal sel114.dat) from a patient 
how have high T waves, larger than the R peaks and 
corrupted by noise, the third (Signal 121.dat) from a patient 
having baseline drift and the fourth (Signal 217.dat) from a 
patient showing ambiguous waves.  

3. HSMM FOR ECG ANALYSIS 

We developed a HSMM to analyse ECG signals. The 
developed HSMM has the same topology as the normal 
HMM without the self transitions and is similar to the 
HSMM presented in [11]. It consists of five states, the P, 
QRS and T states. The b1 and b2 states model the baseline of 
the ECG between these peaks, as shown in figure 2. No 
baseline segment is modelled between the QRS complex 
and the T wave. This is because in the manually annotated 
databases used for evaluation, the onset of the T wave is not 
annotated. This makes extracting specific information from 
this part of the ECG complicated.  

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 

Figure 2 – HSMM topology model designed to ECG delineation 

 
3.1. HSMM Theory 
A Hidden Markov model is a system defined to be in one of 
N states, S1, S2, ..., SN, at any discrete time step, t = 1, 2, ..., 
T. At each discrete time step the model switches from its 
current state to a different (or possibly the same) state, 
according to a certain state transition probability. 
In a first order Markov model the probability of being in 
state j at time t+1 is only dependent on the state at time t. We 
denote the actual state the system is in at time t as qt. The 
state transition probabilities are then: 

1( | )ij t j t ia P q S q S−= = =                    (6) 
In a conventional HMM the probability to stay in state i, 
regardless of the observations made, for t time steps and 
then leaving it’s: 

1
1 1( , ..., , ) ( ) (1 )t

t t ii ijP q t i q i a a−
− = ≠ = −          (7) 

This probability is the geometric probability density 
function (pdf) with respect to t.  
In most applications this pdf is not adequate for the events 
durations in the signal at hand, therefore it is desirable to 
model the time spent in a state more accurately. 
In the human ECG, the T-peak normally has the longest 
duration. Therefore, it is harder to model it properly with a 
standard HMM; the probabilities of staying in the same state 
(the T-state) during the whole span of the T-wave become 
very low. The Hidden Semi-Markov Model (HSMM) is 
better equipped to model this. 
In the HSMM the self-transitions of the states are set to zero, 
a probability density function pi(d) is modelled for each state 
i to govern the time probability d spent in each state. This 
differentiation is best understood if we look at the generative 
aspect of the HMM and the HSMM [11]. 

In the HSMM there is an extra step to take before the 
state transition step, in order to model the time spent in a 
state before going to the next state: 

• An initial state q1 = Si is chosen according to the 
initial state distribution πi. 

• A state duration, d, is chosen according to pi(d). 
• Observations Ot,…, Ot+d are generated according to 

the observation probability bi(Ot). 
• The next state qt+d+1 = Sj is chosen according to the 

state-transition matrix { }ijA a= 1 ,i j N≤ ≤ .* 

• Steps 2-4 are repeated until t = T. 
 

3.2. Segment Modelling 
In the HSMM a segment is the sequence of observations 

Ot,…, Ot+d, observed while remaining in a single state i. The 
probability of such a sequence is calculated as: 

( , ..., ) ( )
t d

t t d i s
s t

P O O b O
+

+
=

= ∏                      (8) 

Like in the standard HMM, each state has a pdf and the 
probability of an observations sequence is calculated as if the 
observations are independent and identically distributed. In 
ECG analysis, when we would like to model, for instance, a 
T wave, the samples taken from the T wave are not 
independent of each other and are not all distributed 
according to the same pdf. In order to overcome this 
shortcoming of the HMM and HSMM, it has been proposed 
to model a segment as a whole and not as individual samples. 
The probability P(Ot, . . . ,Ot+d|qt = Si) is calculated by a 
specific segment model. In [12] a number of different 
segment models are presented. These segment models give a 
different approach to model the probability P(Ot,…,Ot+d), but 
the segment model is not essentially different from the 
HSMM. 
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3.3. PSWT as input for the HSMM  
The ECG PSWT coefficients can be employed as an input to 
a Markov Model as individual samples (the normal HMM) 
or as a segment of samples (the HSMM or Segmental 
Markov Model). In the sample based model, a state 
transition is made at each time step, and the occurrence 
probability of a given state is calculated from one 
observation Ot [that represents the wavelet coefficients from 
one time-sample, Wx(t,a)].  
In the segment based model, a state transition is made only 
after a certain number of time steps, d, and the probability 
for a state is calculated from multiple observations Ot…Ot+d 
[that represent multiple pitch synchronous wavelet 
coefficients, Wx(t… t + d, a)]. 
In the HSMM, the probability of the segment observations 
P(Ot,…,Ot+d), is calculated as the product of the individual 
observations that make up the segment, as if they where 
independent identically distributed observations. 

4.  RESULTS AND DISCUSSION 

In order to evaluate our performance method for ECG 
delineation by PSWT as input to HSMM, we use a standard 
database: QT database (QTDB) [13], which is freely 
available from the Physionet website. This is a manually 
annotated database, consisting of 105 records, two leads 
each. The records contain both automatic and manual 
annotations. The automatic annotations are available for the 
whole signal; the manual annotations are made for 30 to 100 
beats for each record. In the tests performed, only the 
manual annotations are used as a reference. Not all records 
are used in the evaluation, some records have no T-peak 
annotation or normal beat annotations, these records have 
been excluded. The record names excluded from the test set 
are: sel232, sel35 and sel37. 
To asses the detection performance of the different waves 
we calculated the sensitivity Se and the positive predictivity 
P+ of several events.  

Se=
TP

TP FN+
 &  P+=

TP

TP FP+
                     (9) 

Where,  
 TP is the number of True Positive detections, a true 

positive is recorded when at a certain point the 
cardiologist annotates a wave and the method also 
detects a wave in a certain annotation neighbourhood. 

 FN is the number of False Negative detections, a false 
negative is recorded when the cardiologist annotates a 
wave, but that wave is not detected by the detection 
method.  

 FP is the number of False Positive detections, a false 
positive is recorded when the method detects a wave at 
a certain point, but the cardiologist did not annotate a 
wave there. The false positive calculation is a problem 
for the QTDB, as noted in [14]. When there is no 
annotation, we do not know for certain whether the 
cardiologist considered that no wave was present or that 
the wave could not be annotated confidently because of 
noise or other causes.  

In the QTDB, when a QRS-peak is annotated, the rest of the 
beat is also annotated (at least the QRSon and QRSoff and the 
T-peak and T-end). Therefore, the P+ can only be calculated 
for other events then the QRS-peak. In an annotated beat, 
each absent manual annotation in the neighbourhood of an 
automatic detection can be considered as a false positive. 
Therefore, the wave detection rates are calculated as 
follows: 
A TP is calculated for the QRS complex and the T-wave, 
when at the annotated QRS-peak or T-peak the HSMM of 
the PSWT method is in the QRS or T state respectively. 
When this is not the case, a FN is recorded.  
As argued above, the P+ can not be computed for QRS 
detection, but this can be computed for the onset of the QRS 
complex QRSon, and the offset of the T-wave Toff. For these 
events the Se and P+ are calculated, as well as the mean (m) 
and the standard deviation (s) of the time differences 
between the cardiologist and automatic annotations. 
Furthermore, for the beats annotated by the cardiologist in 
the QTDB, the mean and standard deviation of the QT time 
of these beats is measured manQTt. The mean and standard 
deviation of the time difference between the manual and 
automatic QT times is measures as εQTt. These differ from 
the errors of QRSon and Toff, as they are calculated over all 
manual annotations and all automatic annotations. 

 
4.1. Single set 
The single set is performed with HSMM as described in 
section 3. We use the PSWT of the ECG signal as input for 
the HSMM. The observation probabilities are modelled with 
Gaussian Mixture Models with 2 mixtures.  
In this test, for each record, one lead is chosen and the 
HSMM is trained in a supervised manner on that lead. The 
results are shown in Table 1. 
 

Table 1: Characteristic of the validation database 

 
Parameter QRS QRSon T Toff manQTt εQTt

Se (%) 99,95 99,95 97,79 95,68   
P+ (%)  97,39  96,57   
m(ms)  9,95  0,76 408,8 -9,7
s (ms)  7,2  22,7 52,1 14,1

# annotations 2093 2093 2131 2131   

 
The results of our method trained on individual records of the 
test database are considerably high. There are only a small 
number of records who fail good detection. Record sel36, has 
the worst detection rate. This record has a rhythm of one or 
two normal beats followed by PVC (Premature Ventricular 
Contraction). 
As a result, the durations of the QRS complexes that are 
recorded are divided into two clusters: One for the normal 
QRS complexes that have a relatively short duration, and one 
for the PVC’s that have a long duration. From the Sensitivity 
and positive predictive value we can gather that there are 
slightly more false positives than false negatives.  
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This may be a disadvantage for applications in which we 
need to be sure that only QRS complexes are detected. It may 
be possible to change this relation by changing parameters in 
our future work analysis. 

5. CONCLUSION 

In this study, the emphasis is on the combination of the 
PSWT and HSMM for ECG analysis. The combination of 
these two methods has shown to be very efficient tool for 
ECG delineation. As noted in other studies on the HMM, the 
self transitions of the HMM cause an incorrect modelling of 
segment durations. An extension of the HMM, the Hidden 
Semi Markov model HSMM, largely solves this problem. 
The HSMM has been researched and implemented.  
This extensive model which models the ECG waveforms 
more accurate might improve detection rates. The results of 
this method trained on individual records of the test database 
are considerably high. There are only a small number of 
records who fail good detection, Se=99,95% and P+=97,39% 
for QRSon and Se=95,68% and P+=96,57% for Toff. 
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