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ABSTRACT

An investigation of digital systems based on hyperbolic (complex)
numbers is presented for the first time. We consider the algebra
of hyperbolic numbers (i.e. complex numbers possessing the imag-

inary j2 = 1) as the simplest instance of a non-division algebra,
which allows us to examine the impact of zero divisors in the case
of DSP applications. As an example, the analysis of a general first
order hyperbolic system is presented.

1. INTRODUCTION

Complex numbers C have been in use for digital signal process-
ing (DSP) purposes for a long time. They allow for compact signal
and system descriptions and lead to differing system structures in
comparison with real systems of the same function, occasionally
resulting in a decreased computational expenditure. Furthermore, a
general complex system has specific properties imposed by its al-
gebraic structure, e.g. commutativity of cascaded complex sections,
which is not self-evident if considered as a 2× 2 LTI (Linear and
Time-Invariant) MIMO (Multiple Input Multiple Output) system.

Hence, it is natural to ask about extending the complex num-
ber system to higher dimensional hypercomplex algebras. They
comprise more than one imaginary unit and therefore establish n-
dimensional (n-D), n ∈ N, numbers in contrast to the 2-D complex
numbers. Thereby, two major algebra classes can be distinguished:
commutative and non-commutative ones. The latter are widely es-
tablished in physics and have recently been shown to be useful for
DSP applications, namely as the 4-D quaternions [1, 2] and other

2N-D, N ∈ N, Clifford algebras [2, 3]. No Clifford algebra except
of the quaternions is a division algebra. This means that these al-
gebras possess divisors of zero, for which division is lacking. Also
the other major class, the commutative algebras, generally comprise
zero divisors for n > 2, as Weierstrass has shown in 1883. In [4], he
also proved that any commutative and associative algebra over the
real numbers is isomorphic to a direct sum of the real numbers. We
will examine this property in sec. 2.1, which can allow for efficient
computation. However, so far only a few investigations are available
for DSP application of commutative algebras [5, 6]. Frequently, the
question of the impact of zero divisors on DSP is broached, but very
rarely discussed satisfactorily.

In this paper, we select a pure example of a non-division al-
gebra: the 2-D hyperbolic complex numbers D, in the following
briefly hyperbolic numbers (also referred to as “double number”
[1, 7] or “split-complex number”). Every commutative and associa-
tive algebra (over R) with n > 2 contains at least one hyperbolic
subalgebra and therefore adopts its properties [4, 8]. Moreover,
they are also incorporated into the Clifford algebra family [3]. In
physics, they are related to Minkowsky spacetime [9]. They pro-
vide an extremely simple example of a non-division algebra and,
therefore, we examine their properties with respect to DSP appli-
cations for the first time, thereby determining the impact of zero
divisors regarding this purpose.

The outline of this paper is as follows: the hyperbolic numbers
are briefly recalled (sec. 2), digital systems based on hyperbolic
numbers are investigated (sec. 3), some generalisations are made
(sec. 4), and finally the topic is concluded (sec. 5). We use the fol-
lowing notation: real numbers a, complex numbers a, hyperbolic
and other hypercomplex numbers a, vectors a and matrices A.

2. HYPERBOLIC NUMBERS

Corresponding to complex numbers z = x + iy ∈ C, x,y ∈ R, i2 =
−1, a hyperbolic number [1, 3, 7, 9]

a = a
′
+ ja

′′ ∈ D, a
′
,a

′′ ∈ R, j2 = 1, j /∈ R (1)

is composed of a real (a
′
) and hyperbolic imaginary (a

′′
) part. Obvi-

ously, addition of two hyperbolic numbers is performed componen-

twise: a + b = a
′
+ b

′
+ j

(

a
′′
+b

′′
)

. In contrast to complex num-

bers, the square of the hyperbolic imaginary unit j2 = 1 is positive
[10] (such imaginaries are also applied in Clifford algebras [2, 3]).
Hence, the following multiplication rule results from (1):

ab =
(

a
′
+ ja

′′)(

b
′
+ jb

′′)

= a
′
b
′
+a

′′
b
′′
+ j

(

a
′
b
′′
+a

′′
b
′)

. (2)

Corresponding to complex numbers, multiplication (2) is distribu-
tive over addition, associative and commutative. In conjunction

with (2), hyperbolic numbers span a 2-D real vector space R2 with
a specific multiplication rule. We define the hyperbolic conjugate

a = a
′ − ja

′′
, a = a, a+b = a+b, ab = a ·b, (3)

with the same properties as the common complex conjugate, albeit
valid only for hyperbolic numbers (cf. sec. 4.1). To separate the
components of (1), the following operators are introduced applying
(3):

Rh{a} :=
a+a

2
= a

′
, Ih{a} := j

a−a

2
= a

′′
, (4)

where Rh{a} represents the real, and Ih{a} the hyperbolic imagi-
nary part of a.

An isomorphic representation of a hyperbolic number a, being
completely equivalent to (1), is given by the real 2×2 matrix:

Ma =

[

a
′

a
′′

a
′′

a
′

]

∈ R
2×2, a = a

′
+ ja

′′ ∈ D. (5)

Any operation or property can likewise be performed using repre-
sentation (1) or (5), respectively. For instance, it is readily shown
that matrices of the form (5) are commutative regarding multiplica-
tion: MaMb = MbMa. However, calculations applying the matrix
formulation are highly redundant and are predominantly applied for
analytical purpose.

The modulus |z| =
√

x2 +y2 of a complex number z ∈ C is
equal to its Euclidean distance from the origin. For hyperbolic

numbers, however, a modulus |a| =
√

a
′2 +a

′′2 does not fit to the
intrinsic nature of the hyperbolic number plane. For instance, in
general the square identity [1] does not hold: |ab| 6= |a| |b|. As a
remedy, we define the quadratic form N(a) of a hyperbolic number,

deviating from |a|2, as follows:

N(a) = aa = a
′2 −a

′′2 = detMa ∈ R. (6)

It will serve as a norm, but note that (6) can be negative. Never-
theless, basic matrix algebra (detA ·detB = detAB) applied to (5)
and (6) shows that N(a) satisfies the property N(a)N(b)= N(ab). In
fig. 1, some constant contours of (6) are depicted in the hyperbolic
number plane.
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Figure 1: Contours of constant norm N(a) (solid) in the hyperbolic
plane with indication of the two zero divisor lines N(a)= 0 (dashed)

2.1 Existence of zero divisors

As a direct consequence of j2 = +1, the hyperbolic numbers are
not a division algebra. This means that the inverse of a hyperbolic
number

a−1 =
a

N(a)
=

a
′ − ja

′′

a
′2 −a

′′2 (7)

is not always defined. Hence, although all other requirements are
met, they do not form a field as complex numbers, but a commuta-
tive ring with unity. As a result, zero divisors [4] exist: a product of

two non-zero numbers can yield zero, e.g. (1+ j)(1− j)= 1− j2 = 0.

A zero divisor is not invertible, e.g. (1+ j)−1 (as well as 0−1 does
not exist), and has a zero norm N(·). This is additionally confirmed
with isomorphic matrix algebra (5), (6) allowing for inversion if and
only if Ma is non-singular (detMa 6= 0). Hence, all zero divisors
in D are determined by

detMa = a
′2 −a

′′2 = 0 ⇔
∣

∣

∣
a
′
∣

∣

∣
=

∣

∣

∣
a
′′
∣

∣

∣
,

forming two lines in the hyperbolic number plane (see fig. 1):

a1 = α1 (1+ j) , a2 = α2 (1− j) , α1,α2 ∈ R. (8)

The product of any two numbers a1 times a2 results in zero.

2.2 Orthogonal representation

The existence of zero divisors allows for the orthogonal decompo-
sition [3, 5, 9] of any hyperbolic number:

[ã1, ã2] = ã1e1 + ã2e2 = ã1
1+ j

2
+ ã2

1− j

2
, ã1, ã2 ∈ R. (9)

This utilises an idempotent orthogonal system spanned by its base
vectors e1,e2 ∈ D, which fulfil the following properties [8]:

e1e2 = 0, e2
1,2 = e1,2, e1 +e2 = 1 ∈ R. (10)

To derive the orthogonal base vectors e1,e2 ∈ D, we apply the al-

gebraic rule that every idempotent element e2 = e different from

02 = 0 and 12 = 1 (since a2 −a = a(a−1) = 0) is a zero divisor:

a
′2 +2ja

′
a
′′
+a

′′2 −a
′ − ja

′′
= 0

⇒ a
′′2 = a

′ −a
′2 ∧ a

′′
= 2a

′
a
′′
. (11)

There exist two possible nontrivial (a 6= 0) solutions of (11): a
′′
= 0

or a
′
= 1

2 . The former one leads to 0 = a
′ −a

′2 ⇒ a
′
= 1 ⇒ e = 1

(unit element 1), whereas the latter results in

a
′′2 =

1

4
⇒ a

′′
= ±1

2
⇒ e1 =

1+ j

2
, e2 =

1− j

2
, (12)

the two idempotent zero divisors of D.
In the orthogonal representation, any arithmetic operation, such

as addition, multiplication, division or exponentiation, is performed
componentwise [3, 9]:

f (a) = f ([ã1, ã2]) = [f (ã1) , f (ã2)] . (13)

Obviously, a calculation using the orthogonal representation saves
computational complexity. For example, a hyperbolic multiplica-
tion according to (2), requires 4 real multiplications and 2 real addi-
tions, whereas it is reduced to only 2 real multiplications compliant
with (13). Basically, this reflects that D is in fact not more than
an isomorphism to the direct sum R⊕R (which results in the sim-

ple real vector space R2 without a separate multiplication rule) [4].
However, just because of this isomorphism we are able to lower the
computational load of multiplication, while still realising the com-
plete structure defined by (1) and (2), respectively. To enable this
alternative, an orthogonalisation

ã1 = a
′
+a

′′
, ã2 = a

′ −a
′′

(14)

and a deorthogonalisation

a
′
=

1

2
(ã1 + ã2) , a

′′
=

1

2
(ã1 − ã2) . (15)

procedure, following from (9), is needed.

3. HYPERBOLIC LTI SYSTEMS

In the following, we develop an approach to LTI digital systems
based on the hyperbolic number system D. The structure of such a
system is determined by (2), and consists of two distinct real sub-
systems HR(z) and HH(z), both existing twice: fig. 2. As in the real
and complex cases, a hyperbolic LTI system is completely speci-
fied by its (hyperbolic) impulse response h(k), which determines
the relationship between input x(k) and output y(k):

y(k) = h(k)∗x(k), k ∈ Z, h(k),x(k),y(k) ∈ D. (16)

Thereby, the real-valued implementation of the convolution opera-

tor ∗ in (16) derives from the multiplication rule (2)

y(k) = h
′
(k)∗x

′
(k)+h

′′
(k)∗x

′′
(k)+ j

[

h
′′
(k)∗x

′
(k)+h

′
(k)∗x

′′
(k)

]

(17)
and therefore the hyperbolic convolution adopts its properties, such
as commutativity.

3.1 Hyperbolic transfer functions

For frequency domain representation, we apply the z-transform. For
a hyperbolic signal x(k) or impulse response h(k), the z-transform
is carried out componentwise using the linearity property of Z {·}:

X(z) = Z {x(k)} =
∞

∑
k=−∞

x
′
(k)z−k + j

∞

∑
k=−∞

x
′′
(k)z−k ∈ C⊗D.

(18)
Due to the complex nature of the z-transform, H(z) = Z {h(k)} ac-
cording to (18) is hyperbolic with complex components, in general:
H(z) ∈ C⊗D (tessarines [10], sec. 4.1). Thus, for hyperbolic sys-
tems (based on hyperbolic numbers D with real components) we
have to deal with transfer functions which utilise a combination of
two different number systems.

To separate the real and imaginary parts of a complex impulse
response h(k) ∈ C in the z-domain, commonly the operator [5, 11]

Ra{H(z)} =
H(z)+H∗ (z∗)

2
= Z

{

h(k)+h∗(k)
2

}

(19)

is applied. Note that the two independent subsystems of a hyper-
bolic system are real: HR(z) = Ra{HR(z)}, HH(z) = Ra{HH(z)}.
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Figure 2: General hyperbolic system H(z), composed of two real
subsystems HR(z) and HH(z)

Hence, similar to (19), they can be separated from the transfer func-
tion H(z) of the hyperbolic system using (4):

HR(z) = Rh{H(z)} :=
H(z)+H(z)

2
=

H(z)+H(z)

2
. (20)

HH(z) = Ih{H(z)} := j
H(z)−H(z)

2
. (21)

Since hyperbolic conjugation {·} has no effect on the complex com-
pontents of tessarine numbers (cf. sec. 4.1), z = z in (20).

Another approach to a hyperbolic system is its representation as
a real 2× 2 MIMO system with vectorial input and output signals
and impulse response, respectively:

x(k) =

[

x
′
(k)

x
′′
(k)

]

, y(k) =

[

y
′
(k)

y
′′
(k)

]

, h(k) =

[

h
′
(k)

h
′′
(k)

]

.

In this case, the corresponding transfer matrix can readily be derived
from (5):

H(z) =

[

HR(z) HH(z)
HH(z) HR(z)

]

=

[

Rh{H(z)} Ih{H(z)}
Ih{H(z)} Rh{H(z)}

]

.

(22)
However, note that for general hypercomplex algebras it is not al-
ways possible to derive the corresponding real MIMO transfer ma-
trix directly from the algebra isomorphism matrix [8]. Here this is

feasible because (5) contains the component vector
[

a
′

a
′′ ]T

in
the first column. Otherwise we had to apply the algebra’s multipli-
cation rule. For hyperbolic systems, we confirm (22) using (2).

Since hyperbolic numbers are commutative, the basic convolu-
tion theorem, linking (16) and (18), holds [6, 12]:

y(k) = h(k)∗x(k) ↔ Y(z) = H(z)X(z). (23)

3.2 Orthogonal decomposition

We do not have to implement the hyperbolic system according to
(17), or (22), respectively, because the underlying algebra allows
for orthogonal decomposition (as a result of the existence of zero
divisors). Hence, a minimal system realisation is based on (9), and
signal processing is performed according to (13), as depicted in fig.
3: the hyperbolic signal is fed into the orthogonaliser F, parallelly
processed by the (only) two orthogonal real subsystems H̃1(z) and

H̃2(z), and finally retrieved from the deorthogonaliser E. The 2×2
real MIMO representation of this processing chain is given by

H(z) = E ·H̃(z) ·F, (24)

which utilises the orthogonaliser

x̃(k) =

[

x̃1(k)
x̃2(k)

]

=

[

1 1
1 −1

][

x
′
(k)

x
′′
(k)

]

= Fx(k), (25)

following (14), and the deorthogonaliser

x(k) =
1

2

[

1 1
1 −1

][

x̃1(k)
x̃2(k)

]

= Ex̃(k) =
1

2
Fx̃(k), (26)

derived from (9). The MIMO transfer matrix of the orthogonalised
system according to (24)

H̃(z) =

[

H̃1(z) 0

0 H̃2(z)

]

, H(z) =
[

H̃1(z), H̃2(z)
]

(27)

x
′
(k)

x
′′
(k)

y
′
(k)

y
′′
(k)−1−1

1
2

1
2

H̃1(z)

H̃2(z)

F EH̃(z)

Figure 3: Real 2×2 MIMO representation of the processing chain
utilising the orthogonal decomposition

X(z) Y(z)
Rh

Ih j

HR(z)

HH(z)

Figure 4: General hyperbolic system in the case of a real input

is diagonal and, therefore, reflects the componentwise processing of
the orthogonalised signal. Using (14), (20) and (21), the subsystems
of (27) are related to the subsystems of (22) as follows: H̃1(z) =
HR +HH, H̃2 = HR −HH.

3.3 Hyperbolic processing of real signals

The main difference between the processing of purely real vectorial
signals and the processing of (hyper)complex (e. g. hyperbolic) sig-
nals results from the underlying specific multiplication rules. It is
obvious from fig. 2 that a hyperbolic input signal is subjected to a
processing in four subsystems in compliance with (17). In contrast,
in H(z) = Z {h(k)} the z-transform (18) has only been applied to
the two components of the hyperbolic impulse response. To match
these two apparently contradictory statements, firstly, it should be
noted that the hyperbolic impulse response h(k) is the result of an
excitation of the system by (17) with the real unit impulse

δ (k) =

{

1, k = 0

0, k 6= 0
.

Therefore, for all k ∈ Z, the hyperbolic system is in fact reduced to
two subsystems: fig. 4. Hence, the proposition that the hyperbolic
system is completely described by its impulse response is true only
if we imply the particular hyperbolic system structure, as given in
fig. 2 or (17), respectively. Otherwise, we had to treat the system
as a general 2×2 MIMO system and to describe it with an impulse
matrix. Finally, since we transform this “pruned” impulse response
h(k) according to (18) to obtain H(z), we account for the case de-
picted in fig. 4 once again. Yet, based on the structural knowledge
inherent in (17), this description is complete and immediately calls
for the overall structure depicted in fig. 2. As a result of this con-
sideration, likewise applicable to complex systems, hypercomplex
(e. g. hyperbolic) signal processing must not be treated vectorially,
whether or not the z-transform is applied in a vectorial manner.

Next, we consider the processing of a general real signal by a
nonrecursive hyperbolic system. In case of a compact implementa-
tion of the system according to fig. 2, the system is in fact “degen-
erated” to the structure shown in fig. 4. Such a hyperbolic system
can, for instance, be applied as an FIR analysis (or its transpose as a
synthesis) filter bank, with one (two) real input signal and two (one)
real output signals.

Furthermore, we consider for the same application a recursive
hyperbolic system. Here, the hyperbolic output signal is recursively
fed back to the system input ports. Hence, the hyperbolic system
requires “full” realisation, as depicted in fig. 2. We can obtain a
similar result if the hyperbolic system is realised as a cascade of
(recursive or nonrecursive) hyperbolic subsystems, which immedi-
ately follows from the overall real 2× 2 MIMO transfer matrix of
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′
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′′
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1
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1
2
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(b) Orthogonal implementation

Figure 5: Hyperbolic system at the frequency Ωe for which the sys-

tem’s frequency response H
(

ejΩe
)

is a zero divisor

the cascade of two hyperbolic systems H1(z) and H2(z):

H(z) = H2(z) ·H1(z) =

[

H2R(z) H2H(z)
H2H(z) H2R(z)

]

·
[

H1R(z) H1H(z)
H1H(z) H1R(z)

]

=

[

H1R(z)H2R(z)+H1H(z)H2H(z) H1H(z)H2R(z)+H1R(z)H2H(z)
H1H(z)H2R(z)+H1R(z)H2H(z) H1R(z)H2R(z)+H1H(z)H2H(z)

]

.

Obviously, Rh{H(z)} and Ih{H(z)} of the overall system comprise
the transfer functions of all subsystems. Moreover, the output signal
of the first cascade’s stage is generally a hyperbolic signal, allowing
for the first stage a “pruned” implementation according to fig. 4,
while all subsequent stages are always of the form according to fig.
2, independently of the (non)recursive nature of the overall system.

Finally, we consider the processing of a general real signal by a
recursive hyperbolic system, of which only its real input and output
ports are used, i. e. we have a SISO (single input single output) sys-
tem. Such an arrangement can be used to implement a real system’s
transfer function employing a hyperbolic system: Cf. sec. 3.5. De-
spite the fact that in the above cases we take advantage of the full
hyperbolic structures, we are able to lower the computational load
almost by a factor of two by applying the orthogonal decomposi-
tion.

3.4 Impact of zero divisors

The existence of zero divisors does not only influence the feasibility
of division (7), which is not needed for DSP in general, but like-
wise affects the invertibility of hyperbolic LTI systems. For many
applications, for instance perfect reconstruction filter banks, it is
crucial whether or not an operation is invertible. In the following,
we examine the case where a given hyperbolic frequency response

H(z)|z=ejΩ = H
(

ejΩ
)

exhibits a zero divisor value H
(

ejΩe
)

at a par-
ticular normalised frequency Ωe. Furthermore, we assume that the
zero divisor value belongs to the following zero divisor line of (8):

H
(

ejΩe
)

= α (1+ j), α ∈ R. According to (20) and (21), the two
subsystems of the hyperbolic system are equal for this particular

frequency point: Rh
{

H
(

ejΩe
)}

= Ih
{

H
(

ejΩe
)}

= He. As a con-
sequence, information is lost, because we have in fact only one dis-
tinguishable real signal at the output of the hyperbolic system. A
compact implementation of such a degenerated system (only valid
for Ωe!) is depicted in fig. 5(a). In a corresponding orthogonal
structure, the frequency response of the second orthogonal subsys-

tem vanishes: H̃2

(

ejΩe
)

= 0. This results from even another def-
inition of a zero divisor (additional to the identification in sec. 2),
which states that for a zero divisor, at least one of the orthogonal
components is zero. Therefore, we have a blocking in the hyper-
bolic system which again results in a loss of information: fig. 5(b).

3.5 General first order hyperbolic LTI system

In the following, a general recursive hyperbolic LTI system of first
order (fig. 6), implementing the difference equation

y(k)+a1y(k−1) = b0x(k)+b1x(k−1), (28)

X(z)

Y(z)

z−1 -a1b0

b1

Figure 6: Hyperbolic LTI system of first order

is analysed, resulting in the hyperbolic transfer function

H(z) =
b0 +b1z−1

1+a1z−1
, a1,b0,b1 ∈ D. (29)

Each coefficient is a hyperbolic number and can be split into two

distinct real-valued parts, e. g. b0 = b
′
0 + jb

′′
0, b

′
0,b

′′
0 ∈ R. Using

(20) and ab+ab = 2
(

a
′
b
′ −a

′′
b
′′
)

, the transfer function of the first

subsystem is given by:

HR(z) =
1

2

(

b0 +b1z−1

1+a1z−1
+

b0 +b1z−1

1+a1z−1

)

(30)

=
b
′
0 +

[

b
′
1 +a

′
1b

′
0 −a

′′
1b

′′
0

]

z−1 +
(

a
′
1b

′
1 −a

′′
1b

′′
1

)

z−2

1+2a
′
1z−1 +

(

a
′2
1 −a

′′2
1

)

z−2
.

Applying (21) and ab−ab = 2j
(

a
′′
b
′ −a

′
b
′′
)

, we derive the second

subsystem’s transfer function:

HH(z) =
j

2

(

b0 +b1z−1

1+a1z−1
− b0 +b1z−1

1+a1z−1

)

(31)

=
b
′′
0 +

[

b
′′
1 +a

′
1b

′′
0 −a

′′
1b

′
0

]

z−1 +
(

a
′
1b

′′
1 −a

′′
1b

′
1

)

z−2

1+2a
′
1z−1 +

(

a
′2
1 −a

′′2
1

)

z−2
.

We see that the degree of the real subsystems (30) and (31) is dou-
bled relative to the hyperbolic system’s degree. Hence, if we want
to realise a real rational transfer function of a particular degree, we
may employ a hyperbolic system of half degree (although consid-
ering that a hyperbolic delay is implemented by two real delays).
The same relationship also applies for complex [13] and some other
hypercomplex systems [5]. The system can also be implemented

according to fig. 3. For the FIR case a1 ≡ 0, we see that the z−2

terms vanish in the numerators of (30) and (31), which means that
the hyperbolic system (29) is reduced to a purely vectorial system
(fig. 4) of only first order.

As an example, we realise the second order real system

Hprot(z) =
b0 +b1z−1 +b2z−2

1+a1z−1 +a2z−2
, (32)

a1 =−0.5095, a2 = −0.1334, b0 = b2 = 0.4320, b1 =−0.5078, as
a first order hyperbolic system according to (29). The magnitude
response of the real prototype (32), a band stop filter with the nor-
malised notch frequency Ω = 0.3π , is shown in fig. 7. Arbitrarily,
we select HR(z) to comply with Hprot(z). Comparing coefficients of
(30) and (32) yields:

a
′
1 =

1

2
a1 = −0.2547, a

′′
1 =

√

1

4
a2

1 −a2 = 0.4452 (33)

b
′
0 = b0, b

′′
0 = 0, b

′
1 = b1 −

1

2
a1b0 = −0.3978, (34)

b
′′
1 =

a1b1 − 1
2 a2

1b0 −2b2

2a
′′
1

= −0.7426. (35)

In fig. 7 the magnitude responses of the two subsystems (30) and
(31) are depicted, of which the former equals the prototype filter
response, as required, and the latter is not used.

The same result is obtained by orthogonal implementation ac-
cording to (24) and fig. 3, respectively, discarding unused connec-
tions in (25) and (26). Applying (14) to (33)-(35), the coefficients
of the first order real orthogonal subsystems H̃1(z) and H̃2(z) in (27)

are: ã1,1 = 0.1905, b̃0,1 = 0.4320, b̃1,1 =−1.1404, ã1,2 =−0.7000,
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Figure 7: Magnitude response (in dB) of prototype filter Hprot

(

ejΩ
)

,

subsystems HR

(

ejΩ
)

and HH

(

ejΩ
)

of hyperbolic filter, and corre-

sponding orthogonal subsystems H̃1

(

ejΩ
)

and H̃2

(

ejΩ
)

b̃0,2 = 0.4320, b̃1,2 = 0.3448. The frequency response of the com-
plete system (24) is identical to that of the implementation (22). In
fig. 7, also the magnitude responses of the orthogonal subsystems

H̃1(z) and H̃2(z) are shown. Since
∣

∣H̃1,2

(

ejΩ
)
∣

∣ > 0 for all Ω, no

zero divisors occur in the transfer function H(z) of the examined
hyperbolic system.

4. GENERALISATIONS

4.1 Hyperbolic numbers with complex components

Like real numbers, hyperbolic numbers are algebraically not closed

under exponentiation. For instance, the square root
√· = (·) 1

2 in
(33) may become imaginary with certain prototype filter coeffi-
cients. Hence, not every real transfer function can be realised ap-
plying the method presented in sec. 3.5. Furthermore, the complex
kernel of the z-transform (18) leads to transfer functions both hyper-
bolic and complex. Therefore, it is straightforward to permit com-
plex components in hyperbolic numbers (1), resulting in tessarines
[8, 10]:

a = a
′
+ ja

′′ ∈ C⊗D, a
′
,a

′′ ∈ C, j2 = 1.

For tessarines, both hyperbolic conjugation {·} and complex conju-

gation {·}∗are defined, and are clearly distinguiashable: a = a
′ − ja

′′

and a∗ = a
′∗ + ja

′′∗.
A tessarine LTI system [6, 8] consists of 16 (4 different) real

subsystems and is, similar to the complex and hyperbolic cases
(sec. 3.5), capable of doubling the degree of a hyperbolic system
once more. However, it is not possible to reduce the expenditure
of complex coefficient multiplication by further orthogonalisation.
Hence, also for tessarine systems, the only feasible orthogonal de-
composition is represented by (14), (15), (25) and (26).

4.2 2N -dimensional hyperbolic numbers

In order to process vector signals of higher dimension n, or to in-
crease the degree multiplication (sec. 3.5), it is possible to define
hyperbolic numbers with hyperbolic components. By repeating the

doubling procedure [1], numbers of dimension n = 2N , N ∈ N can
be obtained [14]. We stress that, in contrast to the step from real
to hyperbolic numbers, further increase of dimension does not pro-
duce any additional issue. Every property of hyperbolic numbers is
retained even for higher dimensions. Orthogonalisation can be ex-
tended to an n-times decomposition. It can be performed efficiently
by the (fast) Hadamard transform [8].

The structure depicted in fig. 3 is in fact equal to common cou-
pled, e. g. allpass systems. It is an open question, if it is feasible to

employ higher dimensional hyperbolic LTI systems to describe cou-
pled systems with more than two input and output ports, in order to

simplify the design of such. The 2N -dimensional approach can also
be combined with the use of complex components (sec. 4.1).

5. CONCLUSION

A first step was made to describe the properties and efficient im-
plementation of hyperbolic digital systems in general. Since hy-
perbolic subalgebras emerge in many other non-division hypercom-
plex algebras, they represent a comprehensible example for the ex-
amination of the impact of zero divisors on DSP. However, hyper-
bolic systems certainly are most useful if the underlying structure
is somehow related to the application aimed at. Presently, due to
limitations of realisable transfer functions, they do not represent a
self-contained system class. Nevertheless, further investigation has
to reveal if structures, as proposed in sec. 3.5, are feasible and effi-
cient even for general DSP purposes.
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