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ABSTRACT

This tutorial contribution presents a short historical introduction
and a survey of hypercomplex algebras in conjunction with some
beneficial applications in predominantly time-based digital signal
processing. Potential advantages and shortcomings of hypercom-
plex digital signal processing are discussed.

1. INTRODUCTION

For a long time, mathematicians have studied various (hypercom-
plex) algebras as a self-contained discipline. Most recently, physi-
cists and engineers have gradually grasped the underlying theories
for a variety of applications in signal and image processing, sig-
nal and system representation and analysis, computer graphics, etc.
This tutorial paper presents an introduction to hypercomplex alge-
bras needed for hypercomplex digital signal processing (HCDSP),
and discusses the potentials and weaknesses of HCDSP. Note that
pure geometric signal processing is beyond the scope of this paper.

A basic scientific motivation for the investigation of hyper-
complex algebras is to extend complex (digital) signal processing
(CDSP) to HCDSP. We start our presentation with a short histori-
cal survey of the advent of complex numbers and the discovery of
hypercomplex algebras referring to [1].

Already during the Renaissance it had been recognised in Italy
that the real algebra (R) is algebraically not closed under exponen-
tiation, when CARDANO (1501-76) and his competitor FONTANA-
TARTAGLIA (1499-1557) were looking for a general solution of 3rd
order equations, nowadays known as Cardanic formulae. To over-
come this limitation, CARDANO in conjunction with BOMBELLI

(1526-72) first introduced complex numbers (C). GAUSS (1777-
1855) proposed the illustrative complex plane to represent complex
numbers in Cartesian and polar coordinates, respectively. EULER

(1707-83) contributed a great multitude of widely used complex-
valued functional relationships. Moreover, GAUSS proved the fun-
damental theorem of algebra encompassing the result that the com-
plex algebra (C) is algebraically closed.

Another track leads to integral or functional transforms, as in-
troduced by LAPLACE (1749-1827), FOURIER (1768-1830) and
LAURENT (1813-54), respectively: Real or complex functions of
one or more independent parameters (time, location, etc.) are
mapped onto a complex variable domain, the frequency or spectral
domain. It is commonplace that a signal spectrum typically gives
much more insight into the nature and properties of a signal than
the original signal.

A first step beyond complex algebra (C) was made by HAMIL-
TON (1805-65) discovering the four-dimensional (4-D) quaternions
(H) in 1843. Soon after HAMILTON’s publication of the quater-
nion algebra, his student GRAVES and later CAYLEY (1821-95)
introduced a first kind of 8-D hypercomplex algebras, the Oc-
taves/Octonions (O) or Cayley numbers, respectively. Moreover,
HAMILTON himself introduced still another 8-D hypercomplex al-
gebra [2], known as complexified quaternions or biquaternions. A
kind of generalisation to the n-D case was presented by CLIFFORD

(1845-79) emphasising, however, geometrical viewpoints and n-
D rotation. Nevertheless, CLIFFORD algebras include the former

R−,C−,H−algebras and the hyperbolic algebras being investi-
gated in more detail only most recently [3, 4, 5].

It is a commonplace in mathematics that some or all of the fol-
lowing fundamental properties of R and C may vanish in hyper-
complex algebras of higher dimension: Commutativity, associativ-
ity and multiplicative inverse. If an algebra is not a division alge-
bra, some elements may lack a multiplicative inverse and divisors
of zero exist with the consequence that the product of two non-zero
numbers may vanish . This was thoroughly investigated by WEIER-
STRASS (1815-97) [6].

This tutorial presents basic material for the understanding of
time-based digital signal processing applying hypercomplex alge-
bra. To this end, we recall the mainstream use of established CDSP
under C (section 2). In section 3, we first give our reasons for tran-
scending C to higher dimension or other algebras, we present the
necessary definitions and representations of hypercomplex algebras
for HCDSP and, finally, discuss benefits and drawbacks of HCDSP
in view of a variety of suitable applications. In conclusion, in sec-
tion 4 open issues are presented for future research.

2. ESTABLISHED USE OF COMPLEX ALGEBRA IN
SIGNAL PROCESSING (CDSP)

Almost all physical signals and (equidistantly) sampled versions
thereof are real-valued: s(t),s(k) ∈ R. Nevertheless, a widely used
family of versatile and illustrative integral transforms, LAPLACE-,
z-Transform and some varieties of FOURIER Transform (FT) [7],
provide a one-to-one mapping to a physically supported complex
frequency domain under C. For instance, the FT discloses the spec-
tral content of a signal:

s(t), s(k) ∈R
FT
←→ S( jω), S(e jΩ) ∈C, (1)

where any signal is likewise uniquely represented by its spectrum

along the frequency “axis” s := jω = j2π f or z := e jΩ, Ω =
2π f / fS, respectively (sampling rate: fS = 1/T ).

By interchanging time and frequency in (1), time-frequency du-
ality [7] suggests the existence of complex signals that possess real
(in general complex) spectra. The analytic signal, the most impor-
tant class of complex signals, has found a variety of applications
predominantly in CDSP: i) Efficient digital baseband processing of
narrow-band bandpass signals with reduced sampling rate [8] (e.g.
homodyne transceiver and single sideband amplitude modulation),
ii) spectrally compacted data transmission by combining sequential
binary data to higher level complex symbols (Quadrature Ampli-
tude Modulation, Orthogonal Frequency Division Multiplex, etc.),
iii) most efficient processing of discrete orthogonal transforms, such
as DFT and FFT, iv) twofold system parallelisation for sample rate
reduction by two, and v) efficient baseband simulation techniques
based on the complex envelope of the analytic bandpass signal.

The imaginary part of an analytic signal is given by the
HILBERT Transform (HT) of its real part. In general, the HT is
implemented by means of a linear and time-invariant (LTI) digital
system [8], for instance, as an FIR system with (zero-phase) im-
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pulse response hHT(k) = 2/(kπ) for odd k and 0 elsewhere:

ŝ(k) = hHT(k)∗ s(k)
FT
←→ Ŝ(e jΩ) =− jsgn(sinΩ) ·S(e jΩ), (2)

where (∗) denotes convolution, yielding the digital analytic signal:

s+(k) = s(k)+ jŝ(k)
FT
←→ S+(e jΩ) = S(e jΩ)[1+ sgn(sinΩ)]. (3)

As a result, the overall spectral bandwidth of any analytic signal
s+(k) comprises just half the width of the original real signal s(k),
allowing for most of the aforementioned applications exploiting the
potential of unconstrained frequency shifting of analytic signals.

3. HYPERCOMPLEX ALGEBRAS IN DIGITAL SIGNAL
PROCESSING (HCDSP)

3.1 Motivation

Exploiting the potential of CDSP to advantage, as outlined in sec-
tion 2, the following questions related to HCDSP are motivated:
What are the benefits of HCDSP w.r.t. the above collection of ap-
plications and beyond? What is the impact on HCDSP, if the un-
derlying hypercomplex algebra lacks commutativity, associativity,
and/or contains divisors of zero? Hence, at least the following ba-
sic system properties, well understood for real and complex DSP
[8], call for thorough investigation in the case of HCDSP: i) LTI
property tightly related to convolution, ii) existence of hypercom-
plex spectral transforms [9], similar to z- and FOURIER Transform,
their impact on convolution theorem and the availability of some
kind of analytic signal [10, 11, 12], iii) overall expenditure of sys-
tem implementation, and potential benefits of divisors of zero for
reduced computational burden [13, 14], and iv) potential advantages
of multidimensional [11, 15, 16] and multirate HCDSP.

Furthermore, there are three basic motivations for the appli-
cation of HCDSP: i) The holistic, compact processing of vector-
valued signals that are a function of one or more independent pa-
rameters (e.g. time, location, physical quantities). Here, the di-
mension of the algebra must be chosen in compliance with the di-
mension of the signal vector. This means that each vector-sample
is treated as a whole rather than treating its components separately.
Classically, the reason for this is that the sample as a whole conveys
information (direction in vector space) that is lost if the compo-
nents of the sample are processed independently. ii) Hypercomplex
digital processing of real or complex signals, respectively, with ap-
plications, for instance, in digital filtering [17, 18]. iii) Concurrent
processing of a couple of independent signals in a hypercomplex
system, where the dimension of the algebra must be consistent with
the number of signals to be processed. For applications in digital
filter banks see [19, 20, 21].

3.2 Definitions and representations

We define a general hypercomplex algebra A [22]

a = a1 +a2i2 + . . .+anin ∈A, a1, . . . ,an ∈K (4)

as an n-D K-vector space over the field K = R,C with an associated
multiplication rule, comprising the unit element 1 (1 ·a = a ·1 = a).
The multiplication table defines every relation between the imagi-
nary units i2, . . . , in and implies the specific properties of the alge-
bra. For instance, the quaternions are a 4-D R-algebra

q = q1 +q2i+q3j+q4k ∈H, q1,q2,q3,q4 ∈ R, (5)

with the multiplication table:

ij =−ji = k, jk =−kj = i, ki =−ik = j, i2 = j2 = k2 =−1. (6)

From (6) it becomes clear that quaternions are not commutative: In
general pq 6= qp for p,q ∈ H. Nevertheless, they are associative:
p(qr) = (pq)r. Addition of two hypercomplex numbers a,b ∈ A is
always performed componentwise:

a+b = a1 +b1 +
n

∑
ν=2

(aν +bν ) i ν , (7)

whereas multiplication is generally distributive over addition. Obvi-
ously, a hypercomplex addition (7) consists of n K-valued additions.
A hypercomplex multiplication demands n2 K-valued multiplica-
tions. For instance, the multiplication of two complex numbers,
z1 = x1 + iy1, z2 = x2 + iy2, (C is considered as a 2-D hypercom-
plex algebra with K = R and i22 = i2 =−1) according to:

z1z2 = x1x2−y1y2 + i(x1y2 +x2y1) , (8)

requires n = 2 real additions and n2 = 4 real multiplications. Of
course, these operations have to be considered when evaluating the
computational load of HCDSP.

Every associative algebra can be represented by an isomorphic
K-valued n×n matrix algebra. For instance, the matrix

Q =







q1 −q2 −q3 q4
q2 q1 −q4 −q3
q3 q4 q1 q2
−q4 q3 −q2 q1






∈ R

4×4 (9)

is completely equivalent to the quaternion (5), and all operations
and properties can likewise be validated with both representations
(e.g. that Q is not commutative). However, (9) is highly redundant
and therefore computationally inefficient compared to the direct cal-
culation derived from the algebra’s multiplication table (6).

An LTI system based on a hypercomplex algebra can always
be decomposed either into K-valued basic operations, as in (8), or
into K-valued subsystems. For the latter, a MIMO (Multiple In-
put Multiple Output) representation is useful, where the compo-
nents xν (k),yν (k)∈K of the hypercomplex input and output signals
x(k),y(k) ∈ A are combined to the respective input and output vec-
tors x(k), y(k) ∈Rn, k ∈ Z. To this end, a transfer matrix H(z) can
be derived from the multiplication rule of the underlying algebra
by replacing each real multiplication (·) with the convolution oper-
ator (∗); cf. (8) for complex systems. For the quaternion example,
matrix representation results in the general 4× 4 MIMO transfer
matrix

H(z) =







Hr(z) −Hi(z) −Hj(z) −Hk(z)
Hi(z) Hr(z) −Hk(z) H j(z)
Hj(z) Hk(z) Hr(z) −Hi(z)
Hk(z) −Hj(z) Hi(z) Hr(z)






(10)

that is composed of only four different real subsystems Hr(z), Hi(z),
Hj(z), Hk(z).

3.3 Classes of hypercomplex algebras and their advantages

3.3.1 Division algebras

Due to the great variety of possible vector spaces and particularly
their associated multiplication tables, one has to choose an appro-
priate algebra for a specific application. However, the need for
beneficial properties explicitly narrows the number of alternatives.
Firstly, the most important distinction of algebra classes is whether
or not an algebra A is a division algebra. If this is the case, every
non-zero element a ∈ A has a unique inverse element a−1 ∈ A. In
1877, FROBENIUS stated his famous theorem that there exist only
three associative division algebras A over the real numbers: The real
(R) and complex numbers (C), and the quaternions (H) [23]. Since
the latter are not commutative regarding multiplication (6), the only
commutative and associative division algebras (or fields) are gener-
ally limited to dimension n≤ 2 (R, C) [22]. This means that we gen-
erally have to renounce the familiar properties of R and C if we call
for higher algebra dimensions. For instance, if we lower the require-
ments regarding the associativity of multiplication, resulting in the
so-called alternative property (aa)b = a(ab) and a(bb) = (ab)b,
respectively, we can utilise a division algebra even for n = 8: The
octonions O. However, as ZORN has detected in 1931, there is no
real alternative division algebra other than R, C, H and O [24].
Therefore, these algebras have an exceptional position compared
with any other possible algebra [22]. They have in common that
they can be generated with the doubling procedure developed by
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CAYLEY and DICKSON: A 2n-D algebra B is constructed of two
n-D subalgebras A by (possibly multiple) application of

b = a1 +a2in+1 ∈ B, a1,a2 ∈ A (11)

and a new imaginary unit i2n+1 = −1 for each iteration step, which
anticommutes (iα iβ = −iβ iα ) with the already existing imaginary
units i2, . . . , in. For instance, with (11) the quaternions B = H (n =
2 · 2) can be generated from complex numbers (n = 2) with A = C,
i23 =−1 and i2i3 =−i3i2. To comply with (5) and (6), the imaginary
units have to be relabeled only: i = i2, j = i3, k = i4.

Due to the exceptional position of the quaternions within hy-
percomplex algebras (the only associative real division algebra with
n > 2), they have been investigated most thoroughly and most com-
monly been used in HCDSP. In particular, their usefulness in the
n-D signal (image) processing has been shown [12, 15, 25], espe-
cially in connection with an intrisically quaternionic FT (QFT).

There are many possible definitions of a quaternionic FT, all
stemming from the non-commutative nature of the algebra. Besides
the possibility of placing the transform’s exponential kernel on the
left or right of the input function, the kernel itself can take multiple
forms. Multiple kernel definitions are a result of the fact that, in
general, eq+r 6= eqer, where q,r ∈H.

The first definition of a quaternionic FT was that of Ell [9, 26].
Sangwine’s discrete version of this transform [27] has shown appli-
cability by allowing generalizations of many image processing tech-
niques dependent on FT of vector data. In particular, using a more
recent hypercomplex FT definition [25], the validity of hypercom-
plex auto- and cross-correlation, and vector phase correlation have
been demonstrated [28, 29, 30]. In [12] a hypercomplex FT was
applied in the analysis of greyscale images because of its symme-
try properties (which are similar to the symmetry properties of the
complex FT of real signals). It was not until 2007 that suitable hy-
percomplex spectral convolution operator formulas were provided
for use in vector image processing [31].

The QFT suffers from the same lacuna as the complex FT; the
class of useful functions do not all have a QFT (e.g. unit step func-
tion). The Laplace transform broadens the class of transformable
functions [9]. Moreover, the concept of the analytic signal (3)
depending on a single (time) parameter has been extended to the
quaternionic analytic signal, which is a function of two independent
variables, by means of a QFT [11, 12, 32, 33].

3.3.2 Geometric algebras

Geometric algebra is a branch of mathematics and computer science
(especially robotics) concerned with the representation and manip-
ulation of algebraic quantities representing points, lines and planes
in 3-D space [34, 35]. Arbitrary rotation in 3-D space is efficiently
described and performed using quaternions H. Moreover, most ad-
vantageously, repeated rotation does not accumulate errors caused
by angle quantisation. As a result, “integer” rotation is feasible.

Most common geometric algebras are examples of the CLIF-
FORD algebra class. They utilise a formulation law different from
(11) and permit the so-called generator units both with i2n+1 = −1

(a) and i2n+1 = +1 (b). The number p of type-a generator units, and
the number q of type-b generator units completely determine the
particular CLIFFORD algebra over the field K with C ℓ(p,q) (K).
Generally, every CLIFFORD algebra is associative, but is not neces-
sarily a division algebra. They include C and H, but not O, since
the latter is not associative. In [11], a CLIFFORD FT is presented.

Differing from CLIFFORD’s biquaternions [1], HAMILTON was
the first to introduce a biquaternion algebra by replacing the real
quantities of quaternions H according to (5) with complex parame-
ters:

q = q1 +q2i+q3j+q4k, q1,q2,q3,q4 ∈C, (12)
The biquaternion algebra is not a division algebra, but it is asso-
ciative. The biquaternion FT has been defined [36] and some of
its properties elucidated. Furthermore, biquaternions have been ap-
plied to vector-sensor array processing [15], but much work remains
to be done on the application of biquaternions to signal processing.

3.3.3 Commutative algebras

If we forgo both the call for a division algebra and a geometric
meaning according to sec. 3.3.2, we can utilise commutative and
associative non-division algebras, which always exhibit zero divi-
sors for n > 2. Mostly, commutative algebras are constructed by a
modified CAYLEY-DICKSON rule (11) with commuting imaginary
units. The first attempt to apply these algebras to signal processing
was made by SCHÜTTE [17]: He proposed the Reduced Biquater-
nions defined by (12) with q3 ≡ q4 ≡ 0. Alternatively, they can be
represented as bicomplex numbers [37]:

a = a1 + ja2 ∈C⊗C, a1 = a
′

1 + ia
′′

1 ∈C, a2 = a
′

2 + ia
′′

2 ∈C, (13)

where i2 = j2 = −1, which belong to the family of multicomplex
numbers [38]. Hypercomplex Commutative Algebras (HCA) [11,
39] (with CLIFFORD-like generation scheme) and Tessarines [14,
40, 41] are isomorphic to (13). The latter are based on the 2-D
hyperbolic numbers [3, 4] D (double numbers [22], split-complex
numbers). They can be defined like complex numbers

a = a
′

+ ja
′′

∈D, a
′

,a
′′

∈ R, j2 = +1, j /∈ R, (14)

but with a different definition of the imaginary unit j [40, 4]. As a
consequence, zero divisors exist already for 2-D numbers (14):

(1− j)(1+ j) = 1− j2 = 1−1 = 0. (15)

Hyperbolic numbers can be extended to any power-of-two n-D hy-
perbolic numbers [5]: e.g. D⊗D for n = 4. Moreover, these com-
mutative algebras have the benefit that they retain their properties
throughout all dimensions n.

The existence of zero divisors may cause difficulties (cf. sec.
3.4.2), but it also confers a major advantage: The potential of
orthogonal decomposition, allowing for the representation of any
number in terms of its orthogonal components, e.g.

ã1 =
1

2

(

a
′

+a
′′
)

∈R, ã2 =
1

2

(

a
′

−a
′′
)

∈R (16)

in case of 2-D hyperbolic numbers (14). Any operation can be car-
ried out componentwise on the orthogonal components (16) and,
hence, the computational load of multiplication/convolution is dra-
matically reduced. (Regular 4-D hypercomplex multiplication re-
quires 42 = 16 real multiplications, whereas multiplication employ-
ing orthogonal decomposition requires only 4 real multiplications!)
The operation saving effect increases with algebra dimension n. In
contrast to n-D hyperbolic algebras referring to (16), commutative
algebras containing complex subalgebras can only be decomposed
to n/2 orthogonal components [14]. Mathematically, the orthogo-
nal decomposition is based on the fact that any commutative and
associative algebra over R is isomorphic to a direct sum of R [6].

3.4 Problems

3.4.1 Non-commutativity and non-associativity

Many hypercomplex algebras lack either or both of commutativity
and associativity. This is fundamental to the algebras and it fol-
lows from their geometric meaning distinguishing them from the
commutative algebra classes. Resulting from this meaning, it fol-
lows that the ordering of cascaded sections becomes crucial and
the convolution theorem, linking the time and spectral domains,
does not hold in the common form [11, 41]. Apart from that, non-
commutativity does not pose fundamental problems in HCDSP. In
the case of quaternions, as an example, re-ordering of products is
expressed by the generalized conjugate rule

pqr = rqp, p,q,r ∈H, (17)

where the overbar represents a quaternion conjugate [22]. If we
have two terms in an algebraic expression which we wish to re-
order, we must apply the rule: pq = qp. This makes algebraic
derivations more difficult. A good example of such a derivation is
given in [42], where it is proved that the QFT is uniquely invertible.

Associativity is a more complex problem. An associative bi-
nary operation ◦ is one for which (a ◦ b) ◦ c = a ◦ (b ◦ c) for all
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a, b and c. I.e. the order in which the operations are carried out
is significant (not the ordering of the operands). The quaternions,
biquaternions and CLIFFORD algebras are associative, so the prob-
lem does not arise there, but many other hypercomplex algebras of
dimension n > 4 lack associativity. This was first discovered when
HAMILTON’s ideas were extended to the 8-D octonions, where mul-
tiplication is not associative. Nevertheless, a digital system based
on an (associative or non-associative) hypercomplex algebra always
remains linear and time-invariant (LTI), if it is realised exclusively
with (ideal) adders, constant multipliers and delays.

3.4.2 Existence of zero divisors

Although the existence of zero divisors allows for orthogonal de-
composition (highly reducing computational burden), it also im-

plies that the Euclidean norm |a|=
√

∑n
ν=1 a2

ν is not multiplicative:

|a| · |b| 6= |ab|. This results from the underlying non-Euclidean geo-
metric meaning (sec. 3.3.2), and severely complicates the definition
of signal energy and the definition of lossless systems [20].

3.4.3 Non-availability of hypercomplex transforms

While useful hypercomplex spectral transforms are known for sig-
nals depending on two variables [9], e. g. spatial variables in case
of image processing, expedient intrinsically hypercomplex spectral
transforms are claimed to be not available for signals depending on
only one variable, e. g. on time in case of communication or au-
dio signals. In [11, 32], the argument is based on the number of
symmetries inherent in the signal, forming a hierarchy of spectral
transforms. In fact, the QTFM toolbox [43] includes computation
of one-dimensional quaternion FOURIER transforms, but so far the
argument of [11, 32] has not been examined or refuted in print.

3.4.4 Non-availability of hypercomplex analytic signals

In the theory of complex analysis there is a four-way equivalence
between a complex function being analytic, regular, continuously
differentiable and conjugate harmonic. This four-way equivalence
is exploited in the simplification of many theorems and the analysis
of mathematical models used in signal processing. For example, the
HT used to construct an analytic signal (3) is the boundary value of a
conjugate harmonic function along a closed contour about the upper
half plane of R2. Further, causality is the FOURIER dual to the one-
sidedness we find in the frequency domain of analytic signals. But
in the z-domain causal functions are free of poles outside the unit
circle, hence they are ‘analytic’ there. It is therefore natural to look
for the same expressive power in hypercomplex analytic signals. It
is also desirable that hypercomplex analyticity be a generalization
of complex analytic functions in such a manner that it includes the
standard complex definitions.

Quaternions are an obvious starting point since they are the
next non-trivial division algebra. HAMILTON, TAIT and JOLY de-
veloped the theory of functions of a quaternion variable, but they
did not study the class of analytic quaternion-valued functions. In
1932 FUETER [44] published a definition of ‘analytic’ for quater-
nionic functions (see also [45, 46]). Later he introduced a defini-
tion of ‘regular’ quaternionic functions [47] modeled on an ana-
log of the Cauchy-Riemann equations, which is used to define con-
jugate harmonic functions. Both of these definitions contain the
theories of analytic and regular functions of a complex variable
as special cases, however, not completely equivalently. Further-
more, FUETER’s definition for regular quaternionic functions is re-
stricted to linear polynomials. FUETER then concentrated on the
study of regular quaternion functions and obtained results in terms
of Cauchy’s integral formula, which can be used in the definition of
the HT. Later, NONO [48] developed the theory of hyperholomor-
phic functions, relating them to FUETER’s regularity conditions;
some new results were supplemented in [49]. Finally, Kocherlakota
[50] addressed the question as to why quaternion analytic functions
are not in general regular; there is no suitable quaternion exponen-
tial function which equals its own gradient.

One approach to overcome these issues is to study quaternion-
valued functions of one or more reduced quaternions. Ell [9] studied
quaternion-valued functions of ‘ortho-complex’ variables. This al-
lowed for the definition of bi-analytic and bi-regular functions and
functional compositions, which retained these properties. Likewise,
quaternion-valued functions of a single pure quaternion variable
ix+ jy+kz, x,y,z ∈R, were investigated in [51].

An alternate approach is to limit the regions for the definition of
the analytic extension to local subfields within the quaternion field.
De LEO [52] generalized analyticity by defining a ‘local’ derivative
operator that depends upon the four-dimensional point at which the
derivative is to be made. This approach has the added benefit of
being directly generalizable to octonionic functions of octonionic
variables.

4. CONCLUSION

We have presented an overview of the main ideas of hypercomplex
digital signal processing as an extension of the ideas of complex
signal processing. The many possible hypercomplex algebras have
been shown to have common features and in some cases common
drawbacks (lack of commutativity, associativity, existence of divi-
sors of zero) which, however, can even be used to advantage in cer-
tain cases. Nevertheless, the use of hypercomplex algebras in sig-
nal processing has developed great promise over the last ten years,
and we believe that the actual difficulties of using hypercomplex
algebras are not insurmountable. The next 5–10 years will show,
whether this optimism is justified.

Future research in HCDSP will urge us to study the entire
knowledge offered by the mathematics and computer science com-
munity more thoroughly, and to investigate in how far this knowl-
edge is applicable to the classical signal processing tasks predom-
inantly considered in this survey paper. This may lead us via the
work of FELSBERG [10], BÜLOW [12, 32] and SOMMER [11] and
beyond to the monogenic signal as a kind of generalised analytic
signal, and to the RIESZ transform as a generalised HILBERT trans-
form.
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