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ABSTRACT

We propose a novel approach for estimating a reverberation
model for a robust recognizer according to [1], which is de-
signed to allow distant-talking automatic speech recognition
(ASR) in reverberant environments. Based on a few calibra-
tion utterances with known transcriptions recorded in the tar-
get environment, a maximum likelihood estimator is used to
find the means and variances of the reverberation model. In
contrast to [1] and to HMM training on artificially reverber-
ated training data (e. g. [2]), measurements of room impulse
responses become unnecessary, and the effort for training is
greatly reduced. Simulations of a connected digit recognition
task show that, in highly reverberant environments, the rever-
beration models estimated by the proposed approach achieve
significantly higher recognition rates than HMMs trained on
reverberant data.

1. INTRODUCTION

Current state-of-the-art ASR systems work reliably only if
close-talking microphones are used for the speech input.
This is a major acceptance problem of current ASR appli-
cations because most users find it uncomfortable to wear a
headset or to use any other close-talking microphone. There-
fore, reliable distant-talking ASR is highly desirable.

Since the distance between speaker and microphone in a
distant-talking scenario usually is in the range of one to sev-
eral meters, the microphone does not only capture the desired
signal, but also unwanted additive signals and reverberation
of the desired signal, both of which hamper ASR. While sig-
nificant progress has been achieved in the last decades in im-
proving the robustness of ASR to additive distortions, the
research on reverberation-robust ASR is still in its infancy.
This paper focuses on robustness to reverberation.

The reverberant speech signal x(t) is given by the con-
volution of the clean speech signal s(t) with the room im-
pulse response RIR h(t) describing the acoustic path between
speaker and microphone

x(t) = h(t)∗ s(t) .

For typical reverberant environments like offices or living
rooms, the length of the RIR is in the range of 300 ms to
800 ms. Thus the RIR is much longer than the speech frames
used for feature extraction with a typical length of about
20 ms and a typical frame shift of about 10 ms. That is, the
RIR extends over a large number of speech frames. There-
fore, the effect of reverberation cannot be modeled as a sim-
ple multiplication or addition in the feature domain.
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Figure 1: a) Clean and b) reverberant mel-spectral feature
vector sequences corresponding to the utterance ”four, two,
seven” using a dB color scale.

Figure 1, comparing the feature sequences of the clean
(recorded by a close-talking microphone) and the reverberant
(microphone four meters away from the speaker) utterance
”four, two, seven” in the mel-spectral domain, illustrates that
reverberation has a dispersive effect on the speech feature
sequences: The features are smeared along the time axis so
that the current feature vector depends strongly on the previ-
ous feature vectors. We believe that this contradiction to the
conditional independence assumption of HMMs ([3], chap-
ter 8), namely that the current feature vector depends only on
the current state, implies a major performance limitation of
HMM-based recognizers in reverberant environments.

The dispersive effect of reverberation is the reason why
conventional model adaptation approaches developed mainly
for the adaptation to additive distortions (see e. g. [3], chap-
ter 10 for an overview), cepstral mean subtraction [4] or
the use of ∆ and ∆∆ features [5] are not very effective in
reverberant environments. All these approaches effectively
improve recognition performance when the speech signal
is convolved by a short impulse response. However they
achieve only limited improvements with the long impulse re-
sponses of room reverberation.

To improve the robustness of HMM-based recognizers
to reverberation, model training with artificially reverberated
training data [2, 6, 7] and model adaptation approaches tai-
lored particularly to reverberation [8, 9] have been proposed.
Both methods achieve a significant increase in recognition
rate in reverberant environments compared to HMMs trained
only on clean data. However, since both methods still solely
rely on HMMs, their performance is limited by the condi-
tional independence assumption. Furthermore, the reverber-
ant training approach implies a considerable effort. Room
impulse responses, used to generate the reverberant training
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Figure 2: ASR based on a combination of an HMM network
Nλ and a reverberation model η according to [1].

data, have to be measured in the target environment, and a
complete training has to be performed.

Recently, two approaches have been proposed to over-
come the limitation of the conditional independence assump-
tion. In [10] a frame-by-frame adaptation method is sug-
gested which estimates the reflection of the previous feature
vectors by a first-order linear prediction and adds the esti-
mate to the means of the clean-speech HMM. This implies
an approximation of the reverberation by a strictly exponen-
tially decaying function and achieves slightly lower recogni-
tion rates compared to matched reverberant training [10].

The approach proposed in [1] uses a combination of an
HMM network and a reverberation model to describe the
reverberant feature sequence. In this way, a very accurate
model of the reverberation is achieved so that the approach
outperforms conventional HMM-based recognizers trained
on matched reverberant speech. However, the training of
the reverberation model suggested in [1] still requires the
measurement of room impulse responses (RIRs) in the room
where the recognizer is to be used.

In some important applications, measuring a set of room
impulse responses in the target environment is either not pos-
sible or too expensive. Therefore, in this paper, we propose
a new way to estimate the reverberation model directly in
the feature domain. The feature-domain representation of
the RIRs in the target environment is determined by max-
imum likelihood (ML) estimation based on the reverberant
feature sequences of a few calibration utterances with known
transcriptions. In this way, measurements of room impulse
responses become unnecessary, and the effort for training is
greatly reduced compared to [1] and compared to the rever-
berant training approaches.

The paper is organized as follows: In Section 2, the ap-
proach proposed in [1] is reviewed with a special emphasis
on the reverberation model. The new estimation of the rever-
beration model is derived in Section 3 and simulation results
are discussed in Section 4. In Section 5, the paper is summa-
rized and conclusions are drawn.

2. REVERBERATION MODEL FOR ROBUST ASR

To model the reverberant feature sequences without the limi-
tation imposed by the conditional independence assumption,
[1] suggests to use a combination of an HMM network Nλ
modeling the clean speech and a reverberation model η as
depicted in Figure 2. The combination of the model outputs
is performed directly in the feature domain.

The combination operator for the two model outputs is
feature-dependent. A very simple combination operator can
be used for mel-spectral (melspec) coefficients, which are a
preliminary stage in the calculation of the MFCC coefficients
without the logarithm and the DCT operation as depicted in
Figure 3. Therefore, melspec coefficients are used as speech
features throughout this paper, even though they cannot be
modeled very well by single Gaussian densities.
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Figure 3: Calculation of melspec features.

In the melspec domain, the combination operation of the
model outputs can be expressed as a convolution of the fea-
ture vectors

x(n) =
M−1

∑
m=0

h(m,n)⊙s(n−m) ∀ n = 1 . . .N +M−1 . (1)

where x(n), h(m,n) and s(n−m) are the reverberant feature
vector, the output of the reverberation model and the output
of the clean-speech HMM network, respectively.

The reverberation model can be thought of as a feature
domain representation of the RIR. However, the reverber-
ation model does not only represent a single fixed RIR. It
rather is a statistical representation of all possible RIRs of
the room where the recognizer will be used.

The reverberation model exhibits a matrix structure
where each row corresponds to a certain mel channel and
each column to a certain frame as shown in Figure 4. The
matrix elements are modeled by random variables. For sim-
plicity, these random variables are assumed to be statistically
independent and normally distributed.

At each time frame, each random variable produces a
new realization which is statistically independent from the
previous realizations. In this way, the reverberation model
can be considered as a matrix-valued independent identically
distributed (IID) random process.

For the recognition, an extended version of the Viterbi
algorithm is employed to find the most likely path through
the network of HMMs in connection with the reverberation
model. At each Viterbi iteration

γ j(n) = max
i
{γi(n−1) ·ai j ·O(n)} ,

an inner optimization

O(n) = max
s(n),h(m,n)

{ f
λ
( j,s(n)) · fη(h(0,n), . . . ,h(M−1,n))} (2)

has to be performed in order to find the optimum combina-
tion of the HMM output and the reverberation model output.
Here, γ j(n), ai j and O(n) denote the Viterbi score of frame

n and state j, the transition probability from state i to state
j and the output density of the combined model, which is
given by maximizing the product of the HMM output den-
sity fλ ( j,s(n)) and the reverberation model output density

fη(h(0,n), . . . ,h(M−1,n)). Further details are given in [1].
To train the reverberation model, [1] proposes to use a

set of room impulse responses measured for different loud-
speaker and microphone positions in the room where the
recognizer will be used. After time alignment, the feature
domain representations of all RIRs are calculated and used
to determine the means and variances of the reverberation
model.

3. MAXIMUM LIKELIHOOD ESTIMATION OF
THE REVERBERATION MODEL

In this section, a novel approach for estimating the reverbera-
tion model which does not require the measurement of room
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Figure 4: Reverberation model.

impulse responses is derived. The reverberation model is es-
timated directly in the feature domain based on a few cali-
bration utterances with known transcriptions recorded in the
target environment by the recognizer’s distant microphone.

For each utterance, the reverberant speech signal is trans-
formed to the feature domain yielding the reverberant feature
sequence x(1) . . .x(N), where

x(n) = [x1(n),x2(n), . . . ,xL(n)]T

is the L×1 reverberant feature vector at frame n, and xl(n) is

the l-th feature of x(n), N is the length of the utterance and
L is the number of features per vector.

The reverberation model is estimated as follows. The re-
verberant feature sequence x(1) . . .x(N) is segmented into
hyper-frames with a length of K and a relative shift of P
frames. For each hyper-frame, a speech model describing
the clean-speech hyper-frame is determined. From this clean
speech model, a reverberant speech model is derived.

The idea now is to find an estimate of the melspec RIR
representation for the current hyper-frame by maximizing the
probability of the reverberant hyper-frame given the rever-
berant speech model. Using the melspec RIR representations
for all hyper-frames, the means and variances of the reverber-
ation model are calculated as described below.

For simplicity, the speech features are assumed to be sta-
tistically independent. Therefore, the estimation of the re-
verberation model can be performed separately for each mel
channel. We define the 1×K vectors

sl(k) = [sl(kP),sl(kP+1), . . . ,sl(kP+K −1)]

xl(k) = [xl(kP),xl(kP+1), . . . ,xl(kP+K −1)]

representing the clean and reverberant features of the l-th mel
channel of hyper-frame k.

Using the HMMs of the recognizer, which are trained on
clean speech, and the known transcriptions, a sequence of
HMMs describing the word sequence of the current calibra-
tion utterance is constructed. The most likely path through
this HMM sequence is determined by the Viterbi algorithm.
In this way, the state/frame-alignment between the reverber-
ant feature sequence and the HMM sequence is obtained.
That is, a certain HMM state is assigned to each frame n of
the reverberant sequence. Using the output densities of the
aligned HMM states, the joint probability density

f
S

l
(k)

(sl(k)) = f
S

l
(kP)

(sl(kP)) · . . . · f
S

l
(kP+K−1)

(sl(kP+K −1))

for the l-th feature of the clean-speech hyper-frame k is ob-
tained, where Sl(k) and Sl(kP + n) are the random vector

and random variable describing sl(k) and sl(kP+n), respec-
tively. Note that statistical independence of all frames is as-
sumed for simplicity.

The joint density for the l-th feature of the reverberant
hyper-frame k is approximated by

f
X

l
(k)(xl(k)) = f

X
l
(kP)(xl(kP)) · . . . · f

X
l
(kP+K−1)(xl(kP+K −1))

= A · exp

(

−
1

2
(xl(k)−µ

X
l
(k))C−1

X
l
(k)X

l
(k)(xl(k)−µ

X
l
(k))

T

)

,

where A is a normalizing constant.
The 1×K mean vector µ

X
l
(k)

is approximated by a con-

volution in the feature domain as

µ
X

l
(k) = [µX

l
(kP), . . . ,µX

l
(kP+K −1)]

= hl(k) µ
S

l
(k) ,

where

µ
S

l
(k) =



















µS
l
(kP) µS

l
(kP+1) · · · µS

l
(kP+K −1)

0 µS
l
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l
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0 0 · · · µS
l
(kP+K −3)
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0 0 · · · µS
l
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is a M×K matrix containing the means of feature l from the
clean speech model needed to calculate the corresponding
means of the reverberant model for hyper-frame k, and

hl(k) = [hl(k,0), . . . ,hl(k,M−1)]

is the 1×L vector describing the l-th mel channel of the fea-
ture domain RIR representation at hyper-frame k. Here, the
m-th vector element hl(k,m) represents the m-th frame of this
RIR representation.

For simplicity, the K × K diagonal covariance matrix
C

X
l
(k)X

l
(k) of the reverberant hyper-frame Xl(k) is approxi-

mated by the covariance matrix C
S

l
(k)S

l
(k)

of the clean hyper-

frame Sl(k) as suggested in [8]

C
X

l
(k)X

l
(k)

= C
S

l
(k)S

l
(k)

.

To find the most likely RIR representation for hyper-frame k,
f
X

l
(k)(xl(k)) is maximized with respect to hl(k) for each mel

channel l = 1 . . .L. Taking the logarithm of f
X

l
(k)(xl(k)) and

neglecting the irrelevant constants A and −1/2, we obtain the
cost function

J(hl(k)) = (xl(k)−µ
X

l
(k))C−1

X
l
(k)X

l
(k)(xl(k)−µ

X
l
(k))

T .

Minimizing J(hl(k)) is equivalent to maximizing

f
X

l
(k)(xl(k)), so the maximum likelihood estimate of

hl(k) is given by

ĥl(k) = argmin
h

l
(k)

J(hl(k)) .

Using µ
X

l
(k)

= hl(k) µ
S

l
(k)

and C
X

l
(k)X

l
(k)

= C
S

l
(k)S

l
(k)

, the

cost function can be expressed as

J(hl(k)) = (xl(k)−hl(k) µ
S

l
(k)

)C−1
S

l
(k)S

l
(k)(xl(k)−hl(k) µ

S
l
(k)

)T

= xl(k)C−1
S

l
(k)S

l
(k) x

T
l (k)−2hl(k)µ

S
l
(k)

C−1
S

l
(k)S

l
(k) x

T
l (k)

+ hl(k)µ
S

l
(k)

C−1
S

l
(k)S

l
(k)µT

S
l
(k) h

T
l (k) .
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Room A Room B Room C

Type lab studio lecture room

T60 300 ms 700 ms 900 ms

d 2.0 m 4.1 m 4.0 m

SRR 4.0 dB −4.0 dB -4.0dB

Table 1: Summary of room characteristics: T60 is the re-
verberation time, d the distance between speaker and micro-
phone and SRR is the signal-to-reverberation-ratio.

Calculating the derivative of the cost function with respect to
hl(k) and setting it to zero, we obtain

ĥ
T
l (k) = (µ

S
l
(k)

C−1
S

l
(k)S

l
(k) µT

S
l
(k))

−1 µ
S

l
(k)

C−1
S

l
(k)S

l
(k) x

T
l (k) . (3)

The maximum likelihood melspec representations ĥl(k) are
found in this way for all hyper-frames k and all mel channels
l and are used to estimate the means and variances of the
reverberation model

µ
h

l
=

1

J

J−1

∑
k=1

ĥl(k) for l = 1, . . . ,L , (4)

σ2
h

l
=

1

J −1

J−1

∑
k=1

(

ĥl(k)−µ
h

l
(k)

)2

for l = 1, . . . ,L, (5)

where J is the number of hyper-frames. Thus, all parameters
of the reverberation model are determined.

4. EXPERIMENTS

To verify how well the effect of reverberation can be de-
scribed by the ML reverberation models determined accord-
ing to Section 3, we perform experiments with reverberant
versions of the TI digits corpus [11] (sampling rate 20 kHz)
in three different rooms. The ML reverberation models are
first compared to the reverberation models obtained from
measured room impulse responses according to [1], which
will be referred to as exact reverberation models in the fol-
lowing. Then, connected digit recognition (CDR) experi-
ments are performed in all three rooms. The recognition
performance of the ML reverberation models and the exact
reverberation models used according to [1] are compared to
those of conventional HMM-based recognizers.

4.1 ML Estimation of Reverberation Models

For the ML estimation of the reverberation models, calibra-
tion utterances with known transcriptions are used. There-
fore, 20 utterances from the TI digits training set, contain-
ing 140 digits in total, are selected as calibration utterances
and are convolved with the RIRs measured in three different
rooms. The characteristics of these rooms are summarized in
Table 1.

The reverberant calibration utterances are then trans-
formed to the feature domain by calculating 24 melspec coef-
ficients for each frame using a frame length of 25 ms, a frame
shift of 10 ms and a DFT size of 512.

To get the clean speech model, two different sets of 16-
state word-level HMMs are used, one set in the melspec
domain, the other in the MFCC domain. Using the clean
training set of the TI digits corpus, these HMM sets are
trained in the following way. First, single Gaussian MFCC-
based HMMs are trained by ten iterations of Baum-Welch
re-estimation. Then, single Gaussian melspec HMMs are ob-
tained from the MFCC-based HMMs by single pass retrain-
ing [12].

Room A Room B Room C

K length of the current calibration utterance

J 20 utterances = 20 hyper-frames

M 20 50 70

Table 2: Parameters used for the ML estimation of the rever-
beration model: K: hyper-frame length, J: number of hyper-
frames, M length of the reverberation model in frames.
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Figure 5: Mean values of a) the exact reverberation model
b) the ML reverberation model for room C (melspec domain
with dB color scale).

The MFCC-based HMMs are used to determine the
state/frame-alignment between the feature vectors and the
HMMs. Based on this state/frame-alignment, the joint proba-
bility density f

S
l
(k)

(sl(k)) of the clean-speech hyper-frame k

is obtained for all mel channels by assigning the correspond-
ing single Gaussian output densities of the respective states
of the melspec HMMs to the aligned frames.

Using the mean vector and the covariance matrix of this
density, the means and variances of the reverberation model
are calculated according to equations (3), (4) and (5). The
parameter settings used for these calculations are summa-
rized in Table 2. The hyper-frame length is set to the variable
length of the utterances. That is, each of the 20 calibration
utterances is used as one hyper-frame.

Figure 5 compares the mean values of the exact rever-
beration model to the mean values of the ML reverberation
model for room C. The two images do not look similar at the
first glance, since the details of their time/frequency-patterns
are different. However, a closer inspection shows that the
means obtained by ML estimation are a fairly good approxi-
mation to the basic envelope of the exact means for the first
20-30 frames. For example both time/frequency-patterns ex-
hibit regions of high power around the mel channels 4 and 18
and regions of low power around channels 12 and 24.

For the later frames, the approximations of the ML ap-
proach lead to an overestimation of the reverberation. There-
fore, in the second half of the reverberation model, the ML
means are significantly higher than the exact means. Simi-
lar results are obtained for room A and B. Therefore, only
the first half of the ML reverberation model is used in the
following experiments.

4.2 Connected Digit Recognition Experiments

The recognition rates of the ML reverberation models are
compared to that of the exact reverberation models and to
that of conventional HMM-based recognizers by simulations
of a connected digit recognition task.
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clean Room

data A B C

(I) conv. clean training 82.0 51.5 13.4 25.9

(II) conv. reverb. training - 66.8 54.6 46.0

(III) exact reverberation model - 77.6 71.6 67.6

(IV) ML reverberation model - 63.0 57.3 58.5

Table 3: Word accuracies for the conventional HMM-based
recognizer trained on clean (I) and reverberant speech (II)
and for the reverberation model-based approaches according
to [1] using exact reverberation models (III) and ML rever-
beration models (IV).

One set of test data is obtained for each room A, B and C
by convolving the clean data from the TI digits test set with
different RIRs measured in the corresponding room.

The clean-speech single Gaussian melspec HMMs as de-
scribed in Section 4.1 are used both for the reverberation
model-based approaches and the conventional HMM-based
approach. Additionally, HMMs trained on matched rever-
berant data from the respective rooms are used for the con-
ventional HMM-based approach.

As only the early frames of the ML estimation are reli-
able, only the first half of each ML reverberation model is
used, so that the length of the ML reverberation model is
M = 10/25/35 in room A/B/C. Also, the ML variance esti-
mation according to equation (5) deviates significantly from
the variances of the exact reverberation models. Therefore,
the ML variance estimation is replaced by the square of the
ML means, which has been found to represent a better ap-
proximation of the exact variance.

Table 3 compares the recognition rates of the HMM-
based approaches using HMMs trained on clean (I) and
matched reverberant data (II), and the reverberation model-
based approaches using the exact (III) and the ML (IV) re-
verberation models.

With increasing reverberation, the word accuracy of the
HMM-based recognizer trained on clean speech (I) decreases
significantly. Even though, room B is less reverberant than
room C, the performance of (I) is lower in room B, be-
cause room B exhibits a strong low-pass characteristic. Us-
ing HMMs trained on reverberant data of matched conditions
(II), the recognition performance is increased considerably
in all reverberant environments. Using exact reverberation
models in the recognizer concept of [1] (III), the recogni-
tion rate is further increased, almost approaching the clean-
speech performance of (I).

The word accuracy achieved with the ML reverberation
models (IV) is significantly higher than that of (I). In the
moderately reverberant room A, it is comparable to the accu-
racy achieved by the reverberant HMMs (II). In the strongly
reverberant room C, the proposed ML reverberation models
(IV) perform significantly better than (II). The reason why
(IV) only slightly outperforms (II) in the highly reverberant
room B is the low-pass characteristic of room B, which can
be very well modeled by the conventional HMM-based rec-
ognizer (II).

In summary, using the ML reverberation models in the
recognizer concept according to [1], a recognition perfor-
mance comparable or better than that of reverberantly trained
HMMs can be achieved without measuring room impulse re-
sponses in the target environment. Furthermore, these results
confirm that the recognizer concept according to [1] is robust

to inaccuracies in the reverberation model.

5. CONCLUSIONS

A novel approach for estimating the reverberation model,
which is used in the recognizer concept according to [1] for
robust distant-talking ASR in reverberant environments, has
been proposed in this paper. A few calibration utterances
with known transcriptions are recorded in the target environ-
ment and are used in a maximum likelihood estimation ap-
proach to find the means and variances of the reverberation
model. The approach allows the reliable estimation of the
early frames of the reverberation model without measuring
room impulse responses in the target environment. In this
way, the effort for training is greatly reduced compared to
training HMMs on artificially reverberated data. Simulation
results of a connected digit recognition task have shown that
the proposed ML reverberation models achieve recognition
rates comparable to those of reverberant HMMs in moder-
ately reverberant rooms and significantly better than those of
reverberant HMMs in strongly reverberant rooms.
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