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ABSTRACT
Topographic independent component analysis (TICA) is

an effective tool to group the geometrically nearby source
signals. The TICA algorithm further improves the results if
the desired signal sources have particular properties which
can be exploited in the separation process as constraints.
Here the spatial-frequency information of the seizure signals
is used to design a constrained TICA (CTICA) for the separa-
tion of epileptic seizure signal sources from the multichannel
electroencephalogram (EEG). The results are compared with
those from the TICA and the superiority of the new CTICA
has been demonstrated.1

1. INTRODUCTION

Epilepsy affects more than fifty million people in the world.
Many studies have been carried out to explore the mecha-
nisms of epileptogenesis and the possible solutions for an-
ticipation and therapia [1]- [5]. Prediction of seizure has
been investigated for decades. The most widely applied ap-
proach is based on the nonlinear analysis methods for the in-
tracranial EEG recordings. The nonlinear analysis methods
consider the epileptic brain as a dynamical system and the
prediction problems can be solved by means of analysis of
the corresponding nonlinear features. Although the dynamic
properties have been shown in the scalp EEGs [6] [7], there
are two main challenges in applying the traditional nonlinear
methods to the scalp EEGs: one is that the scalp signals are
more subject to the environmental noise and artifacts; sec-
ond, the meaningful signals are attenuated and mixed when
passing through the brain, skull, and scalp. A novel approach
proposed in [8] [9] has already shown very promising results
of the predictability from the scalp EEGs by incorporating
the popular blind source separation (BSS) algorithm. The
main concept of this approach is to consider the seizures as
the independent components which are linearly and instanta-
neously combined together with the noise and artifacts over
the scalp. All independent components can be separated by
BSS algorithms, and the seizure sources can be selected by
postprocessing. The traditional nonlinear analysis methods
can be applied to these seizure components. This approach
can be improved if the separation can achieve better perfor-
mance. The objective of this work is to develop a method that
can provide more plausible estimation of the seizure sources
and eventually pave the way for the prediction of epileptic
seizure from the scalp EEGs.

Independent component analysis (ICA) has been increas-
ingly applied to brain signal analysis for decomposition of

1An extended and detailed version of this manuscript is to be published
in The Journal of Computational Intelligence and Neuroscience 2007.

multivariate EEGs to extract the desired sources. It has
found a fruitful application in the analysis of multichannel
EEGs [10] including epileptic seizure signals. The conven-
tional noise-free ICA model can be expressed as:

x(t) = As(t) (1)

wherex(t) = [x1(t),x2(t), ...,xn(t)]T , x ∈ ℜn is the vector
of observed signals at timet, (·)T denotes transpose oper-
ation.s(t) = [s1(t),s2(t), ...,sm(t)]T is the unknown indepen-
dent source,s∈ℜm, m≤ n for the over-determined mixture
andA ∈ ℜn×m is the mixing matrix. The estimated sources
y(t) = [y1(t),y2(t), ...,ym(t)]T can be obtained by a separa-
tion matrixW through inversion of the above data model,

y(t) = Wx(t) (2)

whereW = A† is the pseudo-inverse of the mixing matrix
and WA = I . There are certain assumptions and restric-
tions for this model: 1) the source signals are statistically
independent; 2) the independent components must have non-
Gaussian distributions; and 3) the number of independent
components are less or equal to the number of input chan-
nels [11]. The ICA algorithm has its own limitations which
are the scale ambiguity and the permutation problem. Some-
time it cannot take all the prior physiological information
into account and the results of separation cannot be inter-
preted physiologically.

Topographic ICA (TICA) proposed by Hyvärinen et al.
[12] is a modified ICA model, which relaxes the assump-
tion of statistical independency of the components, consid-
ering the components topographically closed to each other
are not completely independent but have certain dependen-
cies. The dependencies are used to define a topographic or-
der between these components. This provides an efficient
approach for separation of the multichannel EEG source sig-
nals, because the dependencies between such sources cannot
be simply cancelled out by some statistical assumptions. In
this work, we show how TICA can be used for separation of
the seizure signals from EEGs, and how the performance can
be improved by introducing the novel spatial and frequency
constraints. (The constrained TICA is denoted as CTICA).

The paper is organized as follows. Section 2 describes the
algorithm development. The basic TICA model and princi-
ples are explained and the CTICA model is developed. Sec-
tion 3 gives the experimental results obtained by applying the
proposed methods to the epileptic seizure EEGs, the perfor-
mance of CTICA and TICA is compared and the superiority
of CTICA is demonstrated. The final section concludes the
paper.
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2. ALGORITHM DEVELOPMENT

2.1 Topographic ICA

In the conventional ICA, the sources are assumed to be com-
pletely statistically independent and the estimated signals
have no particular order. But in most real applications, some
sources maybe more or less dependent on each other, such
as the EEG sources which are fired from close locations
within the cortex. In order to estimate the dependency of
the independent components, Hyvärinen et al. proposed the
TICA [12]. In TICA, the independency of the components
has been relaxed, which means that the sources geometri-
cally far from each other in topography are considered ap-
proximately independent and the sources close to each other
are assumed to have certain dependencies. The dependency
is defined as the higher-order correlation between the esti-
mated sources, such as the correlation of the energies. In the
TICA model, the variances of estimated components are not
constant, instead, they are generated by some high-order in-
dependent variables. These variables are mixed linearly in
the topographic neighborhood, which are defined by a neigh-
borhood functionh(i, j). Based on this model, the estimated
components in the same neighborhood are energy correlated.
The approximation of the density of sourcesi is given as:

p̃(s) = ∏
k

exp(G(∑
i

h(i,k)s2
i )), (3)

where k is the index of the components within the same
neighborhood.G(·) is the scalar function defined by incor-
porating certain nonlinearity as those defined in [12]. The
approximation of the log-likelihood of this model is given
as:

logL̃(W) =
N

∑
t=1

n

∑
j=1

G(
n

∑
i=1

h(i, j)(wT
i x(t))2)+Nlog(|detW|)

(4)
where,wi is the column vector of the unmixing matrix,N is
the length of the data, andh(i, j) is the neighborhood func-
tion, which can be defined as a monotonically decreasing
function of some distance. The second term of the above
equation can be ignored because the unmixing matrix is con-
strained to be orthogonal and the determinant of an orthog-
onal matrix is one. Therefore, the estimation of the TICA
model changes to choosing the optimal matrixWopt that
maximizes the above log likelihood function. The estima-
tion of maximization of the log-likelihood can be found by:

∂
∂W

logL̃(W)|W=Wopt = 0 (5)

The computation of the gradient can be found in [12]:

∇Wk = 2
N

∑
t=1

x(t)(wT
k x(t))

n

∑
j=1

h(k, j)g(
n

∑
i=1

h(i, j)(wT
i x(t))2)

(6)
whereg(·) is the derivative of the scalar functionG(·).

2.2 Constrained Topographic ICA

The estimated components from the TICA maybe dependent
if they fall into the same neighborhood, i.e, the sources com-
ing from the nearby location will be grouped together. How-
ever, the performance of TICA algorithm has certain limits.

It maybe not easy to obtain the sources grouped together un-
less the nearby sources are active at the same time. In [12],
in order to obtain better visualization results, the experiment
was set to generate some typical high energy sources such
as biting teeth for 20 seconds. But in the most cases of real
applications, the source signals may not be so significant, or
there maybe only one or two of active sources. This could
be the factor that affects the performance of TICA. Another
factor is the number of input channels. It is obvious that the
more input channels, the more information one can have and
the better results can be achieved. This can be another limita-
tion for the practical applications. However, the performance
can be improved by introducing certain constraints in the al-
gorithm.

Application of the constrained ICA for EEG analysis has
been previously reported [8] [13]- [17]. The classic ICA dose
not exploit the dependency of the sources therefore not al-
ways provides the desired outputs. For EEGs, there are valu-
able prior knowledge which can help to separate the desired
sources. In this study, we consider two constraints which are
based on spatial and frequency information. Firstly, in the
focal epileptic seizures, the location of the seizure sources,
”epileptogenic zone”, is often known as the prior informa-
tion. Secondly, seizure signals manifest themselves within
certain frequency band. Based on the research findings from
the clinicians and the neurologists, although the dominant
frequency may vary for different types of seizures, the fre-
quency band of the epileptic seizure onset is normally from
2.5 to 15.5 Hz. (Frequencies below 2.5 Hz are considered
to be mainly due to eye-blinking artifacts) [18] [19] [20].
Therefore, the constraint can be determined based on both
spatial and frequency domain information. The model of the
constrained TICA problem can be presented as:

maxJm(W) s.t. minJc(W) (7)

whereJm(W) is the main cost function, here the main cost
function is given in Eq. (4). Jc(W) is the constrained cost
function, which can be defined as minimizing the distance
between the output and a reference signal:

Jc(W) = argmin
w

N

∑
t=1
‖wT

i x(t)−yr(t)‖2
2 (8)

whereyr is the reference signal defined based on the spatial
and frequency constraints.‖ · ‖2 is the Euclidean distance.
The CTICA is then changed to an unconstrained function by
using a Lagrange multiplier. Therefore, the overall cost func-
tion is written as:

J(W,Λ) = Jm(W)−ΛJc(W) (9)

whereΛ = diag{Λii}, i = 1, ...,m, is a diagonal weight matrix
formed by

Λ = p·diag(cor(yr ,yi)) (10)

wherep is an adjust constant,cor(·) is the correlation mea-
surement, andyi is theith estimated source. Then the update
equation is obtained as:

W(k+1) = W(k)+ µ(k){∂Jm(W)
∂W

+Λ(X(WX −Yr)T)}
(11)

whereµ is the step size which is updated iteratively.Yr is
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the matrix with the reference signalyr in each row .

3. EXPERIMENT

3.1 Data acquisition and the experiment setup

The multichannel EEGs with the frontal focal epileptic
seizure were recorded from the standard silver cup elec-
trodes applied according to the ’Maudsley’ electrode place-
ment system, which is a modification of the extended 10-20
system [21]. The 16 channels EEGs were sampled at 200 Hz
and bandpass filtered in the frequency range of 0.3 - 70Hz.
The system input range was 2 mV and data were digitized
with a 12-bit analog-to-digital converter [8]. The EEGs were
filtered by a 10th order Butterworth digital filter with a cut
frequency of 45Hz in order to eliminate the 50Hz frequency
component. The data used in the following experiments were
truncated from the original recordings to include the duration
of 10 seconds with seizure onset as shown in Fig.1.
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Figure 1:Multichannel EEGs from an epileptic patient with
the seizure onset.

The reference was obtained by first averaging the spe-
cial channels closed to the epileptogenic zone. In the experi-
ment, F3, F4, F7, F8, C3 and C4 were selected. Then 3-15Hz
bandpass filtering was undertaken to extract the information
within the seizure frequency band. The final reference is a
vector bounded within the designed spatial and frequency in-
formation of the seizure.

The neighborhood function indicates how the estimated
sources are energy correlated with each other, which can be
defined as a function of the width of the neighborhood. In
this study, because of the limited number of input channels,
the function was chosen as the simple one-dimensional form,
such ash(i, j) = 1, if |i− j| ≤ m, otherwise,h(i, j) = 0. m
is the width of the neighborhood. It can be noticed that the
neighborhood function is symmetric ash(i, j) = h( j, i).

3.2 Results

The separation results of TICA and CTICA are given in Fig.
2 and Fig.3, both with the width of neighborhoodm= 1. A

simple detection rule based on the dominant frequency and
respective estimated spectrum is applied to select the sources
which have the significant ictal activities. The source with
a maximum spectrum amplitude higher than a threshold and
also with the dominant frequency in the seizure band, is taken
as a seizure source. These sources are, IC7, IC8, IC9 and
IC10 in Fig. 2, IC5, IC6, IC7 and IC8 in Fig.3. One can
see that the high amplitude spike signal are separated from
the other sources. Another distinct source related to the eye
blink can be seen from both of the outputs, which is IC12 in
Fig. 2 and IC4 in Fig.3.
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Figure 2:EEG source signals estimated by the TICA.

The differences between the source candidates may not
be easily noticed by visual inspection of the time course of
the sources, hence the topography is applied for this pur-
pose. Fig.4 and Fig.5 show the topography of the sources
estimated by TICA and CTICA respectively. Topography
can be achieved by backprojecting the estimated source onto
the original signal space, i.e. multiplying each column vec-
tor of the inverse of unmixing matrix by the corresponding
estimated source. Topography reveals how each source sig-
nal contributes to the electrode signals. For example, one can
notice that in both sets of results, the distribution of eye blink
(IC12 in Fig. 4 and IC4 in Fig.5) appears on the area near
the electrodes Fp1 and Fp2. It can be found that, the four se-
lected ICs are grouped together. The difference is, in Fig.5,
the selected ICs (IC5, IC6, IC7 and IC8) from the CTICA are
localized in the frontal region, but in Fig.4, the distribution
of the corresponding sources (IC7, IC8, IC9 and IC10) by the
TICA are rather dispersed. For instance, for IC10, the spatial
distribution is highlighted in both frontal and temporal areas.
A similar result can be noticed for IC11.

The differences can also be evaluated by comparing
the performance in terms of the signal-to-interference ratio
(SIR). Here, we define SIR to be the averaged signal energy
for the estimated sourcey(t) from the direct source divided
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Figure 3:EEG source signals estimated by the CTICA.

Figure 4: Topography of the estimated EEG sources from
TICA.

Figure 5: Topography of the estimated EEG sources from
CTICA.

by the energy stemming from the other sources as:

SIR=
1
m ∑m

i |W−1
ii |2 < |yi |2 >

1
m(m−1) ∑m

i 6= j ∑m
j |W−1

i j |2 < |y j |2 >
(12)

whereW−1
ii includes the diagonal elements in the inverse

of unmixing matrix, i.e. the weights from sourceyi to sen-
sorxi . The off-diagonal elementsW−1

i j provide the weights
from the sourcey j to the sensorxi . It shows how the source
y j interferes the sourceyi , since each column of the inverse
of unmixing matrix indicates the distribution of each source
in the mixture, and a higher value indicates a better perfor-
mance.

The performance of the algorithm is evaluated by the av-
erage of five trials for both the TICA and the CTICA. Fig.
6 shows the separation performance via the changes of the
width of the neighborhood. It can be noticed that, the SIR
of TICA decreases with increasing the neighborhood width.
This is because the wider the neighborhood is, the more
the sources will be separated based on the energy correla-
tion. However, for the CTICA, because of the spatial and
frequency constraints, the SIR slightly decreases at the be-
ginning, then stays approximately at certain level. It shows
that generally, the CTICA has a better performance than the
TICA. It also works better than the TICA when the width of
the neighborhood increases.

4. CONCLUSION

A new constrained topographic BSS algorithm has been de-
veloped to separate the epileptic seizure sources from the
EEG signals. The incorporated constraints are based on the
prior information about spatial and frequency of the focal
epileptic seizures. The experimental results show that seizure
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Figure 6: Performance comparison of the TICA and the
CTICA.

sources coming from the epileptogenic zone are grouped to-
gether. The CTICA algorithm achieves better performance
in terms of seizure source separation, and also works better
when the width of the neighborhood increases.
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