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ABSTRACT

This paper treats speech/music discrimination of radio
recordings as a maximization task, where the solution is ob-
tained by means of dynamic programming. The proposed
method seeks the sequence of segments and respective class
labels (i.e., speech/music) that maximize the product of pos-
terior class label probabilities, given the within the segments
data. To this end, a Bayesian Network combiner is embed-
ded as a posterior probability estimator. Tests have been per-
formed using a large set of radio recordings with several mu-
sic genres. The experiments show that the proposed scheme
leads to an overall performance of92.32%. Experiments are
also reported on a genre basis and a comparison with exist-
ing methods is given.

1. INTRODUCTION

Speech/Music discrimination refers to the problem of seg-
menting an audio stream and labeling each segment as either
speech or music. Since the first attempts in the mid 90’s, a
number of speech / music discrimination systems have been
proposed in various application fields.

In [1], a real-time technique for speech/music discrim-
ination was proposed, focusing on the automatic monitor-
ing of radio stations, using features related to the short-term
energy and zero-crossing rate (ZCR). In [2], thirteen audio
features were used in order to train different types of mul-
tidimensional classifiers, such as a Gaussian MAP estima-
tor and a nearest neighbor classifier. In [3], energy, ZCR
and fundamental frequency were used as features in order
to achieve analysis of on-line audiovisual data. Segmen-
tation/classification was achieved by means of a procedure
based on heuristic rules. A framework based on a combina-
tion of standard Hidden Markov Models and Multilayer Per-
ceptrons (MLP) was used in [4] for speech/music discrim-
ination of broadcast news. An Adaboost - based algorithm,
applied on the spectrogram of the audio samples, was used
in [5] for frame-level discrimination of speech and music. In
[6], energy and ZCR were employed as features and classifi-
cation was achieved by means of a set of heuristic criteria in
an attempt to exploit the nature of speech and music signals.

The majority of the previously described methods deal
with the problem of speech/music discrimination in two sep-
arate steps: first, the audio signal is split into segments by
detecting abrupt changes in the signal statistics and at a sec-
ond step the extracted segments are classified as speech or
music by using standard classification schemes. The work
in [4] differs in the sense that the two tasks are performed
jointly by means of a standard HMM, where, for each state,
a MLP is used as an estimator of the continuous observation
densities required by the HMM.

The method that we propose in this paper formulates
speech/music discrimination as a maximization task. In other
words, the method seeks the sequence of segments and the
respective class labels (i.e., speech/music) that maximizes
the product of posterior (class label) probabilities, given the
segments data. In order to estimate the required posterior
probabilities, a Bayesian Network (BN) Combiner is trained
and used. Since an exhaustive approach to this solution is
unrealistic, we resort to dynamic programming to solve this
maximization task.

Section2 describes the feature extraction stage. Section
2.1 formulates speech/music discrimination as a maximiza-
tion task and provides a dynamic programming solution. The
BN combiner architecture and related issues are given in Sec-
tion 2.2. The datasets that we have used, the method’s perfor-
mance (both average and on a radio genre basis), as well as
a comparison with other approaches are presented in Section
3.

2. FEATURE EXTRACTION

At a first step, the audio recording is broken into a se-
quence of non-overlapping short-term frames and five au-
dio features are extracted per frame. At the end of this
feature extraction stage, the audio recording is represented
by a sequenceF of five-dimensional feature vectors, i.e.,
F = {O1,O2, . . . ,OT}, whereT is the number of short-term
frames. The specific choice of features was the result of ex-
tensive experimentation. It must be emphasized that this is
not an optimal feature set in any sense, and other choices may
also be applicable. If{x(0),x(1), . . . ,x(N−1)} is the set of
samples of a short-term frame, then the adopted features are
given by:

1. Short-term Energy: This is a popular feature, defined
by the equationE = 1

N ∑N−1
n=0 x2(n).

2. Chroma-Vector based features:The chroma vector has
been widely used in various music information retrieval
applications, e.g., [7]. It can be computed from the mag-
nitude of the DFT of each short-term window, if the DFT
coefficients are grouped into 12 bins, where each bin rep-
resents one of the 12 pitch classes of western-type mu-
sic (semitone spacing). In this paper, two sequences of
chroma vectors are extracted, using different mid-term
window sizes. Each chroma sequence serves as the basis
to compute a feature value over time, namely:
Chroma-based Feature 1:The audio stream is parsed
with a non-overlapping mid-term window of length
100msecs. For each frame, the chroma vector is extracted
and thestandard deviationof its twelve coefficients is
computed, yielding a one-dimensional feature over time.
Our study revealed that the mean value of this feature is
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distinctly lower for music segments than for speech seg-
ments.
Chroma-based Feature 2: The audio stream is mid-
term processed with a non-overlapping window that is
200ms long. Each mid-term window is then broken
into shorter non-overlapping frames, each of which is
25msecs long, resulting into8 short-term frames per mid-
term window. At a next step, the chroma vector is ex-
tracted from each short-term frame, yielding8 chroma
vectors per mid-term widow. In order to extract the sec-
ond chroma-based feature, the standard deviation of each
vector coefficient is computed over the short-term frames
of a mid-term window and theminimum deviationvalue
is kept as the feature value. This stems from our obser-
vation (after careful experimentation) that, in music seg-
ments, there is at least one chroma coefficient with low
standard deviation for a short period of time. On the other
hand, in speech segments, the standard deviation ofall
chroma coefficients is high.

3. The first two Mel Frequency Cepstral Coefficients
(MFCCs). The filter bank used for the computation of
the MFCCs consists of40 triangular bandpass filters,
with bandwidth and spacing determined by a constant
mel-frequency interval. More specifically, the first13
filters are linearly-spaced with133.33Hz between cen-
ter frequencies and are followed by27 log-spaced fil-
ters, whose filter centers are separated by a factor of
1.0711703in frequency. The adopted filter bank cov-
ers the frequency range0−8KHz, suggesting a sampling
rate of16KHz. If S̃k, k = 1, . . . ,40 is the output of thek-
th filter, then the first two MFCCs are given by the equa-
tion

c̃n =
40

∑
k=1

(logS̃k)cos[n(k− 1
2
)

π
40

], n = 1,2

The above suggests that the chroma-based features are com-
puted with a different sampling rate compared with the short-
term energy and the first two MFCCs. This is not a restric-
tion, as it will be made clear in section2.2, where the feature
sequences are fed as input to a Bayesian Network combiner
that serves as the posterior probability estimator.

2.1 Speech/Music discrimination treated as a maximiza-
tion problem

In this stage, speech/music discrimination is treated as a
maximization task, where the solution is obtained by means
of dynamic programming. We make two assumptions con-
cerning the length of the segments to be formed: a) a seg-
ment has to be at leastTmin frames long and b) its duration
cannot exceedTmax frames. The minimum segment duration
is detected by the nature of the signals under study, i.e., we
assume that a segment must have sufficient duration (0.5secs
in this paper) in order to be interpreted either as speech or
music. The need forTmax (3secs in this paper) will be made
clear in the rest of this section and it is a common assump-
tion in such problems, i.e., in variable duration HMMs. As
a result, any segment longer thanTmax, will be partitioned in
segments of smaller thanTmax length.

To proceed further, certain definitions are first given.
Let L be the length of a feature sequenceF that has been
extracted from an audio stream. Our goal is twofold:

a) Segment the sequence intoK segments and b) clas-
sify each one of the segments as speech or music. Let
{d1,d2, . . . ,dK−1,dK} be the frame indexes that mark the end
of each segment. Clearly,Tmin ≤ d1 < d2 . . . < dK = L and
Tmax≥ dk− dk−1 ≥ Tmin, k = 2, . . . ,K. Therefore, thek-th
segment starts at frame indexdk−1 +1 and ends at frame in-
dexdk, with the exception of the first segment, that starts at
the first frame and ends at frame indexd1 (initialization step).
Thus, the feature sequence,F, yields the following sequence
of pairs

{(1,d1),(d1 +1,d2), . . . ,(dK−1 +1,L)},
where each pair holds the frame indexes of the beginning and
end of the corresponding segment. In addition, letck be the
class label of thek-th segment, whereck can be either speech
or music. To this end, letp(ck | {Odk−1+1, . . . ,Odk}), be the
posterior probability of class labelck given the sequence of
observations (feature sequence) of thek-th segment.

Following the above notation, for any given sequence of
K segments and corresponding class labels, we form the cost
function

J({d1,d2, . . . ,dK−1,dK},{c1,c2, . . . ,cK−1,cK})≡
p(c1 | {O1, . . . ,Od1})∏K

k=2 p(ck | {Odk−1+1, . . . ,Odk}) (1)

where independence between successive segments has been
assumed. It is now possible to treat speech/music discrim-
ination as a maximization problem. In other words, we
seek the optimal sequence of segments (i.e., start and end
point of each segment) and the corresponding class labels
that maximizeJ. Equivalently,J needs to be maximized
over all possible values ofK, {d1,d2, . . . ,dK−1,dK} and
{c1,c2, . . . ,cK−1,cK}, under the two assumptions made in the
beginning of this section. Obviously, an exhaustive approach
would amount to an excessive computational load. Thus, we
resort to dynamic programming to obtain a solution to the
problem in an efficient way. Note that this is the first time
that the segmentation classification task is cast in such a for-
mulation.

To this end, as it is common with dynamic programming
techniques [8, 9], we first construct a grid by placing the fea-
ture sequence on the x-axis and the two states (speech/music)
on the y-axis. This is shown in Figure1, whereSstands for
speech andM stands for music. Clearly, the grid has two
rows andL columns (L being the length of the feature se-
quence). In order to give a physical meaning to the nodes of
the grid, take, as an example, node(Odk,S), Tmin≤ dk ≤ L.
This node stands for the case that a speech segment ends at
frame indexdk. Following this line of reasoning, a path ofK
nodes{(Od1,c1),(Od2,c2), . . . ,(OdK ,cK)}, corresponds to a
possible sequence of segments, whereTmin≤ d1 < d2 < dk =
L, Tmax≥ dk−dk−1≥ Tmin, k = 2, . . . ,K and{c1, . . . ,cK} are
the respective class labels. We denote the transition to node
(Odk,ck) from its predecessor in the path, i.e.,(Odk−1,ck−1),
by (Odk−1,ck−1) → (Odk,ck). This transition can be inter-
preted as follows: a segment with class labelck−1 ends
at framedk−1 and the next segment in the sequence starts
at frame dk−1 + 1, ends at framedk and has class label
ck. We then define a cost functionT(.) for the transition
(Odk−1,ck−1)→ (Odk,ck) as follows:

T((Odk−1,ck−1)→ (Odk,ck)) = p(ck | {Odk−1+1, . . . ,Odk})
(2)
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Figure 1:Dynamic programming grid.

In other words, the cost of the transition is set equal to the
posterior probability of the class label,ck, given the feature
sequence defining the segment,{Odk−1+1, . . . ,Odk}. Equa-
tion 2 holds for all nodes in the path, except for the first
node (which does not have a predecessor). For the first node,
p(c1 | {O1, . . . ,Od1}), stands for the posterior probability of
class labelc1 given the firstd1 observations.

Equations1 and2 suggest that, for a given sequence of
K nodes (segments) and corresponding class labels the cost
function now becomes

p(c1 | {O1, . . . ,Od1})∏K
k=2T((Odk−1,ck−1)→ (Odk,ck))

= J({d1,d2, . . . ,dK−1,dK},{c1,c2, . . . ,cK−1,cK}) (3)

According to equation3, the value of functionJ(.) for a se-
quence of segments and corresponding class labels can be
equivalently computed as the cost of the respective path of
nodes in the grid. Therefore, the optimal segmentation se-
quence, i.e., the sequence that maximizesJ(.) can be also
treated as a best path sequence on the grid.

In order to compute the best-path sequence, we need to
define how the best predecessor of each node in the grid is
chosen. We first turn our attention to the case where a node,
(Odk,ck) is not the first node in a path (k 6= 1). In this case the
node has to be reached from a node(Odl ,cl ) such thatTmin≤
dl < dk andTmin≤ dk−dl ≤ Tmax. Following Bellman’s op-
timality principle, if J({d1,d2, . . . ,dl},{c1,c2, . . . ,cl}) is the
cost of the best path up to node(Odl ,cl ), then the best prede-
cessor of node(Odk,ck) is the one that maximizes the product
J({d1,d2, . . . ,dl},{c1,c2, . . . ,cl})T((Odl ,cl )→ (Odk,ck)). If
(Od1,c1) is the first in the path, i.e.,Tmin≤ d1≤ Tmaxwe also
need to computep(c1 | {O1, . . . ,Od1}) and take into account
these values while deciding for the node’s predecessor. This
procedure is repeated for all nodes in the grid and the coor-
dinates of the predecessor for each node are stored. In the
end, we turn our attention to the last column of the grid and
choose the node with maximum value as the winner. The
winning node will be the last node of the best path. Then,
we backtrack through the chain of predecessors to reveal the
best path.

As it will be presented in the next section, we have cho-
sen to approximatep(ck | {Odk−1+1, . . . ,Odk}) by means of
a Bayesian Network combiner. This justifies the need to set
a maximum segment duration (3secs in our study), because
the BN does not yield reliable estimates when the segment’s
length exceedsTmax.

2.2 Bayesian Network architecture

As it was stated in Section2.1, a BN has been used as a pos-
terior probability estimator in the problem definition. To this
end, the BN is trained as a classifier for the binary classifica-
tion problem of speech versus music. In other words,given
a segment, the BN is designed as a classifier combinerthat
returns the posterior probability(on which the class label
is decided). It is important to emphasize, that this classifier
structure decides upon the segment as a whole. This led us
to derive features that are statistics computed over the whole
length of the segment. Furthermore, such a choice does not
require any assumption for independence among the obser-
vations within a segment. This is a very important feature
offered by the use of Bayesian networks as joint probabil-
ity estimators. The classifier system consists of individual,
simple classifiers, that are combined by a BN architecture.

2.2.1 Individual Classifiers

At a first step, given a segment, a separate statistic is calcu-
lated for five different features. The statistics that we use are
shown in Table 1. The choice of the statistics was a result of
extensive experimentation and was motivated by the nature
of the audio signals under study. Each one of the statistics

Feature Statistic
Energy σ2

µ2

Chroma 1 µ
Chroma 2 max

µ
MFCC 2 σ2

MFCC 1 µ

Table 1:Statistics for each one of the five features.

is fed as input to an individual single thresholding classi-
fier, which takes a binary decision, i.e., decides whether the
feature statistic has originated from a speech or music seg-
ment. The individual decisions are then combined using a
BN, which makes the final decision, as described in2.2.2.

2.2.2 Bayesian Network Combiner

The idea behind such a procedure is to use very simple (one
dimensional) classifiers, and then use a BN as a combiner
to boost the overall performance. As already mentioned, the
use of a BN as a final combiner is that it is a natural choice
as a probability estimator (which after all is our goal).

BNs are directed acyclic graphs (DAGs)that encode con-
ditional probabilitiesamong a set of random variables. Each
node of the graph corresponds to a separate random variable
and the arcs of the graph encode the probabilistic depen-
dence of the random variables (nodes). In the case of dis-
crete random variables, for each node (random variable)A,
with parentsB1, ...,Bk a conditional probability table (CPT)
P(A|B1, ...,Bk), is defined. In this paper, the BN architecture
shown in Figure2 ([10]), has been used as a scheme for com-
bining the decisions of the individual classifiers described in
2.2.1. We will refer to this type of BN as the BNC (Bayesian
Network Combiner). Nodesh1, ..., hn (also called hypothe-
ses, rules, attributes or clauses) correspond to the binary deci-
sions of the individual classifiers, while nodeY is the output
node and corresponds to the true class label. During the BN
training stage, one has to learn the CPTs of the BN according
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Figure 2:BNC architecture.

to the set:

S= {(h1(1), . . . ,hn(1),s(1)), . . . ,(h1(m), . . . ,hn(m),s(m)))}
(4)

whereh j(i) is the result of the classifierj = 1, . . . ,n, for in-
put x j

i , wherex j
i is the feature value presented to thej-th

classifier, representing thei-th input pattern,s(i) is the true
label for x j

i , j = 1, . . . ,n andm is the total number of train-
ing samples. SetS is generated by validating each individual
classifier with a test set of lengthm. In our case a set ofm
audio segments, with known true class label, were used for
the training. The CPTs of the BN are learned according to
the Maximum Likelihood principle ([11]).

The BN is designed to make the final decision, based on
the conditional probabilityPdec = P(Y|h1, ...,hn). The pro-
cess of calculatingPdec is calledinferenceand it is, in gen-
eral, a very time consuming task. However, for the adopted
BNC architecture no actual inference algorithm is needed,
since the required conditional probability is given directly by
the CPT. Another advantage of the specific architectureis
that no assumption of conditional independence among the
input nodes is made[11].

To summarize, in the current work, a BN trained as a
binary classifier. This conditional classification probability
is computed in a three-step process, namely:
1. For any segment, the values of the five statistics are cal-

culated, i.e.,x j , j = 1, . . . ,5.
2. x j is fed as input to thej-th classifier. Therefore, five

binary decisionsh j are extracted.
3. Pdec = P(Y|h1, ...,h5) is calculated by inferring in the

trained BN.

3. EXPERIMENTS - RESULTS

3.1 Data Sets

The following data sets were collected from several Internet
radio stations and cover a wide range of speakers and radio
genres. All recordings were monophonic with a16KHz sam-
pling rate.
1. D1: For creating this data set, 170 minutes of record-

ings were manually segmented and labelled as music or
speech. This resulted in1100homogeneous segments of
duration of0.50 to 5.0 seconds.D1 was used for training
and testing the Bayesian Network classifier. Thus, our
BNC network has been trained for all possible segment
lengths that may occur during the DP optimization.

2. D2: This data set consists of uninterrupted audio record-
ings from distinct radio broadcasts (more than10 hours
of total duration) and was used for testing the proposed
segmentation scheme. To this end, the recordings were
also manually segmented and labeled. Furthermore,D2
was divided into7 subsets according to radio genre (e.g.

news, rock, etc), in order to test performance on a genre
basis as well.

3.2 BN-related training and testing issues

In order to train and test the Bayesian Network Classifier,
data setD1 has been used. In particular,20% of the audio
segments ofD1 were used for testing the BNC, along with
the individual classifiers. The results of the classification
performances of the individual classifiers and the BNC are
displayed in Table 2. The best individual classifier (in terms
of error rate) is the one based on the 1st MFCC. The error re-
duction of the combination scheme compared to the error of
the best classifier isered = 100|ebest−ebnc|

ebest
' 36%. The boost-

ing in performance achieved by the Bayesian Network as a
classifier combination scheme is obvious. The3.5% perfor-
mance justifies our decision of using the BNC as posterior
probability estimator, given the segment.

Music Speech Overall
Energy 21% 13% 17%
Chroma#1 5% 9% 7%
Chroma#2 8.5% 8.5% 8.5%
MFCC#1 7.5% 3.5% 5.5%
MFCC#2 14.5% 10.5% 12.5%
BNC 3.5% 3.5% 3.5%

Table 2:Error rates (%) of the individual classifiers and the
BNC.

3.3 Performance of the proposed method

The experiments were carried out for7 separate radio gen-
res. Genre names and respective recording durations are pre-
sented in Table3. Beside the Confusion Matrices for each

Radio Genre Duration
(minutes)

Pop-Rock 125
Jazz-Blues 90
Dance 85
News 80
H. Metal - H. Rock 80
Rap - RnB 75
Classical 75

Table 3:Radio genres and respective recording durations.

genre, the overall accuracy of each segmentation scheme was
calculated, along with the music and speech precision and the
music/speech recall. Each elementCi, j of the confusion ma-
trix corresponds to the percentage of data whose true class
label wasi and was classified to classj. FromC, one can
directly extract the recall and precision values for each class:
1. Recall (Ri). Ri is the proportion of data with true class

labeli, that were correctly classified in that class. For ex-
ample, the recall of music is calculated asR1 = C1,1

C1,1+C1,2
.

2. Precision (Pi). Pi is the proportion of data classified as
classi, whose true class label is indeedi. Therefore, mu-
sic precision isP1 = C1,1

C1,1+C2,1
.
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The results are displayed in Tables 4 and5.
An implementation of the proposed system is publicly

available on the Internet athttp://www.di.uoa.gr/
sp_mu. In terms of response times, the implemented system
is comparable with other approaches in the literature (e.g.,
[4]). It has to be noted that the publicly available version also
includes a pre-processing and a boundary correction (post-
processing) stage. The use of these two extra stages results in
improved overall accuracy (exceeds94.5%) without increas-
ing response times. Due to space restrictions, the description
of these two stages has been omitted in this paper.

Precision Recall
Mus. Sp. Mus. Sp. Overall

Pop-Rock 96.0 95.8 99.3 80.0 96.0
Jazz-Blues 99.0 92.6 96.2 98.0 96.8
Dance 87.9 78.0 95.2 56.6 86.2
News 75.4 99.4 97.0 93.9 94.4
Heavy Metal 99.1 86.2 99.1 85.3 98.3
Rap-RnB 94.5 34.8 84.3 62.8 81.8
Classical 93.6 96.6 99.3 74.9 94.1

Table 4:Discrimination results (%) per radio genre.

Music Speech
Music 69.24% 2.83%
Speech 4.85% 23.08%

Table 5:Average Confusion Matrix of the proposed method,
computed over all examined genres.Overall Accuracy:
92.32%.

3.4 Comparison with other methods

This section is an attempt to compare the proposed scheme
against methods that have been presented in the literature by
other authors. Such a comparison turned out to be a difficult
task due to the diversity of data sets that have been used
in the literature and the inherent difficulties in reproducing
other authors’ work. As a result, we have chosen to summa-
rize in this section the key performance issues of selected
papers as presented by the respective authors. It has to be
noted that the dataset in this paper is significantly larger than
datasets studied by other authors. In addition, in this paper
an attempt is made to present results per music genre, which
is not the case in any of the other papers. More specifically :
[4]: Results are reported for four artificially created datasets
(40 minutes total audio duration). The reported performance
varies in the range93%−96%. The origin of datasets poses
an inherent difficulty in comparing this method with other
approaches in the literature.
[5]: Works on a frame-level basis. A binary (speech/music)
classification decision is taken separately for each short-term
frame. The dataset consists of240 audio recordings, each
of which is15secs long (total recording duration is1 hour).
Part of the dataset is used for training purpses. An accuracy
of 88%, on frames sampled at20msec intervals, is reported.
When a smoothing technique is applied, the performance
rate reaches 93%.
[6]: The total speech duration in the audio corpus was 3
hours and 9 minutes, which was subdivided by the segmenta-
tion algorithm into about 800 segments (over-segmentation);

97% of these segments were correctly classified as speech.
The total music duration in the audio corpus was 52 min,
which was subdivided by the segmentation algorithm into
about 400 segments (over-segmentation); 92% of these
segments were correctly classified as music.

4. CONCLUSION

A novel speech - music discrimination technique is proposed
in the current paper. The performance of the proposed system
was evaluated using real radio data covering a wide range
of music genres. The average accuracy of the method is
92.32%, whereas for specific music genres (e.g., Hard Rock-
Heavy Metal) the accuracy of the system reaches98%.
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