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ABSTRACT
The X-ray film image is the main medical diagnosis tool in
the evaluation of the fit of the hip prostheses inserted in to-
tal hip arthroplasty (THA) procedures. In the design of a
computer-aided diagnosis tool, one of the most important op-
erations is the digital capture of the film images. This contri-
bution investigates the use of a consumer-grade digital still
camera as a digital acquisition tool for hip prosthesis X-ray
images. We propose and discuss two methods for the increase
of the dynamic range and contrast of the digital image, using
single or multiple pictures of the radiological film. The pros-
thesis stem is segmented from the resulting digital images en-
abling the measurement of basic clinical parameters (stem fit
within the medular channel, Gruen areas identification).

1. INTRODUCTION

The idea of total hip prosthesis was born before the 1950s
and evolved towards the nowadays total hip prosthesis with
a stem and an acetabular component. Total hip arthroplasty
(THA) is, at present, a well-known and a highly developed
technique to reduce pain in arthrotic and arthritic hips; in the
US alone more than 150000 THAs are performed every year
[1]. One of the latest developments in total hip arthroplasty
is the usage of uncemented prosthesis with hydroxylapatite
coating. The hip protheses require a continuous, regular and
careful follow-up and monitoring, in order to detect failures.
Wear is an important factor in failure of prostheses, as is
aseptic loosening, which is an indication for revision surgery
in up to 20 % of the primary total hip arthroplasties. Aseptic
loosening of a total hip prosthesis is the result of a combina-
tion of bio-mechanical and chemical factors: the weakening
of the bone resulting from bone resorption because of parti-
cle disease; the material strain in the interface of prosthesis
and bone; the failure of the ingrowth in improperly fitted un-
cemented prostheses; the inadequate stress transfer of pros-
thesis to bone [2].

A common characteristic of the hip prosthesis scoring (or
fit evaluation) systems is the combination of clinical, patient-
subjective scores (as the Harris hip score or Oxford score)
with radiological gradings (obtained by subjective orthope-
dic evaluation) and bone measurements (such as the bone
mass density). The minimal yearly investigation requires the
use of two X-ray images (frontal and lateral) of the hip area.

A key issue in the prosthesis check-up is the need of con-
sulting very specialized medical personnel, which is concen-
trated in a few centers, unlike the geographical spread of X-
ray machines and general practitioners. Under these circum-
stances, the implementation of a computer-assisted diagnosis
system is of great interest, since it may help distribute some
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of the regular, normally evolving cases away from the THA-
performing medical centers and orthopedic surgeons.

The very first step in the implementation of such a
computer-assisted diagnosis system is the digital acquisition
of common, film X-ray images with generally available, un-
expensive digitization equipment. The recent advances in
consumer electronics made the digital still camera the first
choice for such a task. Digitization of an X-ray film will sim-
ply mean to take photos of the negatoscope-presented film.
Yet, the matter is not simple, since there is an obvious loss
of image quality in the digital acquisition of an X-ray film
by digital photography. The spatial resolution of an X-ray
is given by the grain density of the film (typically at some
108grains/cm2); the dynamic range of the radiologic film is
approximately 75dB [3]. The images acquired by a digital
still camera have a spatial resolution given by the camera
sensor size (upper limited at some107 pixels) and the size
of the imaged area. Such images exhibit a typical dynamic
range of some 48dB to 72dB (depending on the image mode
- color or RAW).

This paper proposes two approaches to the dynamic
range enhancement for digitized images of the hip prosthe-
sis X-ray and their joint use in an automatical feature-space
segmentation of the image, that can reliably detect the pros-
thesis and the femoral bone. Several prosthesis to bone dis-
tance measurements are performed and an overall prosthesis
fixation index is computed. The remainder of the paper is
organized as follows: the next section presents the two ap-
proaches to the dynamic range increase: classical bracketing
and pixel ordering. Section 3 describes the prosthesis and
bone segmentation procedure, respectively the clinical rele-
vant measurements and section 4 presents some conclusions
and directions of further investigation.

2. X-RAY IMAGE DYNAMIC RANGE INCREASE

Studying the behavior of the femoral components of the hip
prosthesis can be limited to the imaging of the immediate
area surrounding the prosthesis stem, that is an area of some
300 cm2 of radiographic film. From the medical practice it
comes that we should reliably measure and represent details
as small as0.1mmwithin the area of interest. That leads to
the constraint of using a minimal 10 pixels/mm (250ppi) res-
olution, implying the use of a digital still camera exhibiting
a sensor of at least 4 Mpixels. This is easily achievable by
a reasonable consumer digital still camera; yet the camera
cannot directly provide the equivalent dynamic range of the
X-ray film.
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2.1 X-ray image dynamic range increase by multiple
scene instances

The straightforward solution to the problems generated by
the reduced dynamic range of the digital still camera is to
combine multiple images of the same scene, taken under var-
ious settings (shutter speed, f-number). This approach is part
of the super-resolution algorithms and is generally known as
bracketing. The underlying idea is that each of the images
that are to be combined captures with high quality only a
certain part of the scene color (grayscale) gamut (as imposed
by the settings of the camera). The bracketing algorithm se-
lects, for each pixel of the spatial support of the scene the
acquired image that provides for it the best value. That se-
lection is based on the assumption that the multiple images
are perfectly aligned.

Thus, our implementation of dynamic range increase
based on multiple scene instances works in two steps: a first
step of image registration (that aligns the multiple images
captured from the scene) and the actual image combination
(or fusion, or pixel value selection), that computes the en-
hanced image.

2.1.1 Image registration

Image registration means the geometrical alignment of mul-
tiple images of a scene, based on the matching of scene con-
tent. Image registration is a widely dealt issue in the field
of image processing and several solutions are at hand: block
matching methods, edges matching methods, object match-
ing methods or global matching methods.

We used the robust global matching method of spectrum
phase correlation [4], [5]. The underlying idea is based on the
translation property of the Fourier transformF : a translation
in the spatial (or time) domainx of the signals leads to phase
shift in the transformed domain.

F [s(x+x0)] = F [s(x)]e− jωx0. (1)

Therefore, for a pair of non-aligned images, one will find
the corresponding shift as the maximum difference in the
phase spectrum of the images. However, the method is de-
signed to work if the images are similar by content and if
there is no rotational misalignment, which is the case in our
acquisition setup.

2.1.2 Image fusion

This second step is the actual dynamic range increasing. The
approach is widely described in the literature [6], [7], [8], [9].
In general, the proposed method is, in some extent, similar to
the one proposed in [9]. However, we exploit the particular
characteristics of the images generated from hip prosthesis
X-rays.

The dynamic range of an image is given by:

DR= 20log

(
Imax

Imin
· emax

emin

)
[dB], (2)

where Imax and Imin are the maximal and minimal repre-
sentable intensities andemax andemin are the maximal and
minimal exposure values.

The exposure of a picture, using the standard APEX sys-
tem, is given by:

EV = TV +AV (3)

where,TV =− log2 t and respectivelyAV = 2log2N. HereN
is the relative aperture (f-number) andt is the exposure time
(shutter speed). The exposure value is related to the scene
illumination by:

EV =
L ·S
K

, (4)

whereL is the average scene illumination,S is the sensor
speed (usually called ISO parameter) andK is a constant.

Therefore, changes of the exposure value will modify the
captured incident illumination. A highly exposed image will
be saturated in the bright scene areas, but will capture dark
regions well. In contrast, an under exposed image will have
less saturation in bright regions, but will end up being too
dark and noisy in the dark areas. The complementary nature
of these images allows one to combine them into a single
high dynamic range image. Variation of the exposure value
may be obtained by changing the shutter speed or by increas-
ing and decreasing the aperture.

In our setup we modified the exposure time. A set
of such pictures may be seen in figure1. If, for in-
stance we will choose, in equation2, emax = 32emin, the
dynamic range of the resulting image will be78.2dB.
Such a value is obtained after combining 6 pictures with
emax=e1=2e2=4e3=8e4=16e5=32e6=32emin.

a) b) c)

Figure 1:Set of photographic images of a hip prosthesis X-
ray taken under various exposures; from left to right expo-
surese6, e4 ande2.

The fusion method is direct. The saturated pixels and the
noise corrupted pixels are discarded, and we simply average
the values of the remaining pixels across the set of acquired
images. The pixels arriving from less exposed images add
details. The picture with large exposure provides the base of
the image content. The operation is performed independently
for each pixel in the resulting image. The final dynamic range
enhanced image is shown in figure2 a).

2.2 X-ray image dynamic range increase by total pixel
ordering

The bracketing method described in the subsection above has
the disadvantage of requiring several frames which must be
properly registered. It is not a rare case that image registra-
tion fails. The natural way to avoid such a problem is the
use of a single image, reasonably well exposed, and to re-
view the dynamic range increase problem within an image
enhancement framework.
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a) b)

Figure 2:Dynamic range enhanced images by the presented
approaches: a) Bracketing; b) Pixel ordering based on the
proposed features (7).

Basically, we can view the dynamic range increase as the
creation of significantly more different pixel values that the
number of different pixel values available in the initial im-
age. This cannot be performed by simple, point image en-
hancement operations, such as the classical histogram equal-
ization or histogram stretching [10], but requires the segrega-
tion of same-valued pixels according to their local statistics.
In some way, we replace the multiple luminance values avail-
able at each pixel location from multiples acquisitions of the
scene (as used in the bracketing approach) by data (descrip-
tors) computed in some spatial neighborhoods, yielding to
the association of a feature vector to each image pixel. The
pixels are then ordered according to their feature vectors and
from the resulting string pixels are assigned new, increasing
gray level values. This is the approach introduced in [11] for
histogram specification.

Usually, the specified histogram is either flat (yielding to
a perfect histogram equalization) or a stretched variant of the
original histogram of the image, but with the same number
of bins, corresponding to the number of gray quantization
levels. In the following, we will use a different approach,
by specifying a histogram with more bins (and, thus, more
different gray levels in the resulting image) than the number
of bins in the original image.

Let I be the initial image. Each pixel(i, j) from the image
I is mapped to a feature vectorg(i, j), composed by:

g(i, j) = [g1(i, j),g2(i, j),g3(i, j), . . .] (5)

whereg1(i, j) is the initial pixel value (in order to maintain
the relative intensity ranking of pixels) andgk(i, j) with k> 1
are features computed in some neighborhoods of the current
pixel. Let≺ be the lexicographic ordering relation applied
to the feature vectorsg(i, j); two feature vectors verify the
ordering relationg(i1, j1)≺ g(i2, j2) if and only if:

∃k,

{
gl (i1, j1) = gl (i2, j2), 1≤ l < k
gk(i1, j1) < gk(i2, j2).

(6)

The choice of specific featuresgk(i, j) is imposed by the
desired appearance of the final image. The use of local av-
erages, as suggested in [11], as a reference choice, will favor
the pixels located in uniform areas and will slightly blur the
edges. In order to enhance the overall edge visibility, we
shall use some different form for thegk(i, j) features, as sug-
gested by the following observations.

Considering the case of two pixels that have the same
value, their difference is imposed by the relative order of their
features. If the pixels are located in an uniform region, then
their supplementary features should be zero. If the pixels are
located within a non-uniform area, then the contrast of that
area should be increased. It is well known that the human
eye is sensitive to luminance contrast and two regions of the
same shape and gray level will be perceived differently based
on the gray level of the background. If one of the shapes
is placed on a lighter background (higher gray level), it will
appear darker than the other one. Thus, in the non-uniformity
areas, the pixel that has a lower gray level than the local mean
will be made even darker; the pixel that has a greater gray
level compared to the local mean will be made lighter.

We define the featuresgk(i, j) in (2k + 1)× (2k + 1)
neighborhood as follows:

gk(i, j) = α(σ)sign(I(i, j)− Ik(i, j)), (7)

whereIk(i, j) is the local mean (within the(2k+ 1)× (2k+
1) neighborhood) andα is a function of the local standard
deviationσ . An intuitive choice forα may be:

α(σk) =
σk

σmax
, (8)

whereσmax is the maximal standard deviation within the im-
age (computed at each pixel location within the(2k+ 1)×
(2k+1) neighborhood).

The described method was applied using a three-
dimensional feature vector on the X-ray image captured un-
der an automatic exposure (as the one presented in figure1
b)). The result of the method is shown in figure2 b).

3. X-RAY IMAGE SEGMENTATION AND
PROSTHESIS FIT ANALYSIS

As previously explained, the final goal of the implemented
system is the automated analysis of the elements of interest
from the hip prosthesis X-ray: the prosthesis and the femoral
bone. The femoral part of the uncemented hip prosthesis is
a metallic component, that spans the most bright gray levels
in the digitally acquired X-ray image and can be identified as
the rightmost mode of the image histogram. The neighboring
femoral bone and the soft tissues and air contribute with two
partially overlapped modes, as shown by the histogram in
figure3.

Since the modes that represent the components of interest
are overlapped, simple histogram thresholding [10] is not an
effective solution. We used a classical fuzzy C-means (FCM)
clustering algorithm [12] for the identification of the three
classes within the image. Figure4 shows the image of the
membership degree of the bone class and the segmentation
that results from a simple, fixed threshold defuzzification.

Once the prosthesis is segmented, the limits of the Gruen
zones [1], [2], [13] are obtained from simple geometrical
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Figure 3: Typical histogram of a digital X-ray image of an
uncemented hip prosthesis (we shall note that the gray lev-
els are coded on 10 bits, as a result of the dynamic range
enhancement).

a) b)

Figure 4:a) Fuzzy membership degree within the bone class;
b) Crude 3-class segmentation of the prosthesis image using
the increased dynamic range images from figure2 a).

considerations and for each zone the distance from the pros-
thesis to the cortical wall is computed. The typical profile of
the distance variation around the prosthesis is shown in fig-
ure5, showing the fixation points of the prosthesis stem (the
near-zero minima in the distance plot).
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Figure 5:Typical distance variation around the prosthesis for
Gruen areas 5, 6 and 7 (right-hand contour of the prosthesis
shown in figure4).

4. CONCLUSIONS

This paper presented a new dynamic range increase method
based on pixel ordering that uses a single input image (op-
posed to the multiple images used by the bracketing algo-
rithm). The method provides good results and is used in the
framework of cheap digitization of X-ray films by the use
of consumer digital still cameras. Simple segmentation tools
can be effectively used on the produced digital X-ray image
in order to identify and characterize elements of interest in
the particular area of orthopedics - hip prosthesis monitor-
ing.
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