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ABSTRACT

In this paper, we compare minimax designs of 2-D FIR filters
whose passbands and stopbands have four shapes: rectan-
gular, diamond, circle and cos-oval. The experiments show
that, when all the other design specifications (areas of pass-
band and stopband, passband error bound) coincide, the cos-
oval shape is usually better for narrow passbands. For such
passbands, the cos-oval shape is very similar to the circu-
lar shape, but gives better stopband attenations. Hence, it
constitutes an interesting alternative for practical designs.

1. INTRODUCTION

If we want to design a (univariate) lowpass filter using an
optimization method, we need to specify only two frequen-
cies that define the response, namely the edges of the pass-
band and stopband. In the 2-D case, the situation changes
radically: the edges are curves that can be defined in vari-
ous ways. Theoretically, there are an infinity of passband or
stopband shapes; additionally, each shape is characterized by
one or several parameters, that typically take values over a
whole interval. In some applications, the shape of the pass-
band is strictly imposed (like e.g. for filters used before sub-
sampling on a certain lattice [2]). In others, the shape is more
vaguely defined and small variations around a basic shape are
allowed.

Let us assume that we want to design a lowpass 2-D
linear-phase FIR filter

ny n»
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The condition h_y, _x, = hy, x, ensures the linear phase prop-
erty; actually, the filter is zero-phase, without loss of gen-
erality. On the unit circle, we use the notation H(®) as a
shortcut for H (e/?1, ¢/®?), understanding that ® = (o, @, ) €
[—m, 7] The passband and stopband regions of the filter (1)
are denoted by 2, and %, respectively. We assume that we
have a method for providing the optimal minimax filter, i.e.
the solution to the problem

Yi= min Y 2)

¥s.H
subjectto  |H(®)| <%, Vo< Y
N1-H(w)| <7y, YocP,

where ¥, is a given passband error bound. (Variations of
this problem could be considered, where a linear combina-
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tion of ¥, and ¥ is optimized, but they are not significant to
the present discussion.)

The problem we study here is the influence of the shape
of the frequency regions &, and % on the value ¥;". For a fair
comparison, we assume that the areas of the passband and
stopband are fixed, and denoted by A, and Ay, respectively.
So, our problem is: given A, Ay and ¥, (and the orders n,
n), for what passband &, of area A, and stopband % of
area Ay, do we obtain the smallest value 9} ?

Since we are not aware of a possibility to determine the
exact solution (it looks impossible to parameterize all shapes,
or at least a significant class of shapes), our study will be
purely experimental. Although we consider only a small
number of regular shapes, the conclusions are somewhat sur-
prising.

2. METHODOLOGY

We describe here the setup of the experimental study. The
passband and stopband regions are delimited by four types
of basic curves; the corresponding shapes are rectangular
(square, actually), diamond, circle and cos-oval (this latter
name is coined here and it might not be the most appropriate,
but at least it is short). Here follows a rigorous description of
these shapes.
Rectangular. A square passband is described by

.@plz{a)e[—n,n]2| lo| <cp, |an] <cr}, 3)

where ¢ is a given frequency. A square stopband is the com-
plementary of a passband defined by (3), namely

Dy ={we[-m,a||o]| >c)or |mm|>cl}. @)
Since for all shapes the stopband is defined by complemen-

tarity, in the sequel we give only the definitions of the pass-
bands.

Diamond:

In=Aw e [-ma] | |o] +|o| < 2} 5)
Circle:

Iy ={we[-mal’ | |o] +|m[* <3} (©6)
Cos-oval.

Dps = {0 € [~m,7)* | cosw; +cosamn >ca}.  (7)

Each of the above passbands is defined by a single pa-
rameter, taking values in an interval: ¢; € [0, 7], ¢; € [0,27],
c3 € [0,v/27], ¢4 € [~2,2]. If the area of a passband is given,
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Figure 1: Passbands (interior curves) and stopbands (exterior
curves) edges of four lowpass filters. The shapes are: rectan-
gular (dotted line), diamond (dash-dot), circle (dashed), cos-
oval (solid).

then it is easy to compute the value of the corresponding pa-
rameter, using either an explicit formula or (in the cos-oval
case) a simple program for solving nonlinear equations, e.g.
based on bisection. For convenience, we normalize to 1 all
the areas, i.e. we divide the actual area to 47>

We assume that the passband and the stopband regions
are delimited by the same type of curves, with different pa-
rameters. So, we consider only four types of filter specifica-
tions. An example is given in Figure 1. The passband (nor-
malized) areais A, = 0.1 and the stopband areais A; = 0.74.
Since the reader is familiar with square, diamond and circle
passbands, we comment only on the cos-oval shape. This
shape was introduced in [3], as the simplest example of a
curve defined by positive trigonometric polynomials; this
type of curve is appropriated to an optimization method pro-
viding practically optimal minimax FIR filters (with linear
phase). More examples are available in the cited paper, for
various values of the parameter ¢4 from (7). For small A,
(and thus ¢4 near 2), the shape is nearly circular, as it can be
noticed for the passband from Figure 1, almost indistinguish-
able from the circle of the same area. As A, grows (and c4
decreases), the shape resembles more and more a diamond
with rounded corners; for A, = 0.5 (and c4 = 0), it is a dia-
mond.

For given passband and stopband regions (defined by one
of the four basic shapes and the areas A, and Ay) and pass-
band error bound V), the solution to problem (2) is computed
as follows.

e For rectangular, diamond and cos-oval shape, the method
from [3] is used. This method, based on a parameteri-
zation of trigonometric polynomials that are positive on
a frequency domain, transforms minimax FIR filter de-
sign into a semidefinite programming (SDP) problem and
gives practically optimal solutions.

e For circular shape, the problem (2) is discretized on a
set of frequency points that is the union of a grid con-
taining 40 x 40 points covering [0, 7]> and of 50 points
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on each of the passband and stopband edges (which are
quarters of a circle, located in the first quadrant). A
linear programming problem (LP) is obtained; the first
LP approach appeared in [5]. Other methods could be
used, like those based on multiple exchange [4] or itera-
tive reweighting [1], that might be faster but cannot give
better results. Such discretized formulations do not give
the optimal solution; the actual passband and stopband
errors are larger than 7, and ¥, respectively. To com-
pensate this effect, we replace 7y, from (2) with ay,, for
several values of ¢ ranging from 0.96 to 0.99. For each
solution thus obtained, we measure the actual passband
and stopband errors with respect to the ideal response,
on a finer 200 x 200 grid. We take as solution of (2) the
maximum actual stopband error ¥; that corresponds to the
actual passband error that is nearest from ¥,. Although
with this method we compute only an approximation of
the solution, this approximation can serve well for com-
parisons between the circular and the other shapes.

The SDP and LP problems corresponding to (2) have
been solved with the library SeDuMi [6].

3. RESULTS

The values ¥} computed as described in the previous section
are used for comparing the four basic passband and stopband
shapes: rectangle, diamond, circle and cos-oval. Since the
design problem (2) has three parameters (besides the orders
ny, hp), i.e. the areas A,, Ay and the passband error bound
Yp» several ways of reporting the results are possible. Most
experiments have been performed with n| =ny =7, i.e. with
FIR filters of support 15 x 15; in what follows, these are the
orders of the filters, unless otherwise specified.

Figure 2 shows the computed optimal stopband error for
¥» = 0.05 and passband and stopband areas chosen as fol-
lows. For each passband area A, in the range 0.04 : 0.02 :
0.30, we have solved (2) for several values of the stopband
area A;. For each A,, we report in the figure only the re-
sults for a single value of Ay, precisely the one for which the
best 7 (among the four filters with the basic band shapes) is
nearest from 0.01 = —40 dB. This is like we would want to
design a filter with fixed ¥, and A, with stopband error ¥
approximately equal to —40 dB and a transition band as nar-
row as possible (not caring about the shape of the best filter).
The first pairs (A, Ay), starting from the left, are (0.04,0.84),
(0.06,0.81), (0.08,0.78), (0.10,0.74). We remark that the
differences between the values y; (for the same A, but dif-
ferent shapes) are quit large; hence, the small errors made in
evaluating ¥; for circular shape are not significant.

The same procedure for choosing the areas was used for
generating Figure 3, this time with ¥, = 0.01. Since the
passband ripple is smaller, the transition band must be larger
in order to obtain the same stopband attenuation (of around
40 dB). Indeed, now the first pairs (A,,Ay) are (0.04,0.81),
(0.06,0.76), (0.08,0.73), (0.10,0.70) (i.e. the stopband ar-
eas are smaller than those for Figure 2).

Figures 2 and 3 suggest that the cos-oval shape is the
best for narrow passbands, while the circular shape becomes
better as the passband widens. Typically, these two shapes
are better than the diamond; the rectangle gives (not surpris-
ingly) almost always the worst results. The cos-oval shape
has not been considered until [3], and there mainly because
of its simplicity (in the context of curves generated with
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Figure 2: Optimal stopband errors (in dB) for ¥, = 0.05 and
various passband and stopband areas.
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Figure 3: Optimal stopband errors (in dB) for ¥, = 0.01.
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Figure 4: Frequency response of 15 x 15 FIR filter with cos-
oval passband and stopband.
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Figure 5: Frequency response of 15 x 15 FIR filter with cir-
cular passband and stopband.

trigonometric polynomials). We give here only one example
of design in which the cos-oval shape is clearly better than
the much more popular circular one. ForA, = 0.1, A; = 0.74,
i.e. the values used in Figure 1, and ¥, = 0.05, the frequency
responses of the filters obtained by solving (2) are shown in
Figure 4, for cos-oval shape, and Figure 5 for circular shape.
The stopband attenuations are —40.54 dB and —35.92 dB,
respectively. With a practically insignificant change of shape
(see again Figure 1), we gain more than 4 dB attenuation;
otherwise, the frequency responses are quite similar.

To confirm the above findings, we have run the test for a
large set of pairs (4,,Ay), with ¥, = 0.05. A map of the best
shapes is shown in Figure 6. Only the cos-oval and the circle
are the best, over the whole range of passband/stopband ar-
eas. The figure contains also the (approximate) level-curves
on which the stopband error ¥} (of the best filter) has the
values —20, —40 and —60 dB. The figure shows one more
trend: for a given passband area, the cos-oval is best for large
stopband areas (and thus narrow transition bands). As the
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Figure 6: Map of best shapes, for y, = 0.05.
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Figure 7: Optimal stopband errors (in dB) for ¥, = 0.05, ny =
npy = 5.

stopband shrinks (and the transition band widens), the cir-
cle becomes better and stays so. For narrow passbands, the
cos-oval is better up to large attenuations (more than 60 dB),
while for wide passbands, the circle becomes better for at-
tenuations only slightly greater than 20 dB.

Less extensive tests for smaller degrees confirm the
above trends. For example, experiments similar to those
leading to Figures 2 and 3, keeping ¥, = 0.05 but lowering
the degree, produce Figure 7 for ny = ny = 5 and Figure 8 for
n1 = np = 6. The cos-oval and circle have now similar values
for several passband areas, but there are still many passband
areas for which the stopband attenuations are neatly differ-
ent.

4. CONCLUSION

The experiments reported in this paper suggest that 2-D
linear-phase FIR filters whose passbands and stopbands are
delimited by cos-oval curves (7) may be used instead of fil-
ters with circular bands, as they give better stopband atten-
uation for similar design specifications. The cos-oval shape,
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Figure 8: Optimal stopband errors (in dB) for ¥, = 0.05, n| =
ny = 6.

not considered until now in 2-D filter design, is clearly better
for relatively narrow passbands and transition bands.
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