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ABSTRACT
In this paper we present a methodology for modeling embed-
ded DSP applications based on the Java language. Models
are written in a framework which allows detailed cycle accu-
rate modeling in the area of focus with less detailed and more
efficient statistical models for the rest. The modeling is based
on a Java extension package that allows hardware model-
ing by providing classes and primitive calls, in the same way
SystemC extends C. By adopting Java in hardware modeling
great productivity gains can be brought to the hardware de-
signer or computer architect, since it has simple object model
and prevents us from the error prone pointers. As a modeling
example, we evaluate the performance of an audio encoding
application on top of a stack folding optimized Java proces-
sor.

1. INTRODUCTION

DSPs have become a ubiquitous enabler for integration of au-
dio, video and communications. As 3G mobile phones and
applications are prevailing, efficient Java execution is becom-
ing a crucial component in system performance. Java pro-
cessors [10] have been introduced to offer hardware acceler-
ation for Java applications. However, their complex instruc-
tion set and the close relationship of hardware and software
makes experimentation and evaluation of new microarchitec-
tural techniques difficult.

In this paper we propose a methodology for experimen-
tation of microarchitectural techniques for embedded DSP
applications executed on a Java processor. We discuss trace
driven and execution driven performance evaluations. All
implementations use a modeling framework we built on top
of Java language, which enables modeling of communicating
threads and supports various levels of details throughout the
whole design model.

1.1 Parallel and Statistical Modeling
When modeling a processor core in order to evaluate its per-
formance, we are likely to use a model in simplescalar [7, 3]
style, in which we take into consideration buffer sizes and
statistical behaviors of the subsystems. In some cases perfor-
mance is very dependent on the communication and execu-
tion overlap of two units, something that it can’t be modeled
in such a framework. A hardware model with communicat-
ing parallel threads is needed. But this is at the expense of
performance.

�

This work was partially funded by the Greek Ministry of Development,
General Secretariat for Research and Technology, project PENED 03E∆908

processor
fetch

back end 
core

java2risc
translation

unit

statistical
model

(a)

Thread1

Thread2

Thread3

fifo1

fifo2

fif
o3

(b)

Figure 1: (a) Combined parallel-statistical model, (b)
Threads Communicating Example

One solution is to combine different styles of modeling,
that is communicating parallel threads in the area you are
focusing, and statistical modeling in the other parts of the
processor core. A submodel consisting of parallel commu-
nicating threads, which simulates a processor subsystem in a
cycle accurate basis, communicates with a statistical model
thread with FIFOs. The parallel model takes into account
unit’s operation overlaps, and feeds a buffer of the statistical
model through a FIFO. The statistical model takes as input
this buffer, and estimates the total performance.

Stats can come either from the statistical model, or from
the parallel model by inserting probes in various places. Both
model’s parameters can be altered, in order to determine how
performance is affected.

To make things clear, consider the example of figure 1a,
which models a Java processor with a translation unit that
transforms java bytecodes to RISC like instructions. The
backend processor core is a classic RISC out of order core.
The translation of a requested java bytecodes line is variable.
We model the processor fetch and the translation unit as two
communicating parallel threads. The processor fetch thread
feeds the statistical model thread, which models the out of or-
der core. We focus on the translation technique, so we main-
tain a greater level of detail in this submodel, while keeping
an appropriate level in the other parts, in order to keep the
whole design realistic.

1.2 Java as a Hardware Modeling Language
The adoption of Java in hardware modeling can provide the
hardware designer or computer architect with real productiv-
ity gains. Its simple object model and the lack of error prone
pointer issues, makes programming really fast and produc-
tive. Java platforms, as Eclipse [1], can be used to offer their
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public class HwMethodRunExample extends HwThread
{
public boolean hwmethodrun()
{
System.out.println("Hello");
addEvent(new HwEvent(sched,10, "clk"));
return false;

}
}

public class HwThreadRunExample extends HwThread
{
public void hwthreadrun()
{
synchronized(sched)
{
hwwait();
//setup preamble
addEvent(new HwEvent(sched,-1, "CLKPOSEDGE"));
waitcycle();
//main body
for(int i=0;i<100;i++)
{
System.out.println("["+sched.time+"]"+name+i);
waitcycle();

}
waitcycle();

}
}

}

(a)

(b)

Figure 2: (a) hwmethodrun(), (b) hwthreadrun()

debugging facilities to the designer. Breakpoints, step run,
and full object fields visibility are just some of them.

Utility classes such as gzip classes, graphical classes and
various third party can be used to build an efficient and user
friendly simulation platform. Distributed virtual machines
can also be used, to lower the total simulation time.

The aforementioned types of modeling can both be writ-
ten in Java. The way of writing the statistical model is
straightforward. The parallel model needs a simulation ker-
nel. Java is based on threads, so parallel modeling fits ide-
ally. We have implemented an extension package to Java,
that makes feasible this type of modeling. The package con-
sists of classes for modeling a thread, classes for communi-
cation between threads. The extension is similar to the ex-
tension of SystemC [5, 8] to C.

Our framework combines the SystemC [5] high level de-
sign benefits and Java’s programming facilities. JHDL [2]
is another language for hardware modeling based on Java.
However, it targets FPGA design and reconfigurable systems.

2. JAVA HARDWARE MODELING PACKAGE

2.1 Overview
The package uses Java’s inherent multithreading to pro-
vide structures for hardware modeling. A hardware model
consists of communicating threads. The package pro-
vides the class HwThread, which is a direct subclass of
java.lang.Thread and can be subclassed again by a user class
that provides the desired functionality. HwThread class has
two basic methods, hwmethodrun() and hwthreadrun(). In a
user HwThread subclass, one of them must be overloaded by
a method with user logic. All HwThread subclasses’ objects

public class ClkThread extends HwThread
{
public boolean hwmethodrun()
{
int value=((Integer)sin[0].read()).intValue();
System.out.println("time="+sched.time+", clk="+

value+"THREAD"+name);
sout[0].write(new Integer((value==0)?1:0));
addEvent(new HwEvent(sched,-1, "CLK"));
return true;

}
//constructor
public ClkThread(String name, HwScheduler scheduler,

HwSignal[] sin, HwSignal[] sout, HwFifo[] infifo,
HwFifo[] outfifo, HwTransmitFifo[] intransmitfifo,
HwTransmitFifo[] outtransmitfifo)

{
super(name, scheduler, sin, sout, infifo, outfifo,
intransmitfifo, outtransmitfifo);

}
}

Figure 3: Clock example

are managed by a scheduler (class HwScheduler), which ar-
ranges their execution in order to ensure synchronization and
time consistency. It also handles the structures needed for
communication, by updating signals and FIFOs when simu-
lation time is to be updated, so that threads have the correct
input values at each time slot.

Figure 2(a) contains a HwThread subclass which over-
rides method hwmethodrun(), while in figure 2(b) hwthread-
run() is overridden. hwthreadrun() differentiates from
hwmethodrun() in that it can be executed only once. It can
suspend its operation by calling a wait method and it can re-
sume from the point where it was suspended. The hwmetho-
drun() is executed as a function, which does not suspend and
continues running until it returns. It can however dynam-
ically modify its sensitivity list, so that it can be executed
again when a specified event is triggered.

HwThreadRunExample consists of a setup preamble and
the main body. In the preamble the sensitivity list is defined.
It can however be changed dynamically in the main body. In
the example we make the thread sensitive to positive clock
edge. We are releasing the control by calling the waitcycle()
method. After the call of this method, the thread will sus-
pend its operation and it will resume when the positive clock
edge event is triggered. We have the potential to define our
events and trigger them, and make some thread sensitive to
our events. However, it is convenient to keep the event trig-
gering mechanism simple by having only the positive edge
of the clock as a reference event.

2.2 Communication

The package supports communication between threads
through signals and FIFOs. The example of figure 3 contains
a thread which reads the signal sin[0] and writes the signal
sout[0]. The HwThread class contains some array reference
fields for the input and output signals and FIFOs. Before the
instantiation of a HwThread object, we create the appropri-
ate signals and FIFOs, then some arrays of them, and finally
we pass these arrays to the constructor of HwThread (or a
user subclass of HwThread), as illustrated in figure 4. An
HwSignal object is created for the signal clk. We add this
signal to the input and output list of thread thread1. So, the
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public class HwThreadInstantiationExample extends
HwScheduler

{
public static void main(String[] args)
{
HwThreadInstantiationExample sched=

new HwThreadInstantiationExample();
sched.setDaemon(false);
sched.start();

}
public void setupHwThreads(HwEvent startEvent)
{
HwSignal clk=new HwSignal(this, "CLK",

new Integer(0));
HwSignal[] sin={clk};
HwSignal[] sout={clk};
HwThread thread1=new ClkThread("clk", this, sin,

sout, null, null, null, null);
waitingList.add(thread1);
thread1.addEvent(startEvent);
//start threads
thread1.start();

}
}

Figure 4: HwThread instantiation

thread behaves as a clock thread, since it alternates the sig-
nal clk periodically. The signal is implemented internally
as two values, currentvalue and value2update. The threads
write the value2update variable. When it comes the time
for time update, the currentvalue variable takes the value of
value2update variable, so that the threads have the new value
at their disposal at the very next time slice.

Consider the example of figure 1b where three parallel
threads communicate with FIFOs. The code snippets in fig-
ures 5 and 6 show the use of FIFOs. FIFOs are objects of the
class HwFifo. They are handled with the methods insert()
and remove(). Note that a value inserted in the FIFO is not
available to other threads until the next time slot. The FI-
FOs are very handy, since we can insert objects of any class,
including user defined classes.

2.3 Scheduling Threads & Event Management

The scheduler works as follows. It maintains two queues of
threads, the readylist which contains all the threads ready to
run, and the waiting list which contains threads not yet ready
to run (figure 7). The threads in the waiting list are waiting
for the triggering of some event in their sensitivity list. When
this comes they leave the waiting list and enter the ready list.

As long as the ready list contains threads, the sched-
uler removes one and dispatches it for execution. When the
readylist gets empty, it triggers the closest in time event. This
action fills the readylist with some threads. It advances also
the time to the time of this event. The events can be created
by the threads while executing, or as an effect of the signal
update action if a transition is detected. Either the source,
they are inserted in the queue with a certain timestamp.

For each thread extracted from the ready list and executed
in the allotted time slot, references to their output signals and
FIFOs are added to a list, so that they could be updated at the
end of the current time slice.

public class Thread1 extends HwThread
{
public void hwthreadrun()
{
synchronized(sched)
{
hwwait();
addEvent(new HwEvent(sched,-1,"CLKPOSEDGE"));
HwFifo fifo1=outfifo[0];
HwFifo fifo2=outfifo[1];
waitcycle();
for(int i=0;i<100;i++)
{
System.out.println("Thread1:"+i);
fifo1.insert(Integer.toString(i));
fifo2.insert(new Object());
waitcycle();

}
resetEvents();
sched.notifyAll();
hwwait();

}
}

}

public class Thread2 extends HwThread
{
public void hwthreadrun()
{
synchronized(sched)
{
hwwait();
addEvent(new HwEvent(sched,-1,"CLKPOSEDGE"));
HwFifo fifo3=outfifo[0];
waitcycle();
for(int i=0;i<100;i++)
{
System.out.println("Thread2:"+i);
fifo1.insert(new Integer(i*5));
waitcycle();

}
resetEvents();
sched.notifyAll();
hwwait();

}
}

}

public class Thread3 extends HwThread
{
public void hwthreadrun()
{
synchronized(sched)
{
hwwait();
addEvent(new HwEvent(sched,-1,"CLKPOSEDGE"));
HwFifo fifo1=infifo[0];
HwFifo fifo2=infifo[1];
HwFifo fifo3=infifo[2];
waitcycle();
for(int i=0;i<100;i++)
{
System.out.println("Thread3:"+i);
if(!fifo1.isEmpty())
System.out.printlin((String)fifo1.remove());

Object obj=fifo2.remove();
int i=0;
if(!fifo3.isEmpty())
i=((Integer)fifo3.remove()).intValue();

waitcycle();
}
resetEvents();
sched.notifyAll();
hwwait();

}
}

}

(a)

(b)

(c)

Figure 5: Communicating threads example
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public class FifosExample extends HwScheduler
{
public void setupHwThreads(HwEvent startEvent)
{
//clkthread - omitted for clarity
HwFifo fifo1=new HwFifo();
HwFifo fifo2=new HwFifo();
HwFifo fifo3=new HwFifo();

//thread1
HwFifo[] outfifo={fifo1, fifo2};
HwThread thread1=new Thread1("thread1", this, null,

null, infifo, null, null, null);
waitingList.add(thread1);
thread1.addEvent(startEvent);

//thread2
HwFifo[] outfifo={fifo3};
HwThread thread2=new Thread2("thread2", this, null,

null, infifo, null, null, null);
waitingList.add(thread2);
thread2.addEvent(startEvent);

//thread3
HwFifo[] outfifo={fifo3};
HwThread thread3=new Thread3("thread3", this, null,

null, infifo, null, null, null);
waitingList.add(thread3);
thread3.addEvent(startEvent);

//start threads
clkthread.start();
thread1.start();
thread2.start();
thread3.start();

}
}

Figure 6: Communicating threads example

2.4 More Advanced Communication Mechanisms
In modeling processor pipelines, we usually have the two
phases of the clock as reference events. Since we are mod-
eling for performance, we do not want to get involved with
subtle timing details. We may want to communicate with an-
other subunit within the current cycle, that is to request data
from a subunit and get the response. With HwFifo this is
not possible, since the request will arrive the next clock cy-
cle, and the response one cycle later. Thus, we can’t model a
combinational subunit.

To address this problem, we have added a variation of
HwFifo, the HwTransmitFifo class. This class provides the
methods transmit() and receive() for communication within
the cycle. They are based on the special wait method
waitdt(), which suspends for a minimum simulation step time
dt. The cycle time is partitioned. Now the time has two com-
ponents, a major time, and a minor time, which is the count of
dts. The maximum time of dts in a given cycle, is determined
by the thread with the maximum number of waitdt() calls.
transmit() and receive() work as follows. Whenever a thread
(TA) wants to communicate with another one (TB) within
cycle, it calls the transmit() method. TB calls receive(). re-
ceive() calls continually the method waitdt() until a value
is inserted in the corresponding FIFO. Then it removes the
value, as in the normal FIFO. The waitdt() method releases
control. The thread resumes in time t+dt.

HwTransmitFifo provides also a non blocking read
method read(). Last but not least, the contents of the FIFO
are removed every clock cycle, so as to reflect communica-

thread3 thread1

thread2

waiting listready list events queue

@1 “ev1”

@2 “ev1"

@1 “ev2”
trigger

thread3

current thread

min time=1

Figure 7: Scheduler

Figure 8: Variables view of Eclipse platform

tion within cycle. Method read() can retrieve the last updated
value, as if it were a signal.

2.5 Eclipse as a Debugging Platform
A Java IDE environment can be used for debugging our mod-
els. We have used the Eclipse platform, the debugging per-
spective of which provides several facilities for hardware de-
bugging. We have full view of the object fields and method
variables, and we can traverse the reference paths to access
some other object’s fields. Figure 8 illustrates this point.
Here the instance fields of class Folder and the local variables
of method hwthreadrun() are shown. Notice that we can ac-
cess information from other HwThread objects, since Folder
has a reference to its scheduler. In addition, by examin-
ing HwFifo objects, we can debug communication problems.
The tool has also useful breakpoint mechanism. We can sus-
pend and resume the execution at any time. We can also set
breakpoints with hit count. When execution is paused for a
breakpoint, we can do various actions. Firstly, we can re-
sume up to the next breakpoint. The tool supports also step
run in various forms (step into, step over, step return).

3. MODELING EXAMPLE

As an example we will present the modeling of a cache based
stack folding technique for Java processors [11]. We will
start with a brief description of the architecture, and then we
will present some experimental results of a DSP application.

3.1 Architecture Description
The Java virtual machine instruction set is stack based, which
causes serialization in the execution of Java programs. In or-
der to exploit the inherent parallelism of Java programs we
must eliminate stack accesses. This can be achieved by fold-
ing java bytecodes. For example an operation in the JVM
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Figure 9: (a) Folding Operation, (b) Java2RISC Architecture

instruction set usually consists of a sequence of the form
PUSH PUSH OP POP [6]. We have two loads in the stack,
extraction of the two topmost words from the stack, com-
putation of the result and then a pop from the stack and a
store to a local variable. This sequence can be folded to
just one RISC like instruction with the two local variables
as sources, and the third as destination. The most straight-
forward approach is that of pattern based folding, in which
the instruction buffer is examined for some specific folding
patterns [6]. More complex algorithms such as OPEX [9]
perform nested folding, as illustrated in figure 9a. OPEX cat-
egorizes instructions to producers, anchors and consumers.
A producer is an instruction that pushes a local variable or a
constant into the stack, while a consumer pops a value from
the stack and stores it in a local variable. Anchor is an in-
struction that changes the order or the content of the stack
by processing. Almost all processing java bytecodes fall into
this category. The algorithm maintains a queue of recently
fetched java bytecodes and tries to find the first anchor in-
struction. Then the corresponding folding group is extracted
and issued as a RISC instruction.

Our architecture uses a modified version of OPEX, which
allows storing of the folding results in a predecoded cache.
By keeping the results in the cache, the instruction decoding
throughput is increased substantially, since the most accesses
will hit in the predecoded cache.

Figure 9b shows a diagram of the architecture. The RISC
backend core requests RISC instructions based on the java
bytecodes counter. If the requested block exists in the cache,
it gets a line of up to 6 RISC instructions. Otherwise, the
folder starts folding from the requested java bytecodes ad-
dress. The folding results are returned to the processor core
and are also stored in the cache for later use.

The line of RISC instructions must terminate if a control
flow change instruction is encountered, such as invoke, return
or branch. Besides the instructions, a line contains fields for
the fall through address and the branch target (valid only for
branches). The processor core consults these fields in order
to make the next request.

3.2 Experimental Results

We ran our model with specjvm98 [4] 222 mpegaudio as in-
put. Some of the stats gathered during the simulation run are
presented here. Table 1 shows the number of Java bytecodes
per cycle, the number of executed RISC instructions per cy-
cle, the cache hit ratio and the percentage of cycles the fold-
ing unit is operating for various cache configurations. The

Table 1: Stats for various cache configurations
cache parameters JIPC RIPC CHIT(%) FLDPER(%)
size=2x4096 4.4981 3.1968 96.329 12.51
size=2x2048 4.4310 3.1401 93.765 14.51
size=1x2048 4.0606 2.9022 89.509 23.92
size=2x1024 3.4454 2.4819 90.173 52.50
size=4x256 3.5634 2.4864 69.067 55.03
JIPC: java bytecodes per cycle, RIPC: RISC instructions per cycle

CHIT: cache hit ratio, FLDPER: % cycles folding unit operates

simulations were run for 20 million cycles.
The use of the predecoded cache has accelerated signif-

icantly the execution. The architecture performs well espe-
cially in kernels, where we have massive reuse of the folding
results. By keeping the hit ratio in a logical range we can
have speedup of 3-4 times over the pattern based folding.

4. CONCLUSION

The introduction of Java in microarhitecture modeling gives
great productivity gains. Combining models of different lev-
els of detail in the same environment is beneficial. We have
discussed some methodologies for Java microarchitectures
modeling and applied some of them in the powerful frame-
work we developed on top of the Java language. In the future,
we expect to improve our framework in terms of simulation
speed, and to provide some utility classes for the computer
architecture designer.
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