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ABSTRACT

An embedded wavelet-based coder is deployed to exploit
the directional selectivity of a 2D complex dual-tree dis-
crete wavelet transform. Although the dual-tree transform
is redundant, a noise-shaping process increases the spar-
sity of the transform coefficients, resulting in a high de-
gree of spatially coherent regions of insignificant coeffi-
cients. The transform coefficients are coded with binary
set-partitioning using k-d trees, and experimental results re-
veal rate-distortion results superior to the state-of-the-art
JPEG2000 standard at low bitrates, particularly for images
with strong directional features.

1. INTRODUCTION

Although the discrete wavelet transform (DWT) has domi-
nated the field of image compression for well over a decade,
DWTs in their traditional critically sampled form are known
to be somewhat deficient in several characteristics, lacking
such properties as shift invariance and significant directional
selectivity [1]. Recently, complex-valued wavelet transforms
have been proposed to improve upon these DWT deficien-
cies, with the dual-tree DWT (DDWT) [2] becoming a pre-
ferred approach due to the ease of its implementation. In
the DDWT, real-valued wavelet filters produce the real and
imaginary parts of the transform in parallel decomposition
trees, permitting exploitation of well-established real-valued
wavelet implementations and methodologies. A primary ad-
vantage of the DDWT lies in that it results in a decompo-
sition with a much higher degree of directionality than that
possessed by the traditional DWT. However, since both trees
of the DDWT are themselves orthonormal or biorthogonal
decompositions, the DDWT taken as a whole is a redundant
tight frame [1]. Although present to a significantly less de-
gree than in other overcomplete transforms (e.g., the redun-
dant or oversampled DWT [3]), this redundancy still poses
a challenge to certain applications, mostly notably, compres-
sion.
In this paper, we adapt an embedded wavelet-based im-

age coder to the task of coding DDWT coefficients. We em-
ploy a DDWT with an anisotropic wavelet-packet decom-
position to increase directionality beyond that of the more
common dyadic decomposition without further increasing
the redundancy of the transform. We couple this anisotropic
DDWT with a modified version of the embedded wavelet-
based coder of [4], binary set splitting with k-d trees (BISK).
Experimental results reveal that the resulting DDWT-BISK
coder achieves rate-distortion performance superior to that of
JPEG2000 at low bitrates, with strongest performance gains
resulting for images with strong directional features.
In the following, we first overview the DDWT in Sec. 2

before describing our DDWT-BISK coder in Sec. 3. A de-
tailed presentation of the DDWT-BISK algorithm is made in
Sec. 4. Experimental results follow in Sec. 5, and we present
some concluding remarks in Sec. 6.

2. THE DDWT

In order to overcome shortcomings of the traditional criti-
cally sampled DWT, Kingsbury [2] introduced the DDWT
consisting of two trees of real-valued wavelet filters oper-
ating on the same data in parallel, with the filters designed
such that the two trees produce the real and imaginary parts
of the complex-valued coefficients. This approach was ex-
tended to higher dimensions to develop 2D and 3D versions
of the DDWT for images and video in [5]. While the DWT
lacks shift invariance, the DDWT is approximately shift in-
variant and offers higher directional selectivity. However, the
DDWT is 2m:1 redundant for an m-dimensional signal. It
turns out that the degree of redundancy can be reduced with-
out sacrificing perfect reconstruction by simply discarding
the complex parts of the coefficients, resulting in 2:1 redun-
dancy for a 2D DDWT. For this real-valued transform, two
separable 2D DWTs based on Hilbert pairs of wavelets are
applied to the original signal. The resulting two sets of trans-
form data are then combined with linear operations, thereby
effectuating the retaining of only the real-valued coefficients.
The resulting DDWT subbands are arranged in two separate
transform trees with each tree having the same subband or-
ganization as would a 2D DWT of the original data, but with
each tree containing subbands of different orientation. We
employ the popular 9/7 biorthogonal wavelet filters for the
first level of decomposition and the Q-shift filters of [6] for
the remaining levels. The reader is referred to [1] for a thor-
ough introduction to the DDWT.
The 2D DDWT in [5] employs a dyadic decomposition

structure such that the baseband subband in each tree is recur-
sively decomposed. Here, we employ instead an anisotropic
wavelet-packet decomposition structure [7] which, as illus-
trated in Fig. 1, consists of J-scale 1D DDWTs applied sep-
arably in both the horizontal and vertical directions. The
anisotropic structure increases the directionality of the de-
composition with respect to the dyadic structure by increas-
ing the number of subbands without further increasing the
redundancy of the transform [8]. A 3D equivalent of this
anisotropic structure exhibited coding advantages in prior
work [8, 9]; as a consequence, we use this anisotropic DDWT
exclusively here.
Although the 2D DDWT produces twice the data that the

2D DWT does, the DDWT requires fewer critical coefficients
to efficiently represent the underlying signal [8]. To wit,
Reeves and Kingsbury [10] proposed deliberately reducing
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the number of DDWT coefficients by discarding small mag-
nitude coefficients and refining the remaining coefficients to
compensate. This “noise-shaping” procedure is an iterative
projection of signals between the original-signal domain and
the DDWT domain. On each iteration, the signal is thresh-
olded in the DDWT domain to remove small coefficients, and
the remaining coefficients are compensated by the original-
signal-domain error induced by the thresholding.
The noise-shaping process operates as illustrated in

Fig. 2. During iteration i, the DDWT-domain coefficients
are thresholded with a threshold θi. The spatial-domain er-
ror, amplified by gain α , is then added back to the DDWT
coefficients. The first iteration starts with θ0 = θ

start, and the
threshold decreases to θ

stop in decrements of θ
step; i.e.,

θi+1 = θi−θ
step. (1)

Throughout this work, we use θ
step = 1 and α = 1.8. We

have found that performance of the noise-shaping procedure
varies significantly with the values of θ

start and θ
stop; in

the experimental results below, we optimize these values for
each image and rate independently.

3. DDWT-BISK

The noise-shaping procedure outlined above ensures that sig-
nificant coefficients are relatively sparse in the DDWT do-
main such that insignificant coefficients tend to cluster in
large, spatially coherent regions. In order to efficiently code
such spatially coherent regions of DDWT coefficients, we
propose a modified version of the BISK algorithm [4]. BISK
performs bitplane coding in which significant coefficients
are located by recursive spatial partitioning. Specifically,
k-d trees [11] are used to split sets of coefficients into two
subsets of roughly equal size. Once a significant coeffi-
cient is located, its sign information is coded, and its magni-
tude is refined on successive passes. Significance, sign, and
magnitude-refinement information are all coded with adap-
tive arithmetic coding.
In the proposed DDWT-BISK coder, the noise shaping of

Fig. 2 is applied to produce sparse DDWT coefficients. The
coder maintains multiple lists of insignificant sets (LIS)—
sets having roughly the same size are stored in the same LIS
list, and sets move between lists as they are split to smaller
sizes. The coder is initialized by placing each subband from
the two DDWT trees in an appropriate LIS list as a sepa-
rate set, and then bitplane coding is performed with sorting
and refinement passes. Sets containing at least one signif-
icant coefficient (significant sets) are split in two along the
longest dimension of the set, and the resulting subsets are
added back to an LIS list as two new sets to be recursively
tested and split if necessary. Eventually, a significant set will
be reduced to a single coefficient; at this point, the coefficient
is removed from its LIS list and added to the list of signifi-
cant pixels (LSP). The refinement pass then processes each
coefficient in the LSP and outputs the current bitplane value
of the coefficient magnitude. Sorting and refinement passes
continue until the target bitstream length has been reached.
The DDWT-BISK set-partitioning procedure is illustrated in
Fig. 3.

4. ALGORITHM

The DDWT-BISK algorithm starts by performing noise shap-
ing on the original image, X , producing two trees of DDWT

transform coefficients, T1 and T2. These trees are split into
individual subbands which are then placed into the appropri-
ate LIS. Afterward, the DDWT-BISK algorithm follows the
common bitplane-coding paradigm consisting of sorting and
refinement passes.

Specifically, assume a set of coefficients, S, has been
already decomposed ly(S) times vertically and lx(S) hori-
zontally and resides in LISi, i = ly(S) + lx(S). Further as-
sume that the number of rows and columns of S are y(S) and
x(S), respectively. When S is split, the two resulting subsets
S1 and S2 will reside in LISi′ , i′ = ly(S) + lx(S) + 1. The
split is either horizontal or vertical depending on whether
y(S) < x(S) or not.

procedure DDWT-BISK(X , θ start, θ stop, θ step, α)
{T1,T2}← NoiseShape(X , θ start, θ stop, θ step, α)
Initialization(T1, T2)
n←max bitplane
while (true)
SortingPass()
RefinementPass()
n← n−1

procedure NoiseShape(X , θ start, θ stop, θ step, α)
θ ← θ

start

{T1,T2}← DDWT(X )
while θ 6= θ

stop

{T ′
1 ,T

′
2 }← threshold coefficients in {T1,T2} to θ

X ′← DDWT−1({T ′
1 ,T

′
2 })

{T1,T2}← {T1,T2}+DDWT(α(X −X ′))
θ ← θ −θ

step

procedure Initialization(T1, T2)
for t ∈ {1,2} do
for each subband S in Tt

ly(S)← vertical transform level of S
lx(S)← horizontal transform level of S
append S to LISly(S)+lx(S)

LSP←∅

procedure SortingPass()
l = number of LIS lists
while l > 0
for each S ∈ LISl

Process(S)
l← l−1

procedure RefinementPass()
for each S ∈ LSP
output nth bitplane value of coefficient magnitude

The sorting pass determines the significance of set S by com-
paring the largest coefficient magnitude contained in the set
to the current threshold. Sets without a significant coefficient
are placed in an LIS, and, during the sorting pass, each set in
an LIS is tested for significance against the current threshold.
If the set becomes significant, it is split in two as described
above. The two new sets are placed into an LIS, recursively
tested for significance, and split again if needed. Let Γn(S)
be the significance state of set S, such that Γn(S) = 1 if S
contains at least one coefficient magnitude greater than the
current threshold, 2n.
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procedure Process(S)
if S = ∅
remove S from LISly(S)+lx(S)

else
output Γn(S)
if Γn(S) = 1
remove S from LISly(S)+lx(S)

if |S|= 1
output sign of S
append S to LSP
else
Code(S)

procedure Code(S)
{S1,S2}= Partition(S)
if S1 6= ∅
append S1 to LISly(S1)+lx(S1)

Process(S1)
append S2 to LISly(S2)+lx(S2)

Process(S2)

procedure Partition(S)
if x(S)≥ y(S)
split S into S1 and S2:
S1: size y(S)×⌊x(S)/2⌋
S2: size y(S)×

(

x(S)−⌊x(S)/2⌋
)

lx(S1), lx(S2)← lx(S)+1
ly(S1), ly(S2)← ly(S)

else
split S into S1 and S2:
S1: size ⌊y(S)/2⌋× x(S)
S2: size

(

y(S)−⌊y(S)/2⌋
)

× x(S)
ly(S1), ly(S2)← ly(S)+1
lx(S1), lx(S2)← lx(S)

DDWT-BISK uses adaptive arithmetic coding for set signif-
icance. Specifically, when set S is split into sets S1 and S2,
and it happens that S1 is insignificant, then it is known that
S2 is significant, and thus significance state Γn(S2) is not
coded to the bitstream. Otherwise, the coding of Γn(S2) is
conditioned on the fact that S1 was significant. The contexts
used for set-significance coding within the DDWT-BISK al-
gorithm are as follows:

c(S1)← CONTEXT S1

if S1 = ∅ or Γn(S1) = 0
c(S2)← CONTEXT NOCODE

else
c(S2)← CONTEXT S2

Above, c(Si) denotes the context that will be used to code
Γn(Si).

5. RESULTS

In our experiments, we code the grayscale images shown
in Table 1 using both the proposed DDWT-BISK coder as
well as JPEG2000, widely considered to be the current state
of the art for still-image coding. DDWT-BISK uses the
anisotropic DDWT decomposition described above in Sec. 2,
while JPEG2000 uses a traditional dyadic DWT with the
popular 9/7 biorthogonal wavelets. Both coders use 5 lev-
els of decomposition. We measure distortion in terms of

peak signal to noise ratio (PSNR) in dB and rate in terms of

bits per pixel (bpp). We use the Kakadu1 Version 5.1 imple-
mentation of JPEG-2000, while DDWT-BISK was developed

from the QccPack2 [12] implementation of BISK.

For the DDWT noise-shaping process described in
Sec. 2, we optimize θ

start and θ
stop for each image and rate

independently by exhaustive search over a fixed set of pos-
sible threshold values. Specifically, for a given image and a
given rate R, we search over all pairs (θ start,θ stop) ∈ A×A,
whereA= {8k, k = 1,2, . . . ,32}, discarding pairs for which
θ
stop > θ

start. For a given pair (θ start,θ stop), the iterative
noise-shaping procedure as described in Sec. 2 is run, step-
ping the threshold down from θ

start to θ
stop. We then encode

the resulting noise-shaped DDWT coefficients using DDWT-
BISK at rate R. The pair (θ start,θ stop) yielding the highest
PSNR is chosen, and this process is repeated for each image
and rate R of interest.

Table 1 tabulates PSNR results for each image at a va-
riety of rates, while Figs. 4 and 5 plot rate-distortion per-
formance for the “barbara” and “mandrill” images, respec-
tively. We see that DDWT-BISK consistently outperforms
JPEG2000 at the lower bitrates, delivering, for example, 0.9
and 0.8 dB higher PSNR for “barbara” and “lenna,” respec-
tively, at 0.1 bpp. Gains are highest for “barbara,” an image
well-known for its substantial directional content.

Table 2 presents further investigation for the “barbara”
image. Specifically, DDWT-BISK (using the anisotropic
DDWT as described in Sec. 2) is compared to JPEG2000
using both a dyadic decomposition structure as well as an
anisotropic wavelet-packet decomposition similar to that of
Fig. 1 (critically sampled, of course) as supported by Part 2
of the JPEG2000 standard. Additionally, we compare to
the original QccPack BISK implementation described in
[4] using a traditional critically sampled dyadic DWT with
the biorthogonal 9/7 filters. We observe that use of the
anisotropic decomposition has little effect on the perfor-
mance of JPEG2000; additionally, the original BISK im-
plementation is outperformed somewhat by JPEG2000 using
both decomposition structures. These observations suggest
that the directionality resulting from the DDWT is a primary
component to the superior performance of DDWT-BISK.

6. CONCLUSION

In this paper, we modified the BISK coder of [4] to pro-
vide efficient coding of DDWT coefficients. Because of the
noise-shaping procedure imposed, the significant coefficients
are ensured to be distributed rather sparsely throughout the
DDWT domain, resulting in spatially coherent regions of in-
significant coefficients. The set-partitioning process of the
proposed DDWT-BISK coder effectively exploits this high
degree of spatial coherency by splitting sets drawn from both
DDWT transform trees. In order to increase directionality
without further increasing the redundancy of the transform,
an anisotropic decomposition structure is used. Experimental
results reveal that the increased directionality resulting from
the DDWT increases the performance of DDWT-BISK be-
yond that of the state-of-the-art JPEG2000 for low-bitrate
coding, with the strongest gains resulting, as expected, for
images such as “barbara” with strong directional content.

1http://www.kakadusoftware.com
2http://qccpack.sourceforge.net
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tree 0 tree 1

Figure 1: The anisotropic DDWT decomposition consisting
of J-scale 1D DDWT decompositions applied separably both
horizontally and vertically (illustrated for J = 3).
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Figure 2: The noise-shaping procedure (adapted from [10]).
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Figure 3: The partitioning procedure for DDWT-BISK.
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Table 1: Rate-distortion performance.
PSNR (dB)

“barbara” “lenna” “goldhill” “mandrill”
Rate JPEG DDWT- JPEG DDWT- JPEG DDWT- JPEG DDWT-
(bpp) 2000 BISK 2000 BISK 2000 BISK 2000 BISK
0.1 24.7 25.6 29.9 30.7 27.8 28.2 21.5 21.8
0.25 28.4 29.4 34.1 34.3 30.5 30.8 23.3 23.9
0.5 32.2 33.0 37.3 37.1 33.2 33.1 25.8 25.9
0.75 34.9 35.5 39.0 38.7 35.0 34.8 27.6 27.8
1.0 37.2 37.2 40.3 39.9 36.6 36.1 29.3 29.0

Table 2: Rate-distortion performance for “barbara.”
PSNR (dB)

JPEG JPEG
Rate BISK 2000 2000 DDWT-
(bpp) (dyadic) (dyadic) (anisotropic) BISK
0.1 24.3 24.7 24.8 25.6
0.25 27.7 28.4 28.5 29.4
0.5 31.5 32.2 32.4 33.0
0.75 34.3 34.9 34.9 35.5
1.0 36.4 37.2 37.1 37.2
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Figure 4: Rate-distortion performance for “barbara.”
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Figure 5: Rate-distortion performance for “mandrill.”
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