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ABSTRACT
To analyze specific properties of music similarity mea-

sures that the commonly used genre classification evaluation
procedure does not reveal, we introduce a MIDI based test
framework for music similarity measures. We introduce the
framework by example and thus outline an experiment to an-
alyze the dependency of a music similarity measure on the
instrumentation of a song compared to the melody, and to
analyze its sensitivity to transpositions.

Using the outlined experiment, we analyze music sim-
ilarity measures from three software packages, namely
Marsyas, MA toolbox and Intelligent Sound Processing tool-
box. The tested timbral similarity measures perform instru-
ment recognition relatively well, although they are sensitive
to transpositions and differences between sound fonts. The
beat/rhythm/melody similarity measures are not always able
to recognize the same melody played with different instru-
ments.

1. INTRODUCTION

As sound compression has matured and storage has become
cheap, digital music collections, e.g. in the mp3 format, have
grown very large. Navigation in such collections is limited
by the metadata, such as title and artist, that is associated with
the songs. Appropriate music similarity measures could help
navigating in such collections, and could also be used for
music recommendation systems in online music stores. By
music similarity measure, we mean a quantitative measure of
the similarity (or distance) between some musical aspects of
two songs. Most music similarity measures are divided into
a feature extraction part that extracts features that compactly
describe some musical aspects of a song, and a distance mea-
sure that computes the distance between songs from the fea-
tures. Much work has already been done on music similar-
ity and on the related task of genre classification, e.g. [1–9].
Genre classification is often used to evaluate music similar-
ity measures since it simplifies evaluation compared to the
numerous user evaluations that are otherwise needed.

While genre classification provides a good first estimate
of the performance of a music similarity measure, it does not
provide details of its inner workings. For example, a com-
monly used feature that performs relatively well in genre
classification when combined with a classifier, is the mel-
frequency cepstral coefficients (MFCCs), e.g. [3–8]. The
MFCCs have their origins in speech recognition, where they
are used to model the spectral envelope of a single speaker
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while suppressing the fundamental frequency. This is consis-
tent with the common notion in music similarity of MFCCs
as a timbral descriptor. Timbre is defined as “the auditory
sensation in terms of which a listener can judge that two
sounds with the same loudness and pitch are dissimilar” [10].
Since the temporal envelope and the spectral envelope play
key roles to the perception of timbre [11], one would expect
the MFCCs to mainly depend on the instrumentation of a
song, and one would expect them to perform genre classifi-
cation by matching songs with similar instrumentation. It is
a tempting conclusion, but there are a number of uncertain-
ties. For instance, in music several notes are often played at
once, and it is not obvious how this mixing affects the spec-
tral envelope. Furthermore, it is well-known that MFCCs are
not completely independent of the fundamental frequency
(e.g. [12]). Unfortunately, the good performance in genre
classification does not reveal to which extent the MFCCs
reflect the instrumentation, and to which extent they reflect
the harmonies and key of a song. In this paper, we take the
first steps towards an answer by introducing a test framework
based on MIDI synthesis that supplements the genre classifi-
cation results.

In Section 2, we describe an experiment to evaluate the
dependency of a similarity measure on instrumentation com-
pared to melody and an experiment to evaluate the sensitivity
of a similarity measure to transpositions. In Section 3 and
Section 4, we briefly describe some similarity measures we
have evaluated using the experimental setups and present the
results, respectively. In Section 5, we discuss the results as
well as how the experiments can be modified to analyze other
aspects of music similarity measures.

2. ANALYSIS FRAMEWORK

To analyze how a music similarity measure depends on the
instrumentation compared to the notes and how it is affected
by transpositions, we use a MIDI file1 setup. We take a num-
ber of MIDI files, manipulate the instrumentation and key
using the MATLAB MIDI-toolbox [13], and then use a soft-
ware synthesizer to generate waveform signals that can be
used in a nearest neighbor classifier. Using MIDI files might
bias the results, since the synthesized signal will be more
homogeneous than recordings of real musicians would be.
The advantage is that it allows us to manipulate instrumen-
tation, tempo and melody in a flexible, reproducible way. In
what follows, we first introduce an experiment to test the de-
pendency of a musical similarity measure on instrumentation
compared to the dependency on the notes, i.e., the melody
and harmonies. Second, we introduce an experiment to eval-

1A MIDI file contains information about fundamental frequency, instru-
mentation and onset/duration of all notes.
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uate the dependency on transpositions of a song, i.e., how
shifting all notes of a song a number of semitones affects the
similarity measure.

2.1 Instrumentation versus notes

The dependency on instrumentation is tested by taking M dif-
ferent MIDI songs and choosing N instruments. We choose
songs of different musical styles to ensure that the songs
will have very different harmonic and melodic characteris-
tics. For each m, from 1 to M, and for each n, from 1 to N,
we do the following:

1. Read MIDI file m.
2. Remove all percussive instruments.
3. Let all notes be played by instrument n.
4. Synthesize a waveform signal.
5. Extract the feature vector vmn from the waveform signal.

In the following, we will use the term “melody” to denote the
instrument and key-independent part of a song, i.e., we will
say that all songs created from MIDI file m, which share the
exact same melody, harmonies and timing, share the same
melody no matter what the instrumentation or key is. After
computing features for all M×N songs, we find the nearest
neighbor of vmn according to the distance d(·, ·) associated
with the feature:

(p,q) = argmin
l,k

(l,k)6=(m,n)

d(vmn,vlk) (1)

Let vmn be a given query, and let the nearest neighbor among
the target songs be vpq. If p = m, then the nearest neigh-
bor has the same melody as the query. We define the melody
classification accuracy by the fraction of the M×N queries
where the nearest neighbor has the same melody. Similarly,
we define the instrument classification accuracy as the frac-
tion of queries where the nearest neighbor uses the same in-
strument.

2.2 Transpositions

A human listener does not consider the same song played
in different keys as different songs. Similarly, an instrument
playing two different notes is still considered the same instru-
ment. For most similarity measures it is therefore of interest
to know how sensitive they are to transpositions. This is what
this experiment investigates. It is similar to the previous ex-
periment; the differences being that the tonal range is nor-
malized and the song is transposed. The tonal range is nor-
malized by transposing each individual track of a song (such
as bass or melody) by an integer number of octaves, such that
the average note being played in a track is as close as possi-
ble to the C4 note (middle C on the piano). The constraint of
transposing tracks an integer number of octaves ensures that
the harmonic relationships are not changed. As before, let m
and n denote melody and instrument number, and let s denote
the number of semitones a song is transposed. Features v(s)

mn
are computed for different values of s. When evaluating (1),
a query that has not been transposed is always used, i.e. the
minimization is over d(v(0)

mn ,v(s)
lk ). Melody and instrument

classification rates are computed for all values of s.

2.3 Implementation of the framework
In genre classification, standard data sets such as the training
data from the ISMIR 2004 Genre Classification contest [14]
is readily available. However, for our purpose there is no
obvious MIDI data set to use. For this reason we created
112 songs of length 30 s using Microsoft Music Producer,
a program for automatically creating MIDI files for back-
ground music. Each song has a different musical style with
different melody, rhythm, tempo, accompaniment and instru-
mentation. Examples of styles are “50s rock”, “Latin” and
“Southern rock”. From the General MIDI Level 1 Sound
Set, all the 112 instruments that neither belong to the percus-
sive instrument family nor are sound effects (see [15]), were
selected. Of the 112 instruments and 112 songs, ten random
subsets of 30 songs and 30 instruments were chosen. For
each subset, the experiments described in Section 2.1 and
2.2 were performed. To synthesize waveform signals from
MIDI, the software synthesizer TiMidity++ was used. Two
different sound fonts, Fluid R3 and SGM-180 v1.5 GM, were
used. Equation (1) was evaluated both with query and tar-
get synthesized from the same sound fonts, and with query
and target synthesized from different sound fonts. All fea-
ture extraction routines where given a mono signal sampled
at 22 kHz as input.

3. MUSIC SIMILARITY MEASURES

In this section, the tested similarity measures are described.
Music similarity measures from three different publicly
available software packages have been tested: Marsyas [16],
the MA toolbox [17], and the Intelligent Sound Processing
toolbox (see http://isound.kom.auc.dk/). Since
not all of the similarity measures incorporate a distance mea-
sure between individual songs, some ad hoc distance mea-
sures have been introduced. These are also described below.

3.1 Marsyas
From Marsyas v. 0.1, five feature sets are tested. The feature
sets are thoroughly described in [3], where they were used
with a probabilistic classifier that was trained on features
from an entire genre. For this reason, a distance measure
between feature vectors from individual songs does not ex-
ist. For all but the beat feature, which performed better with
ordinary Euclidean distance, we therefore use the weighted
Euclidean distance, dW(u,v) = (u−v)TW(u−v), whereW
is a diagonal matrix with positive elements. For the timbre
features, W was chosen to maximize the difference between
the average distance between all vectors and the average dis-
tance between vectors from songs with the same instrument,
subject to ‖W‖F = 1, where ‖ · ‖F is the Frobenius norm:

W = argmax
W

‖W‖F=1

[
1

M2N2 ∑
i, j

∑
k,l

dW(vi j,vkl)

− 1
M2N ∑

j
∑
i,k

dW(vi j,vk j)
]
. (2)

Before computingW, all feature dimensions were normalized
to have unit variance. For the pitch feature, the average dis-
tance between songs of the same melody was minimized in-
stead. The weightsW were computed from one of the 30×30
subsets from the experiment in Section 2.1 where both query
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Marsyas︷ ︸︸ ︷ MA toolbox︷ ︸︸ ︷ ISP toolbox︷ ︸︸ ︷

Figure 1: Instrument and melody classification accuracies. The number 1 denotes that the same sound font has been used for
both query and target, while 2 denote that different sound fonts were used for the query and target. The whiskers on the plot
denote the 95% confidence intervals.

and target songs were synthesized with the Fluid R3 sound
font. The same weights were used for the transposition ex-
periment. In the following, the five feature sets from Marsyas
we have tested are described:
Timbre: Mean and variance of the spectral centroid, roll-off,
flux and of the fraction of low-energy frames [3]. Distance
measure: Weighted Euclidean.
MFCC: Mean and variance of the first five mel-frequency
cepstral coefficients (MFCCs) [3]. Distance measure:
Weighted Euclidean.
Timbre + MFCC (T+M): Concatenation of the timbre and
MFCC features [3]. Distance measure: Weighted Euclidean.
Beat: Based on a histogram of prominent beats. Consists
of the amplitudes and periods of the two first peaks in the
histogram, the ratio between these two peaks, and the sum of
all peaks [3]. Distance measure: Euclidean.
Pitch: Derived from a histogram of pitches in the signal.
Contains among others periods and amplitudes of some of
the most prominent peaks on both a full semitone scale and
on an octave-independent (modulus 12) scale [3]. Distance
measure: Weighted Euclidean.

3.2 MA toolbox
From the MA toolbox [17], five features were tested. The
distance measures recommended in [17] are used.
MFCC: MFCCs are estimated in short windows, and a Gaus-
sian mixture model (GMM) is trained to model them. Dis-
tance measure: Approximated, symmetrized Kullback-Leib-
ler [7].
Sone: In a number of frequency bands distributed according
to the Bark scale, the loudness measured in sone is computed.
A GMM is trained on the loudness values. Distance measure:
Approximated, symmetrized Kullback-Leibler [7].
Spectrum histogram (SH): A derivative of the raw sone fea-
tures where the number of times each loudness level has been
exceeded in each frequency band is counted [17]. Distance
measure: Euclidean.
Periodicity histogram (PH): A description of periodic beats
[17]. Distance measure: Euclidean.
Fluctuation pattern (FP): Another approach to describe pe-
riodicities in a signal. Distance measure: Euclidean.

3.3 Intelligent Sound Processing toolbox
Two similarity measures from the Intelligent Sound Process-
ing (ISP) toolbox were tested:

MFCC: Similar to the MA toolbox MFCC, but with differ-
ent parameters, such as the number of dimensions. Distance
measure: Approximated, symmetrized Kullback-Leibler.
MAR: A multivariate autoregressive model that captures tem-
poral correlation of MFCCs over 1 s segments [18]. A fea-
ture vector is produced for every 1 s of audio. Distance mea-
sure: For each vector in the query song, the other songs are
ranked according to their minimum distance to that vector.
The average ranking is then used as the distance measure.

4. RESULTS

The results of the two experiments are plotted in Figures 1
and 2. As is seen, some of the results are highly dependent
on whether the query features are synthesized from the same
sound font as the target features or not. However, the results
are largely independent of which of the two sound fonts is
used as query and which is used as target. Therefore, only
results for Fluid 3 as both query and target, and results for
Fluid 3 as query and SGM 180 as target are shown.

When query and target are from the same sound font, the
timbral similarity measures perform well. The Marsyas Tim-
bre+MFCC, the MA toolbox MFCC and Sone, and the ISP
toolbox MFCC all have average instrument classification ra-
tios in the range from 83% to 92%. The Marsyas MFCC, MA
toolbox spectrum histogram and ISP toolbox MFCC-MAR
also have relatively good performance, ranging from 75% to
79%. The Marsyas timbre performs worst of the timbral fea-
tures with 55%. However, when query and target are from
different sound fonts, the average instrument classification
accuracy never exceeds 30%. Since the difference between
the same instrument synthesized with different sound fonts
is clearly audible, this is understandable, although still unde-
sirable. According to [19], temporal characteristics such as
attack transients contribute significantly to human perception
of timbre. Timbre similarity measures that better incorporate
this short-time temporal development might be less sensitive
to the use of different sound fonts.

With respect to melody classification, three similarity
measures are noteworthy: Marsyas beat, and MA toolbox
periodicity histogram and fluctuation pattern with average
classification accuracies of 51%, 78% and 62%, respectively.
They are all practically independent of the combination of
sound fonts used. The Marsyas pitch feature performs sur-
prisingly bad, probably due to the inherently difficult prob-
lem of estimating multiple fundamental frequencies. Inter-
estingly, the fluctuation pattern from the MA toolbox also
performs better than random for instrument classification.
Since in this laboratory setup neither the melody, rhythm, ac-
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Figure 2: Sensitivity of music similarity measures to transpositions.

companiment nor timing changes, it ought to be possible to
classify all melodies correctly. We therefore see much room
for improvement.

The second experiment shows that all the timbral simi-
larity measures behave similarly when exposed to transpo-
sitions. Accuracy is approximately halved when transpos-
ing 12 semitones (one octave). When transposing 24 semi-
tones (two octaves), almost no instruments are recognized.
An interesting detail is that the behavior of the MFCC fea-
ture from the MA toolbox is more similar to the sone feature
from the same toolbox than it is to the MFCC feature from
the ISP toolbox. The reason might be that the former two
use the same statistical model. The features that performed
well in melody recognition, namely MA toolbox periodicity
histogram and fluctuation pattern and Marsyas beat, are all
practically unaffected by transpositions. The Marsyas pitch
feature is sensitive to transpositions, but since it contains in-
formation about the most dominant pitch, this is not surpris-
ing.

5. DISCUSSION

From the experiments we observed that the timbral similar-
ity measures did not generalize well to different sound fonts.
We therefore hypothesize that timbral similarity measures
that also rely on the temporal envelope will better reflect
the human sound perception where certain smooth spectral
changes, such as adjusting the bass and treble, do not signif-
icantly alter the perception of timbre. We also observed that
there is room for improvements with melody recognition.

These results could not have been obtained from a genre
classification experiment alone. By using MIDI files, we
have effectively separated the effect of instrumentation and
melody, and a signal modification that would have been dif-
ficult or cumbersome to introduce directly in a waveform sig-
nal, namely transposition, has been introduced.

Although in this paper we have only tested the sensitivity
of similarity measures to transpositions, it would also be rel-
evant to measure the dependency on tempo, combinations of
instruments, bandwidth and audio compression. We strongly

recommend the use of such tests as a simple, yet insightful
supplement to genre classification.
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