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ABSTRACT
We address the problem of tracking a maneuvering target that moves
along a region monitored by a wireless sensor network (WSN)
whose nodes, including sensors and data fusion centers (DFCs),
are located at unknown positions. Therefore, the target trajectory,
its velocity and all node locations must be estimated jointly, without
assuming the availability of any “beacons” with known location
that can be used as a reference. We introduce a new method that
comprises: (i) a combination of Monte Carlo optimization and it-
erated importance sampling to yield and initial population of node
locations with high posterior probability (given data collected at
the network startup) and (ii) a sequential Monte Carlo (SMC) al-
gorithm for recursively tracking the target position and velocity
and sequentially re-generating new populations of node positions
as new observations become available. The resulting algorithm is
implemented in a distributed fashion. Assuming that the commu-
nication capabilities of the DFCs enable them to share some data,
each DFC can run an independent SMC algorithm and produce lo-
cal estimates of the magnitudes of interest. Optimal data fusion is
achieved by a linear combination of the local estimates with ade-
quate weights. We illustrate the application of the algorithm in a
network of power-aware sensors.

1. INTRODUCTION
Most applications of wireless sensor networks (WSN) rely on the
accurate localization of the network nodes [1]. In particular, for
network-based navigation and tracking applications it is usually as-
sumed that the sensors, and possibly any data fusion centers (DFCs)
in charge of processing the data collected by the network, are placed
at a priori known locations. Alternatively, if the number of nodes
is too large, WSNs are usually equipped with beacons that can be
used as a reference to locate the remaining nodes [2]. In both sce-
narios, the accuracy of node localization depends on some external
system that must provide the position of either whole set of nodes
or, at least, the beacons [1]. Although beacon-free network designs
are feasible [2, 3], they usually involve complicated and energy-
consuming local communications among nodes which should, ide-
ally, be very simple.

In this paper, we address the problem of tracking a maneuvering
target that moves along a region monitored by a WSNwhose nodes,
including both the sensors and the DFCs, are located at unknown
positions. Therefore, the target trajectory, its velocity and all node
locations must be estimated jointly, without assuming the availabil-
ity of beacons. We introduce a new method that consists of three
stages: initialization of the WSN, target tracking and data fusion.
At initialization, the network collects information related to the dis-
tances among nodes that is collected by the DFCs. We use a com-
bination of random search optimization [4] and iterated importance
sampling [5] to produce an initial population of node locations, ap-
proximately distributed according to their posterior probability dis-
tribution given the available data. This population is the input to the
second stage. Target tracking is performed by means of sequential
Monte Carlo (SMC) method (i.e., a particle filter) [6, 7, 8, 9, 10]
that recursively tracks the target position and velocity and improves
the node positioning as new observations are collected by the WSN.

Assuming the ability of the DFCs to share some amount of data, we
also propose a distributed implementation of the particle filter which
enables each DFC to run an independent particle filter and obtain lo-
cal Bayesian estimates of both the target state and the nodes. One
advantage of the proposed scheme is that optimal (Bayesian) data
fusion can be obtained by linear combination of the local estimates.

The remaining of the paper is organized as follows. After a brief
comment on the notation to be used, the system model that we as-
sume in this work is described in detail in Section 2. The proposed
algorithm is described in Section 3. In Section 4 we present illus-
trative computer simulation results for a network of power-aware
sensors and, finally, Section 5 is devoted to the conclusions.

1.1 Notation

Scalar magnitudes are denoted as regular letters, e.g., x,N. Vectors
and matrices are denoted as lower-case and upper-case bold-face
letters, respectively, e.g., vector x and matrixX. We use p(·) to de-
note the probability density function (pdf) of a random magnitude.
This is an argument-wise notation, i.e., p(x) denotes the pdf of x
and p(y) is the pdf of y, possibly different. The conditional pdf of x
given the observation of y is written as p(x|y). Sets are denoted us-
ing calligraphic letters, e.g., Q. Specific sets built from sequences
of elements are denoted as x1:N = {x1, . . . ,xN}.

2. SYSTEMMODEL

We assume that the target moves along a 2-dimensional region C ⊆
C2 (i.e., a compact subset of the complex plane) according to the
linear model [8]

xt = Axt−1+ut , t ∈ N (1)

where xt = [rt ,vt ]$ ∈ C2 is the target state, which includes its
position and its velocity at time t, rt and vt , respectively; A =[
1 T
0 1

]
is a transition matrix that depends on the observation

period, T , and ut = [ur,t ,uv,t ]$ ∼CN(ut |0,Cu) is a complex Gaus-
sian noise term, with zero mean and known covariance matrix

Cu = !2u

[ 1
4T

4 0
0 T 2

]
, that accounts for unknown acceleration

forces. The initial target state, x0, has a known prior probabil-
ity density function (pdf), p(x0) = p(r0)p(v0), and we assume
p(v0) =CN(0,!2v,0), i.e., the prior pdf of the velocity random pro-
cess is complex Gaussian with zero mean and variance, !2v,0.

The network consists of Ns sensors and Nc DFCs. Sen-
sors are located at random (but fixed) unknown positions s1:Ns :=
{s1,s2, . . . ,sNs}, si ∈ C2, with independent and identical uniform
prior pdf’s, p(si) =U(C ), i = 1, . . . ,Ns, on the 2-dimensional re-
gion monitored by the WSN. During the network startup, each sen-
sor detects any other nodes which are located within a certain range,
Su > 0. In particular, the n-th sensor builds up an Ns× 1 vector of
decisions, bn = [bn,1, . . . ,bn,Ns ]$, where (deterministically) bn,n = 1
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while bn,k ∈ {1,0}, n '= k, is a binary random variable with proba-
bility mass function (pmf) given by

p(bn,k = 1|s1:Ns) = pd(dsn,k,Su), (2)

where dsn,k = |sn− sk| is the distance between the n-th and k-th sen-
sors and pd(·, ·) is the function that yields the probability of detec-
tion. At time 0, these decisions are broadcast to the DFCs and we
collect them all together in the Ns×Ns matrixB = [b1, . . . ,bNs ] for
notational convenience.

The locations of the Nc DFCs are denoted as c1, . . . ,cNc , with
ci ∈ C ∀i. By convention, the first DFC is assumed to be located
at the origin of the monitored region, i.e., c1 = 0. The positions of
the remaining DFCs are assumed random (but fixed) and unknown,
with complex Gaussian pdf’s p(ci) =CN(ci|µci ,!2c ), i= 2, . . . ,Nc.
The physical implication of this model is that DFCs are deployed
at locations which are approximately, but not exactly, known. The
variance !2c indicates the uncertainty in this prior knowledge.

During the normal operation of the network, the n-th sensor pe-
riodically measures some distance-dependent physical magnitude
related to the target. The measurement obtained by the n-th sen-
sor at discrete-time t ≥ 1 is denoted as yn,t = fs(dn,t ,"yn,t), where
dn,t = |rt− sn| is the distance between the target and the sensor, "yn,t
is a random perturbation with known pdf and fs(·, ·) is the mea-
surement function. We assume that not every sensor necessarily
transmits its observation, yn,t , at every time. Indeed, it is often con-
venient (in order to reduce energy consumption) that only a subset
of sensors become active and transmit their measurements. The lo-
cal decision of a sensor to transmit its data or not depends on the
comparison of the measurement, yn,t , with some reference value,
Sy. We also introduce a certain probability of transmission fail-
ure, # . A failure can be caused, e.g., by a strong interference in
the channel that prevents adequate reception of the communica-
tion signal at the DFC. Thus, at time t only an Nt × 1 vector of
observations, yt = [y$(1),t , . . . ,y$(Nt),t ]

$, where 0 ≤ Nt ≤ Ns and
$(i) ∈ {1, . . . ,Ns}, ∀i, is effectively broadcast to the DFCs (note
that all DFCs collect the same data from the sensors). We assume
that the likelihood p(yt |rt ,s1:Ns ,c1:Nc) can be evaluated.

Each DFC has the capability to extract some distance-related
magnitude from the communication signals transmitted by the sen-
sors. For simplicity, we consider the same type of measurement
carried out at the sensors, hence the n-th DFC also has available,
at time t ≥ 0, the Nt ×1 data vector zn,t = [z$(1),n,t , . . . ,z$(Nt),n,t ]

$,
where zi,n,t = fs(dci,n,t ,"

z
i,n,t), d

c
i,n,t = |si− cn| and "zi,n,t is a random

perturbation with known pdf, so that the likelihood p(zn,t |s1:Ns ,cn)
can be computed. Note that zn,0 is defined (unlike y0), and has
dimension N0 = Ns, because during the network startup all sensors
broadcast signals to the DFCs.

We assume that the DFCs are equipped with communication
devices more sophisticated than those at the sensor nodes and, as
a consequence, it is feasible to exchange data among the DFCs.
In particular, during network startup one DFC collects a set of
Nc(Nc− 1) observations, qi,n = fs(d0i,n,"

0
i,n), i,n ∈ {1, . . . ,Nc} (but

i '= n), where d0i,n = |ci− cn| and "0i,n is a random perturbation with
known pdf, so that p(qi,n|c1:Nc) can be evaluated. For compactness,
we define the set Q = {qi,n}i'=ni,n∈{1,...,Nc}. Moreover, during normal
operation of the WSN, each DFC receives sufficient information
from the other fusion nodes to build the Nt ×Nc matrix of obser-
vations Zt =

[
z1,t , . . . ,zNc,t

]
. Essentially, this means that the DFCs

must be capable of sharing data.
The goal is to jointly estimate the target states x0:t =

{x0, . . . ,xt}, the sensor locations, s1:Ns and the uknown DFC po-
sitions, c2:Nc , from the decisions in B, the data in Q and the
sequences of observation arrays y1:t = {y1, . . . ,yt} and Z0:t =
{z0, . . . ,zt}.

3. ALGORITHMS
3.1 Mixture Kalman Filtering
For convenience of exposition, let us begin with the case in which
the locations of the DFCs, c1:Nc , and the sensors, s1:Ns , are known.
If we aim at the Bayesian estimation of the sequence of target po-
sitions r0:t conditional on the observations y1:t (given c1:Nc and
s1:Ns , Q, B and Z0:t are not relevant for the estimation prob-
lem), all statistical information is contained in the posterior pdf
p(r0:t |y1:t ,s1:Ns), which can be approximated by means of a particle
filter. Specifically, the dynamic model (1) is linear in rt conditional
on vt , hence the recursive decomposition

p(r0:t |y1:t ,s1:Ns) % p(yt |rt ,s1:Ns)p(rt |r0:t−1)p(r0:t−1|y1:t−1,s1:Ns)
(3)

enables the application of the mixture Kalman filter (MKF) tech-
nique [11] to build a point-mass approximation of the posterior pdf,

pM(r0:t−1|y1:t−1,s1:Ns ) =
M

&
i=1

w(i)
t−1' (r0:t−1− r(i)0:t−1), (4)

where ' (·) is the Dirac delta funstion, {r(i)0:t−1}
M
i=1 are samples in the

space of r0:t−1 and {w(i)
t }Mi=1 are normalized importance weights

(&Mi=1w
(i)
t = 1) [6]. The M weighted samples are usually termed

particles and, given the set (mk ft−1 = {r(i)0:t−1,w
(i)
t−1}

M
i=1, we can ap-

ply the sequential importance sampling (SIS) [6] algorithm to re-
cursively compute (mk ft . For i = 1, . . . ,M, the following steps are
recursively applied:
1. Importance sampling: Draw r(i)t ∼ p(rt |r(i)0:t−1).

2. Weight update: w(i)∗
t = wt−1p(yt |r

(i)
t ,s1:Ns) and w(i)

t =
w(i)∗
t /&Mk=1w

(k)∗
t .

Resampling steps also need to be applied (although not for each t)
to avoid weight degeneracy [6]. Since the likelihood p(yt |r

(i)
t ,s1:Ns)

can be computed, by assumption of the model, and several methods
are available for resampling, the only difficulty in the application
of this algorithm is sampling from the prior p(rt |r(i)0:t−1). The latter
can be obtained from the Kalman filter (KF) equations [12]. To be
specific, let us note that the pair of equations jointly given by (1),

vt = vt−1+uv,t (5)
)t = rt − rt−1 = Tvt−1+ur,t (6)

form a linear-Gaussian system, hence the posterior pdf of vt , given
a specific sequence r0:t , is complex Gaussian, p(vt |)1:t ,r0) =
CN(vt |µvt ,!2v,t), with posterior mean and variance, µvt and !2v,t , re-
spectively, that can be recursively computed using the KF recur-
sion [13]. Moreover, the normalization constant of p(vt |)1:t ,r0) is
p()t |)1:t−1,r0) = p(rt |r0:t−1), which is also complex Gaussian and
can be analytically found [11].

Therefore, the outlined SIS algorithm can be implemented
using a bank of M KFs, one per particle. Given r(i)0:t−1, it is
possible to (recursively and analytically) obtain p(vt−1|r

(i)
0:t−1) =

CN(vt−1|µv
(i)

t−1,!
2(i)

v,t−1) and, as a consequence, p(rt |r
(i)
0:t−1) =

CN(rt − r(i)t−1|Tµ
v(i)
t−1,!

2(i)

r,t|t−1), which can be easily sampled to draw

r(i)t in the importance sampling step. Moreover, both rt and vt can
be estimated (in the minimum mean square error sense),

rmmset =
M

&
i=1

w(i)
t r(i)t , vmmset =

M

&
i=1

w(i)
t µv

(i)

t , (7)

by combining the outputs of the KF’s, hence the name MKF. This
methodology was applied to generic tracking problems in [8].
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3.2 DistributedMKF
The tracking problem becomes considerably more involved when
the node locations, s1:Ns and c2:Nc , are unknown. Handling both
static and dynamic random magnitudes using SMC methods is, by
itself, a nontrivial task because the overall dynamic system is not er-
godic [7]. Moreover, in our particular setup, the high dimension of
the random fixed parameters (Ns+Nc−1 complex variables need to
be estimated) makes an approach based on sampling-only very inef-
ficient and, therefore, we propose to combineMonte Carlo sampling
and optimization to obtain better performance.

Assume estimates of c2:Nc are available. The basic probabilistic
relationship that we exploit to derive the new algorithm in this paper
is obtained by means of Bayes theorem and the repeated decompo-
sition of conditional probabilities, namely

p(r0:t ,s1:Ns |y1:t ,Z0:t ,B)% p(yt |rt ,s1:Ns)p(Zt |s1:Ns)
×p(rt |r0:t−1)*t(s1:Ns)p(r0:t−1|y1:t−1,Z0:t−1,B) (8)
=+t

k=1 p(yk|rk,s1:Ns)p(Zk|s1:Ns)p(rk|r0:k−1)
×p(r0)p(s1:Ns |Z0,B) (9)

where

*t(s1:Ns) = p(s1:Ns |r0:t−1,y1:t−1,Z0:t−1,B) (10)

is the posterior pdf of s1:Ns at time t−1.
Assume that we are able to draw samples from *t(s1:Ns). Then,

(8) shows that a SMC algorithm can be used to recursively approx-
imate p(r0:t ,s1:Ns |y1:t ,Z0:t ,B). Indeed, if at time t − 1 the set of
particles(mk f

t−1 = {r(i)0:t−1,s
(i)
t−1,1:Ns ,w

(i)
t }Mi=1 is available, then we can

compute a point-mass approximation the last factor in (8),

pM(r0:t−1|y1:t−1,Z0:t−1,B) =
∫
&Mi=1w

(i)
t−1' (r0:t−1− r(i)0:t−1)' (s1:Ns − s(i)t−1,1:Ns )ds1:Ns (11)

=&Mi=1w
(i)
t−1' (r0:t−1− r(i)0:t−1), (12)

where the integrand in (11) is the approximation of
p(r0:t−1,s1:Ns |y1:t−1,Z0:t−1,B) built from (mk f

t−1 . Eq. (12)
implies that we can start from the set (̃mk f

t−1 = {r(i)0:t−1,w
(i)
t }Mi=1 and

exploit (8) to build (mk f
t via the MKF algorithm. Specifically,

r(i)t ∼ p(rt |r(i)0:t−1) (13)

s(i)t,1:Ns ∼ *t(s1:Ns) (14)

w(i)
t % w(i)

t−1p(yt |r
(i)
t ,s(i)t,1:Ns)p(Zt |s(i)t,1:Ns). (15)

Moreover, (9) shows that, in order to start the recursion, we need to
draw initial populations not only from the prior p(r0), but also from
the posterior p(s1:Ns |Z0,B).

As a consequence of the previous analysis, we propose an algo-
rithm consisting of three stages:
1. Initialization:We use an optimization method to compute point
estimates of the unknown DFC locations, ĉ2:Nc , draw directly
from p(r0) and use a population Monte Carlo (PMC) method
[5] to draw from p(s1:Ns |Z0,B).

2. Tracking: Find an adequate approximation of *t(s1:Ns) and use
it to run the MKF algorithm of (13), (14) and (15).

3. Fusion: Use the resampling with non-proportional allocation
(RNA) method of [10] to distribute the MKF tracking algorithm
over the Nc DFCs. In this way, resampling operations are car-
ried out locally at each DFC and global estimates (of rt , vt and
s1:Ns ) can be computed by linear combination (fusion) of local
estimates.

3.2.1 Initialization

Drawing r(i)0 ∼ p(r0), i = 1, . . . ,M, is straightforward. In order to
find initial point-estimates of s1:Ns and c2:Nc , we propose to apply
an accelerated random search (ARS) algorithm [4] but, because of
the high dimension of the unknowns, it is convenient in practice
to address the estimation of c2:Nc , on one hand, and each sn, n ∈
{1, . . . ,Ns}, separately. In particular, we propose to compute

ĉ2:Nc = argmax
c2:Nc

{p(Q|c2:Nc)p(c2:Nc)} (16)

= argmax
c2:Nc

{

+
i'=k

p(qi,k|ci,ck)
Nc
+
j=2

CN(c j|µcj ,!2c )

}
(17)

ŝ! = argmax
s!

{
Nc
+
n=1

p(z!,n,0|s!, ĉn)
}

, (18)

for ! = 1, . . . ,Ns and ĉ1 = c1 = 0. The general form of the ARS
technique is outlined in Table 1.

Problem: ,̂ = argmax,∈A g(,) for some function g.
Denote: Rmin > 0, the “minimum radius”; Rmax > Rmin, the
“maximum radius”; Rmax ≥ Rn ≥ Rmin the radius at the
n-th iteration; - > 1 the “contraction” factor; ,n the solution
obtained after the n-th iteration; and

Bn = {,̃ ∈ A : ||,̃−,n||2 < Rn},
where || · ||2 indicates 2-norm.
Algorithm: given Rn and ,n,
(1) Draw ,̃ ∼U(Bn).
(2) If g(,̃) > g(,n) then ,n+1 = ,̃ and Rn+1 = Rmax,
else ,n+1 = ,n and Rn+1 = Rn/- .
(3) If Rn+1 < Rmin, then Rn+1 = Rmax.
(4) Go back to (1)

Table 1: Iterative ARS algorithm for a maximization problem. Pa-
rameter , is possibly multidimensional (typically, , ∈ Cn). The
algorithm is usually stopped after a given number of iterations with-
out going changing ,n.

In order to draw s(i)0,1:Ns ∼ p(s1:Ns |Z0,B), we use an iterated
Monte Carlo method called PMC [5]. In the first iteration, particles
are drawn from independent complex Gaussian proposals built from
the ARS estimates and a fixed variance, !2s (0), i.e.,

s(i)n (0) ∼CN(sn|ŝn,!2s (0)), n= 1, . . . ,Ns, i= 1, . . . ,M, (19)

with weights

w(i)(0) =
p(Z0|s

(i)
1:Ns(0))p(B|s(i)1:Ns(0))

+Ns
n=1CN(s(i)n (0)|ŝn,!2s (0))

. (20)

After the (k− 1)th iteration, the weighted particles are (pmc
k−1 =

{s1:Ns (k−1)(i),w(i)(k−1)}Mi=1 and importance sampling for the kth
iteration is performed as

s(i)n (k) ∼ CN(sn|s(i)n (k−1),!2s,n(k−1)), (21)

where sn(k−1) =&Mi=1w(i)(k−1)s(i)n (k−1), s(i)n (k−1) = as(i)n (k−
1) + (1 − a)sn(k − 1) and !2s,n(k − 1) = (1 − a2)&Mi=1w

(i)(k −
1)|s(i)n (k− 1)− sn(k− 1)|2 for some 0 < a < 1, i.e., we build the
(k− 1)th kernel approximation of p(s1:Ns |Z0,B) with ‘shrinkage’
[14] for variance reduction. The corresponding weights are

w(i)(k) =
p(Z0|s

(i)
1:Ns(k))p(B|s(i)1:Ns(k))

+Ns
n=1CN(s(i)n (k)|s(i)n (k−1),!2s,n(k−1))

. (22)
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If the algorithm is iterated N times, we obtain a sample of
equally-weighted particles {s(i)0,1:Ns}

M
i=1, with approximate pdf

p(s1:Ns |Z0,B) by resampling from (pmc
N .

3.2.2 Tracking

Given the initial sample (mk f
0 = {r(i)0 ,s(i)0,1:Ns ,w

(i)
0 = 1

M }Mi=1, the
MKF algorithm (13)-(14) can be applied if we specify how to ap-
proximate *t(s1:Ns). One of the simplest choices is to assume a
Gaussian distribution built from the particles and weights at time
t−1, i.e.,

*t(s1:Ns) ≈
Ns
+
n=1

CN(sn|st−1,n,!2t−1,s,n), (23)

where st−1,n = &Mi=1w
(i)
t−1s

(i)
t−1,n and !

2
t−1,s,n = &Mi=1w

(i)
t−1|s

(i)
t−1,n−

st−1,n|2. This approximation is easy to sample and still provides an
acceptable performance, as will be numerically shown in Section 4.

3.2.3 Fusion
Data fusion can be naturally integrated into the particle filter by
using the distributed RNA scheme [10]. Let us split the overall
particle set (mk f

t into Nc subsets, one per DFC, denoted as (mk fn,t =

{r(n,i)0:t ,s(n,i)t,1:Ns ,w
(n,i)
t ,W (n)∗

t }Mn
i=1, n= 1, . . . ,Nc, and such that&nMn =

M. The weights in(mk f
n,t are normalized locally, i.e.,&Mn

i=1w
(n,i)
t = 1,

and the sum of the unnormalized weights, W(n)∗
t = &Mn

i=1w
(n,i)∗
t is

also kept in order to assess the relative value of each subset (the
subsets (Mn

n,t are not equally good in general).
In the basic RNA scheme, an independent MKF algorithm (13)-

(14) is run for each subset (mk fn,t (i.e., for each DFC). This means
that resampling is carried out locally (using any desired method) at
each DFC and estimates are also computed locally,

rn,mmset =
Mn

&
i=1

w(n,i)
t r(n,i)t , vn,mmset =

Mn

&
i=1

w(n,i)
t µv

(n,i)

t (24)

and

sn,mmse1:Ns =
Mn

&
i=1

w(n,i)
t s(n,i)t,1:Ns . (25)

Optimal fusion is performed by combining the local estimates ac-
cording to the sum-weights,W (n)∗

t , i.e., global MMSE estimates are
computed as

rmmset =
&Ncn=1W

(n)∗
t rn,mmset

&Nck=1W
(k)∗
t

, vn,mmset =
&Ncn=1W

(n)∗
t vn,mmset

&Nck=1W
(k)∗
t

(26)

and

smmse1:Ns =
&Ncn=1W

(n)∗
t sn,mmse1:Ns

&Nck=1W
(k)∗
t

, (27)

in such a way that only the local estimates and the sum-weights
need to be transmitted.

One limitation of this approach is that when the subset sizes,
Mn, n = 1, . . . ,Nc, are not large enough, some particle filters may
get relatively impoverished [10], i.e., it may eventually happen that,
for some n,W (n)∗

t <<W (k)∗
t , for all k '= n. In such a case, the corre-

sponding nth DFC becomes “useless”, since its local estimates are
essentially irrelevant for the computation of the global estimates.
A solution to this phenomenon (equivalent to the weight degen-
eracy in standard particle filters [6]) is to periodically perform a
local exchange (LE) of a small number of particles between pairs
of DFCs. We propose a simple implementation of LE in which
L<minn{Mn} particles from DFC n are transmitted to DFC n+1,
for n = 1, . . . ,Nc− 1 and L particles from DFC Nc are transmitted
to DFC 1, i.e., particles are exchanged in a ring configuration.

4. SIMULATIONS
In order to provide illustrative numerical results, we have particu-
larized the model of Section 2 to a network of power-aware sensors.
Specifically, the measurement functions fs(·, ·) has the form

fs(d,") = 10log10
(
1
d2

+.
)

+ ", (dB) (28)

where . = 10−4 accounts for the sensitivity of the measurement
device (−40 dB). The n-th sensor transmits its measurement, yn,t ,
only if it corresponds to a distance dn,t < Sy = 48.86 m (i.e.,
yn,t > −33.78 dB) and otherwise remains silent. A transmission
failure can also occur, with probability # = 10−3. The observa-
tional noise, " , is zero mean Gaussian but, depending on whether
the power observation is carried out at a sensor node or at a DFC
node, its variance is assumed different. In particular "yn,t ∼ N(0,2),
for sensors, and, for DFCs, "zi,n,t and "

0
i,n are identically distributed

according to the Gaussian pdf N(0,10−2). Therefore, the likeli-
hoods, namely,

p(yt |r(m)
t ,s(m)

1:Ns) =
Nt
+
l=1

N(y$(l),t |r
(m)
t ,s(m)

$(l)) (29)

p(Zt |s(m)
1:Ns ,c1, ĉ2:Nc) =

Nt ,Nc
+

i=1,n=1
p(z$(i),n,t |s

(m)
$(i), ĉn) (30)

are Gaussian with known mean and variance.
At time zero, the sensors detect all other nodes which are closer

than Su = 48.86 m. Since observations are obtained from function
fs(·, ·), with the parameters already described for the sensors, the
probability of detection is

pd(dsn,k,Su) =/N

(
Pn,k−Pu√
10−2

)
, (31)

where Pn,k = fs(dsn,k,0), Pu = fs(Su,0) and 10−2 is the variance of
the observational noise.

The state priors are p(r0) =CN(r0|0,10) and p(v0|0,0.1) and
the state equation parameters are T = 1

2 s and !
2
u = 1

5 . There are
Nc = 4 DFCs and Ns = 23 sensors in the network. We assume
c1 = 0, while the others have complex Gaussian priors with equal
variance !2c = 25 and means −50+ j35, 45− j37 and 36+ j45
(where j =

√
−1), respectively. This prior pdf’s are used to ran-

domly draw initial estimates of c2:4 which are used as inputs to the
ARS algorithm that solves (17), the other parameters being - = 2,
Rmax = 15, Rmin = 10−4. The ARS algorithm for problem (18) re-
ceives as inputs a sensor position drawn from U(C ) (where C is
the square centered at 0 with sides of length 200 m), Rmax = 200,
rmin = 10−4 and - = 2. The ARS procedures are iterated 3000
times for (17) and 1000 times for each (18). The estimates ŝ1:Ns are
then used to build the first proposal pdf in the PMC procedure. The
corresponding variance is !2s (0) = 1

2 and the subsequent proposals
are computed by shrinkage, with parameter a = 0.7. We iterate the
PMC algorithm 15 times with 3000 particles.

Resampling, via the RNA scheme, is performed every 5 time
steps of the tracking algorithms. The latter are run with M = 3000
particles and each DFC is assignedMn =M/Nc = 750 particles (for
n = 1,2,3,4). We assume a local exchange of particles every 4
resampling steps, with L= 8 particles being transmitted from DFC
n to DFC n+1 and from DFC Nc to DFC 1.

Figure 1 shows the results of a typical simulation run with 245
discrete-time steps (122.5 s of simulate time) using: (a) the MKF
algorithm with known node locations (both DFCs and sensors) and
using the RNA scheme for its distributed implementation over the
4 DFCs, which is labeled ‘DMKF’; and (b) the MKF algorithm de-
scribed in Section 3.2, that jointly estimates the target state and the
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Figure 1: Example of results obtained with the DMKF and P-DMKF algorithms for the estimation of the target trajectory and velocity. P-
DMKF also estimates the node locations (both sensors and DFCs). Left: Estimate of the target trajectory during 122.5 s (245 discrete-time
steps). Middle: Estimate of the target velocity on the real (x) and imaginary (y) axis. Right: Estimates of the node positions.

node locations, using a PMC procedure in the initialization stage,
which we label as ‘P-DMKF’. In the left plot, it is observed that
both algorithms are able to closely track a highly nonlinear trajec-
tory. The velocity estimates, both in the real and imaginary axis, are
shown in the center plot, with similarly accurate performance. Fi-
nally, the right plot shows the true node locations and the estimated
positions. It is seen that the combination of the ARS, PMC and dis-
tributed MKF methods provide reasonably accurate estimates of the
sensors and DFCs locations.

In order to estimate the average performance of the proposed
method, we have carried out 20 independent computer simulations
(each one with a different, and random, network deployment and
target trajectory) and computed the mean absolute error (MAE) in
the estimation of the target position, rt , and its velocity, vt . The
results are presented in Table 2 and quantitatively illustrate the ef-
fectiveness of the method.

rt vt
DMKF 1.5067 m 0.5718 m/s
P-DMKF 2.6411 m 0.6245 m/s

Table 2: Mean absolute error (MAE) in the estimation of the target
position, rt , given in m; the target velocity, vt , in m/s, using the
DMKF and P-DMKF algorithms.

5. CONCLUSIONS
We have proposed a novel SMC algorithm to jointly estimate the
positions of the nodes of a WSN (including both the sensors and
the DFCs) and track a target that moves along the region monitored
by the network. The proposed method does not require the aid of
beacons in order to locate the network nodes. Instead, it resorts to
a novel combination of Monte Carlo optimization and iterated sam-
pling procedures in order to generate an initial population of node
locations with sufficient quality. Starting from this population, an
MKF algorithm is subsequently used to recursively track the target
and sequentially generate new samples of node positions as new
data become available. Moreover, we have proposed a distributed
implementation of the tracker using the RNA technique. The lat-
ter makes it possible to split the set of particles among the network
DFCs, let each individual DFC propagate-and-resample its subset
of particles locally (i.e., run an independent particle filtering algo-
rithm) and only exchange a limited amount of data to produce fused
(global) estimates of the desired magnitudes. We have presented
computer simulation results that illustrate the effectiveness of the
proposed method with a network of power-aware sensors.
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