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ABSTRACT particles, we need/ Kalman filters to deal with the nuisance
In this paper we address the problem of fusing informaParameters. In the literature, this approach is also known as

tion from biased sensor-data collected by a sensor networmiXtuC;ehKalma{)1 filtedring [ﬁ]' Lhe nﬁvelty of tTe E‘ﬁ'thOd Elro- .
Under the assumption that the biases of the sensors are ng2S€d here is based on the idea that a single Kalman filter is
sance parameters, we propose an algorithm that marginéf§ed.t° trackthe biases. (We note, however, that the approach
izes them out from the estimation problem. The algorithmPf USing one Kalman filter for Rao-Blackwellization has al-
uses particle filtering to obtain the unknown states of thé€ady been explored in [9].) As a result, the computational
system and Kalman filtering for marginalization of the bi- complexity of the traditional Rao-Blackwellized particle fil-
ases. We apply the proposed algorithm to the problem deris significantly reduce_d. The proposed _metho_d is 'gested
target tracking using bearings-only measurements acquirdfl te context of data fusion for target tracking using biased
by more than one sensor. The advantage of the consider &a_lr_lrr:g-only sterv?tlrc])ns distorted b¥ r?|0|se. Section 2|
method over standard particle filtering which does not as; e rerrpalnlnk?l ot the paper ISI asS 0 QWS'S ect|or; ; '”r']
sume the presence of biases is illustrated through comput§Pduces the problem statement. In Section 3 we explain the
simulations. proposed Raq—BIackwelllzec_i parthle filter me_thod for the bi-
ased data fusion problem. Simulation results in the context of
bearings-only tracking are provided in Section 4, and finally,
1. INTRODUCTION conclusions are outlined in Section 5.
There are many applications where the estimation of un-
known states has to be carried out in presence of unknown 2. PROBLEM STATEMENT
g:?gaejyigégre] ::jlgirlggéidn:g?ﬁgrf&?g;tso[ger@ci)sr r?é?v?/!)er?s r('g}ﬁga sensor network, the sensors collect information about a
[2] and the references therein). Most of the work on the te vectors;, that evolves with time according to
subject tackles the problem by decoupling the estimation of _ 1
the state from the estimation of the biases, since the original Tt F@i-1)+w, @)
approaches consisting of augmenting the state with the_b'f\ﬁheref(-) is a known vector function, which, in general,
vector are deemed computationally intractable [1]. This imynay pe nonlinear, and, is a Gaussian noise vector with zero
plies that, sequential estimation of unknown states is acCOMnean. Consider that there akesensors in the network and

plished by bias compensation after bias estimation [2, 3]. = they provide measurements that are functions of the unknown
In this paper we introduce a method for estimation of thestate. \We model the observations as

state of the system after marginalizing the biases in the ob-

servations. The proposed approach combines the particle fil- Yot = go(x:)+by+v,s, (2)
tering (PF) [4] and Kalman filtering (KF) [5] methodologies. ’ ’

Namely, the underlying idea consists of using a particle filteihere the subscript denotes thex—th sensory,, , is the
that estimates the state of the system and a Kalman filter feneasurement of the—th sensorg,,(-) is a known vector
marginalizing the biases of the sensors. The latter is donginction of the stateb,, represents the unknown bias of the
by using the concept of Rao-Blackwellization [6]. Note that;,—th sensor, and,, ; is a measurement Gaussian noise with
besides the biases, in some situations it is also possible f&ro mean. The objective is to track the posterior probability
marginalize some of the states. This will lead to a more effidistribution of the stater,, given the sensor measurements,
cient and accurate performance of the method, i.e., the partjrlzNJ:t, i.e., to obtainp(x:|y1.n 1:t) in the presence of the
cle filter will work on a smaller state space and will exploreunknown biases,,, n =1,2,--- N

it more comprehensively [7]. Before we proceed, we make some comments.

_Recall that the idea behind PF is to approximate proba- |n (2), the biases could have been incorporated in the
bility density functions by discrete random measures, which  ngjse, v, ,, where we could have modified the mean,

are composed of/ particles and weights associated to the E(v,), by an unknown value equal to the bias of the
particles. In the existing literature, the Rao-Blackwellized  ,, _th'sensor. This, of course, is equivalent to the model
particle filter uses one Kalman filter per particle of the parti- given by (2). However, we keep (2) because it facilitates
cle filter. Therefore, if the particle filter is represented My our presentation.

This work has been supported by the National Science Foundation un-2' Here we address the problem when the sensor biases are

der Awards CCR-0220011 and CCF-0515246 and the Office of Naval Re- ~ CONStant with time. The proposed solution presented in
search under Award N0O0014-06-1-0012. the next section can be extended to scenarios when these
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biases may vary with time. For example, the bias could We consider that the unknown biases of the sensors are

evolve following a random walk model, i.e, nuisance parameters, and therefore we want to marginalize
them. Marginalization of unwanted parameters in this con-
bpt=bni1+wny, n=12---,N. (3)  text is known as Rao-Blackwellization [6]. In the wide lit-

b,, can straightforwardly be generalized to the proble

of evolvmg bias as given by (3). , ., States. That often leads to much better accuracy of the PF
3. Formulatlon (2) can be further generalized by Cons'der'methodology and much more efficient exploration of the
Ing state space. For example, suppose that the dimension of the
_ (@) + A ()b + 0 state space is four, and that there are 50 sensors. Then the
Yt gn Tt nAt/Tn T En,ty total number of unknowns is 54 per time instant. Now, in-
whereA,, is a matrix, which in general, may be a func- stead of generating samples in a state space of dimension 54,
tion of the stateg,. In order to simplify the problem we We only generate samples in a four-dimensional space and let
have suppressed this factor although it will be considereé€ remaining unknowns be handled by Kalman filtering.
in future work. In this paper, we propose that the implementation of the
4. Our method is about reducing the number of Kalmarf¥@0-Blackwellization is carried out by one Kalman filter.
filters needed for Rao-Blackwellization. In general, the ThiS may result in substantial computational savings. The
method needs as many Kalman filters as there are modé&imulation results show that the new method does not have
in the posterior. In this paper, we assume that the postfegraded performance due to the use of only one Kalman

rior has only one mode and therefore the method nee
only one Kalman filter. The problem of multi-modal pos-
teriors will be addressed elsewhere.

3.1 Details of the implementation

Suppose that at time we have the random measure,
3. PROPOSED METHOD

M
We seek a solution to the state estimation problem by us- e = {azé’?,?),wt(m) = 1} ) (4)
ing PF. The theory of particle filters has been well estab- ’ M
lished, and its fundamentals and important applications can . . )
be found, for example, in [4] and [10]. Recall, that PF isNote that the weights of the particles in (4) are all equal,
a methodology that “approximates” the postedontinuous ~ Which is due to the fact that at the end of every process-
distributions bydiscrete random measure¥hese measures iNg cycle, we perform resampling. Also, we assume that the
are Composed of Samp|es (partic|es) generated by some irﬁﬁlman filter used in OUrAmeAthOd has statistics of the biases,
portance function and weights associated to the particles thgiven by the Gaussiaty (b;,Cy, ).
compensate for the fact that the particles were not generated Let the observations;,, ;, n=1,---, N, be stacked in a
from the posterior distribution. Mathematically, we express/ectoryj = [le,t y;t yxu], andletb” = [blT b2T --~b]TV]

m=1

the random measure by be a vector containing the biases of all the sensors.
M The steps of the method comprise of the following:
Xt = {wgm),wﬁm)} g 1. Particle generation. The particles of the state are drawn
m= from

(m) _| (m)
where:cﬁm) are particles that represent the stategf) are 2,1y ~ N (F (@), Cu)
their weights indicating the importance of the particles, and whereC,, is the covariance matrix of the noisg.
M is the total number of particles. PF has three importantp, Computation of the weights The weights are found

operations: from
1. Sampling: It consists of the generation of a set of new wt(fl) o« p(yt+1|a:g’j;>+1,y1,t)

particles that represents the support of the random mea-

sure; wherep(y 41 |$(()mr1a3’1:t) is a Gaussian with mean
2. Weight computation: It allows for calculation of the

weights of the particles; Popr = g(wgfl)) +b, (5)

3. Resampling It replicates the particles that have large
weights and removes the ones with negligible weights. and a covariance matrix
Resampling is an important operation because without it R
PF yields very poor results. Ci1 = Gy, +C, (6)
As mentioned in the previous section, the sensor biases . i , ,
are considered to be constant with time. In problems with With C, being the covariance matrix ob,. Note
unknown constant parameters addressed by PF, one may en- that g(-) is a vector function given byg' () =
force artificial evolution of the parameters [11], use the ker- (91 (-) 93 (-)--- g5 (-)]-
nel smoothing procedure from [12], exploit the auxiliary PF 3. Estimation of x; ;. The estimate ok, is found from
based method from [10], or approximate the filtering den-
sity with a predefined parametric density [13]. Most of these . M (m)_(m)
methods impose atrtificial evolution of the fixed parameters X41 = Z W1 Xey1- (7
and entail a large computational complexity. m=1
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4. Measurement update of the biasesThe estimate of the whereT, was the sampling period. The state noisec R?,
biasesp, 1, is obtained by was due to small acceleration perturbation and was modeled

as a zero mean Gaussian process with covariance n@agrix
—1

Kiyn = Gy, (Ch +Cy) (8) Note that the model in (11) is somewhat different from that
. . R . of (1) in that the state noise is multiplied by a matrix. This
biyr = bi+Kia(yer—g(@1)—b) (9) isreflected in the implementation of method as explained be-

Ch., = (I-Ki1)Gy,. (o) low.

The targets were tracked by two static sensqssi-

5. Resamplmg The resampling is performed using the fioned at(w1,1,221) and(x1,2,22,2), respectively. At time
m) instantt, the n—th sensor collected an observatign, ; =

welghtSle. [Y1,n,t Y2,n¢] |, modeled by equation (2) where
4. COMPUTER SIMULATIONS

T2,1,t—T2.n

arctan
In this section we present computer simulations that illus- gn (@) = e m=1,2,
trate the validity of our approach. We have considered the arctan m

problem of tracking the kinematics of moving targets based
on bearing-only biased measurements that are distorted ty b, b,]T was the vector of biases for the-th sensor

noise. i.e., we assumed each sensor had only oné bitse obser-
vation noisep,, ; € R? was modeled a&/(0,C,,, ).
The geometry of the problem is shown in Figure 1. Based
ta,g$ on the made assumptions and considering that the observa-
\ tions are sent to a fusion center, the objective was to use the
proposed algorithm to estimate the targets’ locations and ve-
locities as accurately as possible.

4.2 Implementation of the proposed algorithm

Table 1 summarizes the proposed algorithm (labeled as
PF-KF to indicate that we used one particle filter and one
Kalman filter) for the considered bearings-only tracking
> problem. Note that the symbal, in the table denotes the
prior of the target’s initial state.
For comparison and benchmarking purposes, we also im-
plemented the following algorithms:

Figure 1: A system with two static sensors and their ¢ The standard Rao-Blackwellized particle filter that used
bearings-only measurements. M Kalman filters, i.e., one Kalman filter per particle, (la-
beled aPF-MKF)
e The standard particle filter that assumed complete knowl-
4.1 Bearings-only tracking problem formulation edge of the biases, and therefore it did not have to esti-

. . T mate it (labeled aSPFH
Without loss of generality and for simplicity, we assumed e The standard particle filter that makes a wrong assump-

that there were two targets that moved according to the fol-~ . X ;
X . tion by assuming that there were no biases (labeled as
lowing dynamic model [14} SPFn)

Y1,1,t

observer 1

2 = G,z + Guuy. (11) Note that since we have more than one target, we

have to deal with the problem of data association. In
The system statey, = [wlrt x], T,] € R®, consisted of the OUr approach we implemented the association by choosing
positions and velocities of the two targets in the field, i.e., the data combination that provided best fit wﬁlﬁ{”)T =

[y%” yg”;”] m =1,2,...,M, which are the estimated

N . . T - , -
Tht = 1k T2kt ke T2pe] k=12 observations based on the partici&” andb,, i.e., where

and followed a constant velocity model governed by the

state-transition matrixG, of size 8 x 8, and the noise- 57 = gn(x(™) + bz
transition matrix,G,, of size 8 x 4, which were block di-
agonal matrices with blocks For example, in our case of two targets, senst = 1,2)
receives two observations . ; andy, ¢ at time instant
2 . . . _
10T, 0 TT 0 t, and thereTare two possible data combinations, =
/ 01 0 T / 2 [Win,e Y20, T AN YT = [Y2,0,0 Y1,0,0] T We select the
G:=| 00 1 o0 andG,=| 0 =5 :
0 0 0 1 1(33 IQ 2Note that with two or more sensors the observability is not an issue.
s 3This assumption can be relaxed, i.e., one can assume that every mea-
surement of the sensor has its own bias. This does not alter the algorithm
1The problem can easily be generalized to any number of targets. except that it increases the dimensionality of the bias space.
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Initialization
Form=1toM
(m)
XO ~ T
wl™ = 4
end

Set the values df, andC;,

(particle loop

)

Recursive update
Fort=1toT (time loop )
Form=1to M (particle loop )

Particle generation ="'} ~ ' (G,z\™,G,C,G])

Weight update: u?t(fl) —N(g(w§+1)+btacbt +Cy)
Weight normalization: wﬁfl) = ~t(T1/Zk 1 t+)1
end
Estimation
A M m m
LTip1 = D om=1 £+1)5C£+1)
Bias update
A N -1
IA<t+1 :pbt (Cbt + CU) .
by =b + K (}’t+1 —g(Xeq1) — bt)

Cth =(I- KtJrl)Cbt
Resamplingusingwgﬂ
end

Table 1: Particle filter - Kalman filtelRF-KF) method for
bearings-only tracking using biased measurements.

combination with the smaller error computed by

MZH o —yhall, k=12

4.3 Results

We simulated evolutions of the system for= 300s with

a sampling period ofly; = 1s. The covariances of the
state and observation noises were seCtp= 0.25I, and
C, = 10~14, respectively. The coordinates of the sensor
were ($1’17$2’1) = (—12000,13000) m and (1‘172,1‘272) =
(10000, 15000) m, and their biases were setito= —0.0459

dg andb, = —0.0977 dg, respectively. In the implementation
of the particle filters we usedl/ = 500 particles and we set

by = 0 andCy,, = 100L,.

500

T
True trajectory 1
True trajectory 2| |
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Figure 2: Trajectory of the two targets and the estimates ob-
tained by the proposed methdeR-KF).

particle filters,

MSEt—WZZ[

k=1j=1

mi,k,t)Q + (fékt - x%,k,t)Q

Where[x{ kot a:% ke was the true position of the—th tar-

get at timet in the j-th run, and(z? k1 ¥ ,] T was the cor-
responding estimate obtained by the filter. The MSE plots
were obtained by averaginf= 50 independent simulations,
where the trajectories in the simulations were different .

From the results shown in Figure 4, we clearly see that
the worst performance was reported by the particle filter
that assumed there were no biases, and that was expected.
Also, it was not a surprise that the standard particle filter,
which assumed complete knowledge of the bias, achieved
the best performance that constituted a lower bound for the

roposed method. The proposed method showed a perfor-

ance close to the bound and very similar to the standard
Rao-Blackwellized patrticle filter that used one Kalman filter
per particle. Note however that the new method presented
a significant computational reduction without loss of perfor-
mance.

Figure 2 shows the trajectories of the two targets and 5. CONCLUSIONS
the obtained estimates in the two-dimensional space result- '
ing from a single simulation of the dynamic system. It isin this paper we addressed the problem of fusion of infor-
clear that the proposed algorithm remains locked to the stat@ation from biased sensor measurements. We proposed a
trajectory. Rao-Blackwellized particle filter that uses only one Kalman

Even though the method marginalizes the biases whilélter for marginalizing the unknown biases of the sensors.
estimating the nonlinear states, it can still provide estimate$he validity of the method was tested through computer sim-
of the biases. Figure 3 depicts the capability of the algorithnulations by applying it to a bearings-only tracking problem
in estimating them. The Figure also includes the evolution ofvith two targets and two sensors. The results showed that the
the variance of the Kalman filter and, as expected, decreasasw method clearly outperforms the particle filter that does
with time. not assume biased sensors and is close to the performance

Finally, we compute the average mean square erraof the standard particle filter that has complete knowledge of
(MSE) as a performance figure of merit. It was measuredhe biases. Furthermore, when compared to the traditional
in square meters and represented the difference between tRao-Blackwellized patrticle filter, it performs practically the
true vehicle trajectories and the trajectories estimated by theame, while at the same time it requires much less computa-
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Figure 4. Average mean square errors (MSEshhof two
targets obtained by the different methods.

(5]
(6]

(7]

(8]

Figure 3: Means and standard deviations of the estimateo[9]

biases. Top: Results corresponding to the bias of sehsor
b1. Bottom: Results corresponding to the bias of ser2sor

ba.

[10]

tions. Results on the estimation of the biases suggest that the

proposed method performs well too.
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