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ABSTRACT

In this paper we address the problem of fusing informa-
tion from biased sensor-data collected by a sensor network.
Under the assumption that the biases of the sensors are nui-
sance parameters, we propose an algorithm that marginal-
izes them out from the estimation problem. The algorithm
uses particle filtering to obtain the unknown states of the
system and Kalman filtering for marginalization of the bi-
ases. We apply the proposed algorithm to the problem of
target tracking using bearings-only measurements acquired
by more than one sensor. The advantage of the considered
method over standard particle filtering which does not as-
sume the presence of biases is illustrated through computer
simulations.

1. INTRODUCTION

There are many applications where the estimation of un-
known states has to be carried out in presence of unknown
biases in the available measurements [1]. This problem has
already been addressed in the context of sensor networks (see
[2] and the references therein). Most of the work on the
subject tackles the problem by decoupling the estimation of
the state from the estimation of the biases, since the original
approaches consisting of augmenting the state with the bias
vector are deemed computationally intractable [1]. This im-
plies that, sequential estimation of unknown states is accom-
plished by bias compensation after bias estimation [2, 3].

In this paper we introduce a method for estimation of the
state of the system after marginalizing the biases in the ob-
servations. The proposed approach combines the particle fil-
tering (PF) [4] and Kalman filtering (KF) [5] methodologies.
Namely, the underlying idea consists of using a particle filter
that estimates the state of the system and a Kalman filter for
marginalizing the biases of the sensors. The latter is done
by using the concept of Rao-Blackwellization [6]. Note that
besides the biases, in some situations it is also possible to
marginalize some of the states. This will lead to a more effi-
cient and accurate performance of the method, i.e., the parti-
cle filter will work on a smaller state space and will explore
it more comprehensively [7].

Recall that the idea behind PF is to approximate proba-
bility density functions by discrete random measures, which
are composed ofM particles and weights associated to the
particles. In the existing literature, the Rao-Blackwellized
particle filter uses one Kalman filter per particle of the parti-
cle filter. Therefore, if the particle filter is represented byM
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particles, we needM Kalman filters to deal with the nuisance
parameters. In the literature, this approach is also known as
mixture Kalman filtering [8]. The novelty of the method pro-
posed here is based on the idea that a single Kalman filter is
used to track the biases. (We note, however, that the approach
of using one Kalman filter for Rao-Blackwellization has al-
ready been explored in [9].) As a result, the computational
complexity of the traditional Rao-Blackwellized particle fil-
ter is significantly reduced. The proposed method is tested
in the context of data fusion for target tracking using biased
bearing-only observations distorted by noise.

The remaining of the paper is as follows. Section 2 in-
troduces the problem statement. In Section 3 we explain the
proposed Rao-Blackwellized particle filter method for the bi-
ased data fusion problem. Simulation results in the context of
bearings-only tracking are provided in Section 4, and finally,
conclusions are outlined in Section 5.

2. PROBLEM STATEMENT

In a sensor network, the sensors collect information about a
state vector,xt, that evolves with time according to

xt = f(xt−1)+ut, (1)

wheref(·) is a known vector function, which, in general,
may be nonlinear, andut is a Gaussian noise vector with zero
mean. Consider that there areN sensors in the network and
they provide measurements that are functions of the unknown
state. We model the observations as

yn,t = gn(xt)+bn +vn,t, (2)

where the subscriptn denotes then−th sensor,yn,t is the
measurement of then−th sensor,gn(·) is a known vector
function of the state,bn represents the unknown bias of the
n−th sensor, andvn,t is a measurement Gaussian noise with
zero mean. The objective is to track the posterior probability
distribution of the state,xt, given the sensor measurements,
y1:N,1:t, i.e., to obtainp(xt|y1:N,1:t) in the presence of the
unknown biasesbn, n = 1,2, · · · ,N .

Before we proceed, we make some comments.
1. In (2), the biases could have been incorporated in the

noise, vn,t, where we could have modified the mean,
E(vn,t), by an unknown value equal to the bias of the
n−th sensor. This, of course, is equivalent to the model
given by (2). However, we keep (2) because it facilitates
our presentation.

2. Here we address the problem when the sensor biases are
constant with time. The proposed solution presented in
the next section can be extended to scenarios when these
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biases may vary with time. For example, the bias could
evolve following a random walk model, i.e,

bn,t = bn,t−1 +wn,t, n = 1,2, · · · ,N. (3)

We will show in the sequel, that the solution for constant
bn can straightforwardly be generalized to the problem
of evolving bias as given by (3).

3. Formulation (2) can be further generalized by consider-
ing

yn,t = gn(xt)+An(xt)bn +vn,t,

whereAn is a matrix, which in general, may be a func-
tion of the state,xt. In order to simplify the problem we
have suppressed this factor although it will be considered
in future work.

4. Our method is about reducing the number of Kalman
filters needed for Rao-Blackwellization. In general, the
method needs as many Kalman filters as there are modes
in the posterior. In this paper, we assume that the poste-
rior has only one mode and therefore the method needs
only one Kalman filter. The problem of multi-modal pos-
teriors will be addressed elsewhere.

3. PROPOSED METHOD

We seek a solution to the state estimation problem by us-
ing PF. The theory of particle filters has been well estab-
lished, and its fundamentals and important applications can
be found, for example, in [4] and [10]. Recall, that PF is
a methodology that “approximates” the posteriorcontinuous
distributions bydiscrete random measures. These measures
are composed of samples (particles) generated by some im-
portance function and weights associated to the particles that
compensate for the fact that the particles were not generated
from the posterior distribution. Mathematically, we express
the random measure by

χt =
{

x
(m)
t ,w

(m)
t

}M

m=1
,

wherex
(m)
t are particles that represent the states,w

(m)
t are

their weights indicating the importance of the particles, and
M is the total number of particles. PF has three important
operations:
1. Sampling: It consists of the generation of a set of new

particles that represents the support of the random mea-
sure;

2. Weight computation: It allows for calculation of the
weights of the particles;

3. Resampling: It replicates the particles that have large
weights and removes the ones with negligible weights.
Resampling is an important operation because without it
PF yields very poor results.
As mentioned in the previous section, the sensor biases

are considered to be constant with time. In problems with
unknown constant parameters addressed by PF, one may en-
force artificial evolution of the parameters [11], use the ker-
nel smoothing procedure from [12], exploit the auxiliary PF
based method from [10], or approximate the filtering den-
sity with a predefined parametric density [13]. Most of these
methods impose artificial evolution of the fixed parameters
and entail a large computational complexity.

We consider that the unknown biases of the sensors are
nuisance parameters, and therefore we want to marginalize
them. Marginalization of unwanted parameters in this con-
text is known as Rao-Blackwellization [6]. In the wide lit-
erature, this method is applied by attaching to each particle
stream one Kalman filter which estimates the unknown bi-
ases [7]. The particles are only generated for the unknown
states. That often leads to much better accuracy of the PF
methodology and much more efficient exploration of the
state space. For example, suppose that the dimension of the
state space is four, and that there are 50 sensors. Then the
total number of unknowns is 54 per time instant. Now, in-
stead of generating samples in a state space of dimension 54,
we only generate samples in a four-dimensional space and let
the remaining unknowns be handled by Kalman filtering.

In this paper, we propose that the implementation of the
Rao-Blackwellization is carried out by one Kalman filter.
This may result in substantial computational savings. The
simulation results show that the new method does not have
degraded performance due to the use of only one Kalman
filter.

3.1 Details of the implementation

Suppose that at timet, we have the random measure,

χt =
{

x
(m)
0:t ,w

(m)
t =

1
M

}M

m=1

. (4)

Note that the weights of the particles in (4) are all equal,
which is due to the fact that at the end of every process-
ing cycle, we perform resampling. Also, we assume that the
Kalman filter used in our method has statistics of the biases,
given by the Gaussian,N (b̂t,Ĉbt).

Let the observations,yn,t, n = 1, · · · ,N, be stacked in a
vectory>t = [y>1,t y>2,t · · · y>N,t], and letb> = [b>1 b>2 · · ·b>N ]
be a vector containing the biases of all the sensors.

The steps of the method comprise of the following:
1. Particle generation.The particles of the state are drawn

from
x

(m)
t+1 ∼N

(
f(x(m)

t ),Cu

)

whereCu is the covariance matrix of the noiseut.
2. Computation of the weights. The weights are found

from
w

(m)
t+1 ∝ p(yt+1|x(m)

0:t+1,y1:t)

wherep(yt+1|x(m)
0:t+1,y1:t) is a Gaussian with mean

µt+1 = g(x(m)
t+1)+ b̂t (5)

and a covariance matrix

Ct+1 = Ĉbt +Cv (6)

with Cv being the covariance matrix ofvt. Note
that g(·) is a vector function given byg>(·) =
[g>1 (·) g>2 (·) · · ·g>N (·)].

3. Estimation of xt+1. The estimate ofxt+1 is found from

x̂t+1 =
M∑

m=1

w
(m)
t+1x

(m)
t+1. (7)
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4. Measurement update of the biases.The estimate of the
biases,bt+1, is obtained by

Kt+1 = Ĉbt

(
Ĉbt +Cv

)−1
(8)

b̂t+1 = b̂t +Kt+1

(
yt+1−g(x̂t+1)− b̂t

)
(9)

Ĉbt+1 =
(
I−Kt+1

)
Ĉbt . (10)

5. Resampling. The resampling is performed using the
weightsw(m)

t+1 .

4. COMPUTER SIMULATIONS

In this section we present computer simulations that illus-
trate the validity of our approach. We have considered the
problem of tracking the kinematics of moving targets based
on bearing-only biased measurements that are distorted by
noise.

target 1

target 2

observer 1

observer 2

y1,1,t
y2,2,ty2,1,t

y1,2,t

Figure 1: A system with two static sensors and their
bearings-only measurements.

4.1 Bearings-only tracking problem formulation

Without loss of generality and for simplicity, we assumed
that there were two targets that moved according to the fol-
lowing dynamic model [14]1:

xt = Gxxt−1 +Guut. (11)

The system state,x>t = [x>1,t x>2,t] ∈ R8, consisted of the
positions and velocities of the two targets in the field, i.e.,

xk,t = [x1,k,t x2,k,t ẋ1,k,t ẋ2,k,t]>, k = 1,2

and followed a constant velocity model governed by the
state-transition matrix,Gx of size 8× 8, and the noise-
transition matrix,Gu of size 8× 4, which were block di-
agonal matrices with blocks

G′
x =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1


 and G′

u =




T2
s
2 0

0 T2
s
2

Ts 0
0 Ts




1The problem can easily be generalized to any number of targets.

whereTs was the sampling period. The state noise,ut ∈R4,
was due to small acceleration perturbation and was modeled
as a zero mean Gaussian process with covariance matrixCu.
Note that the model in (11) is somewhat different from that
of (1) in that the state noise is multiplied by a matrix. This
is reflected in the implementation of method as explained be-
low.

The targets were tracked by two static sensors2 posi-
tioned at(x1,1,x2,1) and(x1,2,x2,2), respectively. At time
instantt, then−th sensor collected an observation,yn,t =
[y1,n,t y2,n,t]>, modeled by equation (2) where

gn(xt) =


arctan

(
x2,1,t−x2,n

x1,1,t−x1,n

)

arctan
(

x2,2,t−x2,n

x1,2,t−x1,n

)

 , n = 1,2,

bn = [bn bn]> was the vector of biases for then−th sensor,
i.e., we assumed each sensor had only one bias3. The obser-
vation noise,vn,t ∈ R2 was modeled asN (0,Cvn).

The geometry of the problem is shown in Figure 1. Based
on the made assumptions and considering that the observa-
tions are sent to a fusion center, the objective was to use the
proposed algorithm to estimate the targets’ locations and ve-
locities as accurately as possible.

4.2 Implementation of the proposed algorithm

Table 1 summarizes the proposed algorithm (labeled as
PF-KF to indicate that we used one particle filter and one
Kalman filter) for the considered bearings-only tracking
problem. Note that the symbolπ0 in the table denotes the
prior of the target’s initial state.

For comparison and benchmarking purposes, we also im-
plemented the following algorithms:
• The standard Rao-Blackwellized particle filter that used

M Kalman filters, i.e., one Kalman filter per particle, (la-
beled asPF-MKF)

• The standard particle filter that assumed complete knowl-
edge of the biases, and therefore it did not have to esti-
mate it (labeled asSPF)

• The standard particle filter that makes a wrong assump-
tion by assuming that there were no biases (labeled as
SPFn.)
Note that since we have more than one target, we

have to deal with the problem of data association. In
our approach we implemented the association by choosing
the data combination that provided best fit withŷ(m)>

t =
[ŷ(m)>

1,t ŷ(m)>
2,t ], m = 1,2, . . . ,M , which are the estimated

observations based on the particlesx
(m)
t andb̂t, i.e., where

ŷ(m)
n,t = gn(x(m)

t )+ b̂n,t.

For example, in our case of two targets, sensorn(n = 1,2)
receives two observationsy1,n,t and y2,n,t at time instant
t, and there are two possible data combinations,y1

n,t =
[y1,n,t y2,n,t]> andy2

n,t = [y2,n,t y1,n,t]>. We select the

2Note that with two or more sensors the observability is not an issue.
3This assumption can be relaxed, i.e., one can assume that every mea-

surement of the sensor has its own bias. This does not alter the algorithm
except that it increases the dimensionality of the bias space.
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Initialization
Form = 1 to M (particle loop )

x(m)
0 ∼ π0

w
(m)
0 = 1

M
end
Set the values of̂b0 andĈb0

Recursive update
For t = 1 to T (time loop )

Form = 1 to M (particle loop )
Particle generation: x

(m)
t+1 ∼N

(
Gxx

(m)
t ,GuCuG>

u

)

Weight update: w̃
(m)
t+1 =N (

g(x(m)
t+1)+ b̂t,Ĉbt +Cv

)

Weight normalization: w
(m)
t+1 = w̃

(m)
t+1/

∑M
k=1 w̃

(k)
t+1

end
Estimation
x̂t+1 =

∑M
m=1 w

(m)
t+1x

(m)
t+1

Bias update
Kt+1 = Ĉbt

(
Ĉbt +Cv

)−1

b̂t+1 = b̂t +Kt+1

(
yt+1−g(x̂t+1)− b̂t

)
Ĉbt+1 =

(
I−Kt+1

)
Ĉbt

Resamplingusingw
(m)
t+1

end

Table 1: Particle filter - Kalman filter (PF-KF ) method for
bearings-only tracking using biased measurements.

combination with the smaller error computed by

εk =
1
M

M∑
m=1

‖ŷ(m)
n,t −yk

n,t‖, k = 1,2.

4.3 Results

We simulated evolutions of the system forT = 300s with
a sampling period ofTs = 1s. The covariances of the
state and observation noises were set toCu = 0.25I4 and
Cv = 10−4I4, respectively. The coordinates of the sensors
were (x1,1,x2,1) = (−12000,13000) m and (x1,2,x2,2) =
(10000,15000) m, and their biases were set tob1 =−0.0459
dg andb2 =−0.0977 dg, respectively. In the implementation
of the particle filters we usedM = 500 particles and we set
b̂0 = 0 andĈb0 = 100I2.

Figure 2 shows the trajectories of the two targets and
the obtained estimates in the two-dimensional space result-
ing from a single simulation of the dynamic system. It is
clear that the proposed algorithm remains locked to the state
trajectory.

Even though the method marginalizes the biases while
estimating the nonlinear states, it can still provide estimates
of the biases. Figure 3 depicts the capability of the algorithm
in estimating them. The Figure also includes the evolution of
the variance of the Kalman filter and, as expected, decreases
with time.

Finally, we compute the average mean square error
(MSE) as a performance figure of merit. It was measured
in square meters and represented the difference between the
true vehicle trajectories and the trajectories estimated by the

−1000 −500 0 500 1000 1500 2000
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

0

500

x
1,k

 (m)

x 2
,k

 (
m

)

True trajectory 1
True trajectory 2
PF−KF 1
PF−KF 2

Figure 2: Trajectory of the two targets and the estimates ob-
tained by the proposed method (PF-KF ).

particle filters,

MSEt =
1
4

1
J

2∑

k=1

J∑

j=1

[
(x̂j

1,k,t−xj
1,k,t)

2 +(x̂j
2,k,t−xj

2,k,t)
2
]

where[xj
1,k,t xj

2,k,t]
> was the true position of thek−th tar-

get at timet in thej-th run, and[x̂j
1,k,t x̂j

2,k,t]
> was the cor-

responding estimate obtained by the filter. The MSE plots
were obtained by averagingJ = 50 independent simulations,
where the trajectories in the simulations were different .

From the results shown in Figure 4, we clearly see that
the worst performance was reported by the particle filter
that assumed there were no biases, and that was expected.
Also, it was not a surprise that the standard particle filter,
which assumed complete knowledge of the bias, achieved
the best performance that constituted a lower bound for the
proposed method. The proposed method showed a perfor-
mance close to the bound and very similar to the standard
Rao-Blackwellized particle filter that used one Kalman filter
per particle. Note however that the new method presented
a significant computational reduction without loss of perfor-
mance.

5. CONCLUSIONS

In this paper we addressed the problem of fusion of infor-
mation from biased sensor measurements. We proposed a
Rao-Blackwellized particle filter that uses only one Kalman
filter for marginalizing the unknown biases of the sensors.
The validity of the method was tested through computer sim-
ulations by applying it to a bearings-only tracking problem
with two targets and two sensors. The results showed that the
new method clearly outperforms the particle filter that does
not assume biased sensors and is close to the performance
of the standard particle filter that has complete knowledge of
the biases. Furthermore, when compared to the traditional
Rao-Blackwellized particle filter, it performs practically the
same, while at the same time it requires much less computa-
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Figure 3: Means and standard deviations of the estimated
biases. Top: Results corresponding to the bias of sensor1,
b1. Bottom: Results corresponding to the bias of sensor2,
b2.

tions. Results on the estimation of the biases suggest that the
proposed method performs well too.
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