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ABSTRACT 

The aim of this work is to propose a fast and reliable design 

flow for the implementation of some image analysis algo-

rithms on an adaptive architecture using an FPGA platform. 

This adaptive architecture is designed in a Globally Asyn-

chronous Locally Synchronous (GALS) approach so that the 

hardware resources are stand-alone modules. Any modifica-

tion only affects the target module, not the entire system. The 

design flow associated to this architecture includes IP li-

braries for all reused modules and a high-level development 

tool called Handle-C for the design of new modules. The 

image processing designer implements any image analysis 

algorithm in a reliable way without any hardware specialist. 

1. INTRODUCTION 

More and more image processing systems must be devel-

oped under hard real-time constraints and under harsh envi-

ronments. FPGAs are increasingly used for such embedded 

real-time systems because they can achieve high-speed per-

formances in a small footprint. From an FPGA synthesis 

point of view, the reconfigurable aspect ensures architecture 

adaptations by functional block modifications. These Sys-

tems On Chip (SoCs) are suitable for parameterised, dy-

namic or even for a class of algorithms. SoCs become more 

and more popular but the design is complex and time con-

suming. In most cases, image processing designers are high-

level software practitioners. They rarely know one of the 

available Hardware Description Language (VHDL, Verilog) 

required for FPGA implementations. On the other hand, 

these algorithms are first developed using a high-level pro-

gramming language (C, C++).  

Our purpose of this work is to propose an adaptive ar-

chitecture using an FPGA platform for image analysis appli-

cations. The proposed design flow is based on the linear ef-

fort property: changing a block to the architecture only de-

pends on the block, not on the size of the reused architecture 

[1]. The architecture is based on reused modules stored into 

IP libraries and a high-level development tool used for new 

blocks. 

This paper is organised into 4 further sections. Section 2 

introduces the adaptive FPGA-based architecture. Section 3 

describes the fast design flow proposed for this architecture. 

In section 4, an example is given with the implementation of 

multispectral imaging algorithm and the implementation re-

sults are presented in section 5, and Section 6 concludes the 

paper. 

2. ADAPTIVE ARCHITECTURE 

Image applications require acquisition operations, storage 

operations and processing operations. A control operation 

supervises the entire system. Moreover, the main characteris-

tic of image analysis applications is an unbalanced data flow 

between input and output flows. The input data flow captures 

several images meaning that input data correspond to a high 

number of pixels. The output data flow represents a small 

number of data. 

The presented adaptive architecture is based on all these 

characteristics. 

2.1 Architecture description 

The adaptive platform is built on a foundation of reusable 

Intellectual Property blocks designed to a pre-defined inter-

face. The architecture model is based on separated input data 

flow and command flow. The reduced output data flow (the 

result flow) is mixed with command flow (Figure 1). 

Using a Globally Asynchronous Locally Synchronous 

(GALS) approach [2,3], the structure is a set of modules. 

Logic that constitutes one module is synchronous and each 

module runs at its own frequency. Communications between 

modules are asynchronous and they use a handshake proto-

col design in a wrapper. The wrapper includes two inde-

pendent asynchronous units. One unit receives frames from 

the previous module and the other unit sends frames to the 

following one at the same time. 
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Figure 1 – Model of communication flows 
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The topology being explored is a hierarchical network 

built from a unidirectional communication ring. All modules 

are inserted around this ring. From this model and the com-

munication ring, our adaptive architecture dedicated to im-

age analysis algorithms is proposed in Figure 2. 
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 Figure 2 –The proposed adaptive architecture  

for image analysis algorithms 

2.2 Module description 
The modular principle can be shown at different levels (Fig-

ure 3): one type of operation is implemented by means of a 

module (acquisition, storage, processing…). Each module 

includes units that carry out a function (decoding, control, 

correlation, data interface…), and these units are shaped into 

basic blocks (memory, comparator…). Special units such as 

the decode unit and all wrapper units are equal to all mod-

ules. 

The number and the type of modules depend on the ap-

plication. As image analysis algorithms require several types 

of operations, this structure contains several types of mod-

ules: 

• The acquisition module produces incoming 

data/images. A CMOS image sensor is used for our 

prototype. This CMOS image sensor receives con-

figuration information from the acquisition module 

and the captured images are sent to the acquisition 

module by the sensor. 

• The storage module stores incoming data from the 

acquisition module. According to the size of data to 

store, memory banks can be FPGA-embedded 

memories or external memory devices. 

• The processing modules contain the logic required to 

process images/data. A time-consuming operation 

can be distributed onto several identical processing 

modules. 

All these modules are supervised by a control module: 

• The control module sends commands and empty 

frames to every/each module through the communi-

cation ring. Each frame consists of 4 bytes. As sev-

eral frames are continuously sent in the ring, empty 

frames are used by any module to send results back 

to the control module. 

The number of modules is theoretically unlimited for 

each type of module except the control module. The control 

of the system is not distributed on all modules but fully cen-

tralized on the single control module, which performs deci-

sions and scheduling operations 
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Figure 3 – Structure of the inserted modules 

 

2.3 Modification analysis 

Whatever the algorithm previously implemented, modifica-

tions or architecture adaptations are required for a new de-

sign. Modifications can either be hardware or software. Four 

levels of modifications are identified: 

• External devices: for data and image grabber, acqui-

sition devices are interchangeable. This architecture 

can accept cameras, CCD sensors, and data from a 

storage device…Since features and format of data 

depend on the device, and the acquisition module 

must be adapted. 

• Algorithm: processing module can accept any proc-

essing operations that meet the targeted characteris-

tics previously described (i.e. unbalanced data flow 

and parallelism). 

• Parameters adaptation: from a given image analy-

sis algorithm, some parameters can vary: size of full-

analysed images, size or location of studied win-

dows, shape of some tools…  

• Parallel operations (scheduling): for a given algo-

rithm the number of processing modules can vary to 

improve the parallelism. So the scheduling orches-

trated by the control module changes. 

According to the type of modifications, only some 

units/blocks inside modules need to be changed. Modifying 

one module inside the architecture does not affect other 

modules, as they are independent. Modules that depend on 

one or several modifications must be analysed. As a conse-

quence of this reusability, all modules are numbered and 

classified into two categories: 

• Modules that remain unchanged are static modules. 

Functional blocks can be immediately reused without 

any modification.  

• Modules that are algorithm-dependent or architec-

ture-dependent are dynamic modules. In this case, 

some functional blocks must be changed. 
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Table 1 – Static and dynamic module in the adaptive FPGA archi-

tecture according to the required modification 

 Control Processing Acquisit° Storage 

Ext. device Static Static Dynamic Dynamic 

Algorithm Dynamic Dynamic Static Dynamic 

Parameters Static Dynamic Static Dynamic 

Scheduling Dynamic Static Static Static 

3. DESIGN FLOW 

A fast and reliable design flow for this adaptive architecture 

is proposed in figure 4. The input description is the C or C++ 

algorithm described by the image processing designer. From 

previous implementation, the image-processing designer 

identifies the dynamic and static blocks. Static blocks are 

VHDL IP stored in a predefined IP block library. Some in-

formation about the number of resources and the running 

frequency are also given for each static block.  

 

 
 

Figure 4 – Design flow associated to the adaptive architecture 

Dynamic blocks are designed by means of the DK De-

sign Suite Tool used in the design flow [4]. DK Design Suite 

uses a C-based language called Handel-C, a subset of ISO-

(ANSI-C) with the necessary constructs added for hardware 

design. Handel-C allows the image processing designer to 

describe the behaviour of the intended dynamic blocks in the 

same sense as a software programmer describes the intended 

behaviour of a processor executing his programs. 

The manual translation from C-code to Handel-C is 

greatly simplified because of the similar syntax and impor-

tantly the similar level of abstraction. Several levels of trans-

lation are proposed by Celoxica, as shown in figure 5: 

 

 
 

Figure 5 – Design flow for the dynamic units’ development with 

the DK Design Suite Tool 

The first version is a direct mapping from C code to 

Handel-C. This task is a “word for word” translation. A 

Coarse parallelism consists of locating tasks that can be 

simultaneously executed. A thinner version is an “Operator 

level” optimisation. It consists of using, as best one can, 

specifications of Handel-C language. In particular, some 

high-level C operators can be replaced by a simple shift in a 

gate level. The last version is the fine-grained parallelism, 

meticulous analysis of instructions or set of instructions to 

optimise the execution and propagation times and to detect 

potential parallelisable operations. 

The first three versions can be done by the image proc-

essing designer himself. But for higher performances, the 

fine-grained parallelism modifications require hardware 

abilities. 

The Handel-C translation for the dynamic blocks is the 

only manual stage in the design flow, represented in grey 

color in the Fig. 4. All the others are automatically generated 

thanks to appropriate Place and Route tools. Once the C-code 

is translated into a Handel-C description, all following stages 

are automatically achieved. 

4. IMPLEMENTATION 

A prototype platform with a Stratix II 2S60 FPGA device [5] 

associated with an IBIS 4 CMOS sensor is used. The first 

implementation is required for static module characterisation. 

This architecture consists of four modules, (one module per 

type of operation) and one CMOS sensor. The previous im-

plemented algorithm had the following characteristics: 

• Image size: 320×256 pixels 

Direct mapping 

Coarse parallelism 

Operator level optimisation 

Thin parallelism 

 

 

 

 

Place 

& 

Route 

SIMULATION 

SIMULATION 

SIMULATION 

SIMULATION 

Version 1 

Version 2 

Version 3 

Version 4 

 

©2007 EURASIP 843

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



• Frequencies: Facquisition=50 MHz, Fstorage=100 MHz,  

Fcontrol=150 MHz, Fprocessing=50 MHz. 

 

We assume that an algorithm with these four modules was 

implemented with the following scheduling: 

• Two single exposure image frames are recorded 

within a short time interval t and t+∆t 

• Images are sent to the storage module. 

• Sub-images are sent to the processing module 

• Results are sent to the control module. 

To illustrate our adaptive architecture with a fast and 

easy example, the new algorithm has the same scheduling as 

the previous one and the size of images remains identical. We 

concentrate the study around the processing module as the 

only dynamic module. Therefore, all modules except the 

processing module are static modules. For more complex 

algorithms, the design flow will be the same, only the num-

ber and type of modules differ. 

4.1    Algorithm: multispectral imaging 

Multispectral imaging has emerged as a technology that can 

guarantee high quality images for many uses in contexts. 

Offering independence from the illuminate and observer ef-

fects makes traditional RGB imaging taken in different con-

texts inconsistent. This type of imaging is particularly critical 

for high-end color reproduction such as artwork reproduc-

tion, multi-ink printing and hyperspectral satellite observa-

tion. Common spectral image processing is the evaluation of 

spectral sensor responses reconstruction in color system cali-

bration process [6], the spectral image databases indexation 

[7] and the hyperspectral image identification. For comparing 

and evaluating spectral application results, metrics on spectra 

are used to evaluate the closeness of spectral matches. 

The aim of the spectra image processing under study is 

to compare two spectral images. The first step of algorithm is 

to apply a segmentation stage using spectral and spatial di-

mensions. The second step is to match the different areas 

between the two segmented images. Metrics are then com-

puted between the spatial mean spectra of each image areas. 

Results are combined to conclude on spectral image match-

ing. The previously implemented scheduling is identical to 

the scheduling required for this algorithm. The only modifi-

cation lies in the processing operation which is implemented 

on the processing module. The processing operation to be 

implemented on the processing module is: 

 

( ) ( ) ( )1 2, , XNOR ,=   − −∑∑
x y

F i j s x y s x i y j  

where s1 and s2 respectively present the pixel values of the 

interrogation windows from image 1 and 2. 

This image processing is time consuming and user-

definable according to the application. 

4.2 Global architecture analysis 

Modules have already been implemented and proposed as IP 

blocks such as the acquisition, control and storage modules. 

These stored modules in libraries and resource information 

are given in Table 2. 

The only task for the image-processing designer is the 

development of the processing module. 

Table 2 – Predefined resources and frequency for all static modules 

 Logic cells Registers  Mem bits Frequency (MHz) 

Storage 280 422 524 288 100 
Acquisition 264 225 0 50 

Control 278 265 32 150 

 

4.3 Processing module analysis 

For the processing module, only the processing unit itself 

need to be modified, all the others remain unchanged. White 

units correspond to the static units and the grey ones to the 

dynamic units in the presented structure in Figure 6. 
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Figure 6 – Structure of the dynamic processing module. Only the 

processing unit is a dynamic unit 

Static units have already been developed and stored in 

libraries as well. Information about these static blocks is 

given in Table 3.  

Table 3 – Predefined resources for static units inside the processing 

module 

 Logic cells Registers Mem bits 

Comm. 33 34 0 

Decode  12 24 0 
Control  42 49 0 

Storage  48 63 0 

Interface 5 4 0 

The used frequency is 50 MHz for the processing module. 

5. RESULTS AND INTERPRETATION 

The external interface of dynamic units remains identical in 

all the algorithms. For example, the interface of the process-

ing unit implemented algorithm. This interface is proposed to 

the image-processing designer and it is presented in Figure 7. 

All external signals for this block are inserted in a Han-

del-C file that can be directly reused by the image-processing 

designer. Using these signals, the image-processing designer 

develops the correlation function in a C-code and translates it 

into a Handel-C version [8]. 

From the fully manual implementation, all IP blocks 

except the processing unit are reusable. The original C-

algorithm required for the processing unit is translated from 

C to Handel-C for an automatic implementation [9]. To test 

the efficiency of the proposed design flow, two ways of im-

plementation have been performed. The first implementation 

is a full manual implementation. The complete architecture 
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is described in VHDL. The second implementation is based 

on the proposed design flow in Figure 7. 

 

Figure 7 – Structure of the processing unit 

The image-processing designer writes the C-function 

and translates it in a Handel-C language. Two Handel-C 

versions are proposed. The first version is a direct mapping 

from C-code to Handel-C and the second version is a coarse 

parallelism.  

Comparative results in term of using resource and the 

execution time are in Table 4 and Table 5. 

Table 4 – Resource results for the dynamic processing unit of the 

processing module 

 LUTs Flip Flop (FFs) Mem bits 

Version 3 2106 1501 0 
Version 4 631 219 1280 

VHDL 253 270 1280 

Table 5 – Timing results for dynamic processing unit inside the 

processing module 

 Max frequency (MHz) N° of clock period 

Version 3 85 41 923 
Version 4 90 30 675 

VHDL 135 4 887 

. 

Once written, the processing unit is included in the 

complete design (with all VHDL modules) and the complete 

architecture is automatically generated. 

Both versions are efficient because they use the avail-

able resources without exceeding the available number. In 

the same way, the maximum frequency fits with the process-

ing module’s required maximum frequency.  

On the other hand, the approximate development time 

remains fast with the Handel-C. Modifications from C-code 

to Handel-C are difficult to quantify because it can be done 

in few hours for an experienced person. Nevertheless, the 

adaptive architecture can reach high performance. 

6. CONCLUSION AND PERSPECTIVES 

We proposed an adaptive architecture suitable for image 

analysis applications. The GALS approach is used to pro-

vide an architecture whose structure is a set of stand-alone 

blocks. With this architecture, a fast design flow whose most 

of stages are automatic is proposed. The only manual stage 

is the C to Handel-C translation by means of the DK Design 

Suite [10]. This language is based on ANSI-C so that the 

image-processing designer can implement new block with-

out any hardware requirement. All previously described 

blocks are stored in library for an immediate reuse. Accord-

ing to the type of modifications, dynamic modules of the 

architecture are identified. The designer uses the interfaces 

to develop the new block. Manual translation only concern 

the dynamic part, the architecture remains mainly un-

changed. The generated IP core does not give optimised 

results as VHDL description but give sufficient result for 

most applications suitable to our architecture in a short 

development time. 
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