
RAPID PROTOTYPING OF IMAGE ANALYSIS ALGORITHMS

ON AN ADAPTIVE FGPA ARCHITECTURE

Zahir Larabi, Linlin Zhang
1
, Virginie Fresse

1
 and Anne-Claire Legrand

2

1
Laboratoire Hubert Curien CNRS UMR 5516 (LHC),

2
Laboratoire d’Informatique Graphique et d’Ingénierie de la Vision (LIGIV)

18 rue Benoit Lauras, 42000 Saint Etienne, France.

phone: + (0033) 477 91 57 93, fax: + (0033) 477 91 57 81,

email: {lin.zhang, virginie.fresse, anne.claire.legrand}@univ-st-etienne.fr

ABSTRACT

The aim of this work is to propose a fast and reliable design

flow for the implementation of some image analysis algo-

rithms on an adaptive architecture using an FPGA platform.

This adaptive architecture is designed in a Globally Asyn-

chronous Locally Synchronous (GALS) approach so that the

hardware resources are stand-alone modules. Any modifica-

tion only affects the target module, not the entire system. The

design flow associated to this architecture includes IP li-

braries for all reused modules and a high-level development

tool called Handle-C for the design of new modules. The

image processing designer implements any image analysis

algorithm in a reliable way without any hardware specialist.

1. INTRODUCTION

More and more image processing systems must be devel-

oped under hard real-time constraints and under harsh envi-

ronments. FPGAs are increasingly used for such embedded

real-time systems because they can achieve high-speed per-

formances in a small footprint. From an FPGA synthesis

point of view, the reconfigurable aspect ensures architecture

adaptations by functional block modifications. These Sys-

tems On Chip (SoCs) are suitable for parameterised, dy-

namic or even for a class of algorithms. SoCs become more

and more popular but the design is complex and time con-

suming. In most cases, image processing designers are high-

level software practitioners. They rarely know one of the

available Hardware Description Language (VHDL, Verilog)

required for FPGA implementations. On the other hand,

these algorithms are first developed using a high-level pro-

gramming language (C, C++).

Our purpose of this work is to propose an adaptive ar-

chitecture using an FPGA platform for image analysis appli-

cations. The proposed design flow is based on the linear ef-

fort property: changing a block to the architecture only de-

pends on the block, not on the size of the reused architecture

[1]. The architecture is based on reused modules stored into

IP libraries and a high-level development tool used for new

blocks.

This paper is organised into 4 further sections. Section 2

introduces the adaptive FPGA-based architecture. Section 3

describes the fast design flow proposed for this architecture.

In section 4, an example is given with the implementation of

multispectral imaging algorithm and the implementation re-

sults are presented in section 5, and Section 6 concludes the

paper.

2. ADAPTIVE ARCHITECTURE

Image applications require acquisition operations, storage

operations and processing operations. A control operation

supervises the entire system. Moreover, the main characteris-

tic of image analysis applications is an unbalanced data flow

between input and output flows. The input data flow captures

several images meaning that input data correspond to a high

number of pixels. The output data flow represents a small

number of data.

The presented adaptive architecture is based on all these

characteristics.

2.1 Architecture description

The adaptive platform is built on a foundation of reusable

Intellectual Property blocks designed to a pre-defined inter-

face. The architecture model is based on separated input data

flow and command flow. The reduced output data flow (the

result flow) is mixed with command flow (Figure 1).

Using a Globally Asynchronous Locally Synchronous

(GALS) approach [2,3], the structure is a set of modules.

Logic that constitutes one module is synchronous and each

module runs at its own frequency. Communications between

modules are asynchronous and they use a handshake proto-

col design in a wrapper. The wrapper includes two inde-

pendent asynchronous units. One unit receives frames from

the previous module and the other unit sends frames to the

following one at the same time.

Commands

flow

Result

flow

receivereceive sendsend

ModuleModule

Communication

ring

Input data flow

Figure 1 – Model of communication flows

©2007 EURASIP 841

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

The topology being explored is a hierarchical network

built from a unidirectional communication ring. All modules

are inserted around this ring. From this model and the com-

munication ring, our adaptive architecture dedicated to im-

age analysis algorithms is proposed in Figure 2.

Acquisition
Module

Storage
Module

Control
Module

FPGA

Processing
Module 1

Processing
Module 2

CMOS image
sensor

PC

Commands and results
Data

Acquisition
Module

Storage
Module

Control
Module

FPGA

Processing
Module 1

Processing
Module 2

CMOS image
sensor

PC

Commands and results
Data

 Figure 2 –The proposed adaptive architecture

for image analysis algorithms

2.2 Module description
The modular principle can be shown at different levels (Fig-

ure 3): one type of operation is implemented by means of a

module (acquisition, storage, processing…). Each module

includes units that carry out a function (decoding, control,

correlation, data interface…), and these units are shaped into

basic blocks (memory, comparator…). Special units such as

the decode unit and all wrapper units are equal to all mod-

ules.

The number and the type of modules depend on the ap-

plication. As image analysis algorithms require several types

of operations, this structure contains several types of mod-

ules:

• The acquisition module produces incoming

data/images. A CMOS image sensor is used for our

prototype. This CMOS image sensor receives con-

figuration information from the acquisition module

and the captured images are sent to the acquisition

module by the sensor.

• The storage module stores incoming data from the

acquisition module. According to the size of data to

store, memory banks can be FPGA-embedded

memories or external memory devices.

• The processing modules contain the logic required to

process images/data. A time-consuming operation

can be distributed onto several identical processing

modules.

All these modules are supervised by a control module:

• The control module sends commands and empty

frames to every/each module through the communi-

cation ring. Each frame consists of 4 bytes. As sev-

eral frames are continuously sent in the ring, empty

frames are used by any module to send results back

to the control module.

The number of modules is theoretically unlimited for

each type of module except the control module. The control

of the system is not distributed on all modules but fully cen-

tralized on the single control module, which performs deci-

sions and scheduling operations

Block1a Block1b

Unit3

Unit2 Unit4

Unit1

Block4a

Block4c

Block4b

Figure 3 – Structure of the inserted modules

2.3 Modification analysis

Whatever the algorithm previously implemented, modifica-

tions or architecture adaptations are required for a new de-

sign. Modifications can either be hardware or software. Four

levels of modifications are identified:

• External devices: for data and image grabber, acqui-

sition devices are interchangeable. This architecture

can accept cameras, CCD sensors, and data from a

storage device…Since features and format of data

depend on the device, and the acquisition module

must be adapted.

• Algorithm: processing module can accept any proc-

essing operations that meet the targeted characteris-

tics previously described (i.e. unbalanced data flow

and parallelism).

• Parameters adaptation: from a given image analy-

sis algorithm, some parameters can vary: size of full-

analysed images, size or location of studied win-

dows, shape of some tools…

• Parallel operations (scheduling): for a given algo-

rithm the number of processing modules can vary to

improve the parallelism. So the scheduling orches-

trated by the control module changes.

According to the type of modifications, only some

units/blocks inside modules need to be changed. Modifying

one module inside the architecture does not affect other

modules, as they are independent. Modules that depend on

one or several modifications must be analysed. As a conse-

quence of this reusability, all modules are numbered and

classified into two categories:

• Modules that remain unchanged are static modules.

Functional blocks can be immediately reused without

any modification.

• Modules that are algorithm-dependent or architec-

ture-dependent are dynamic modules. In this case,

some functional blocks must be changed.

©2007 EURASIP 842

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Table 1 – Static and dynamic module in the adaptive FPGA archi-

tecture according to the required modification

 Control Processing Acquisit° Storage

Ext. device Static Static Dynamic Dynamic

Algorithm Dynamic Dynamic Static Dynamic

Parameters Static Dynamic Static Dynamic

Scheduling Dynamic Static Static Static

3. DESIGN FLOW

A fast and reliable design flow for this adaptive architecture

is proposed in figure 4. The input description is the C or C++

algorithm described by the image processing designer. From

previous implementation, the image-processing designer

identifies the dynamic and static blocks. Static blocks are

VHDL IP stored in a predefined IP block library. Some in-

formation about the number of resources and the running

frequency are also given for each static block.

Figure 4 – Design flow associated to the adaptive architecture

Dynamic blocks are designed by means of the DK De-

sign Suite Tool used in the design flow [4]. DK Design Suite

uses a C-based language called Handel-C, a subset of ISO-

(ANSI-C) with the necessary constructs added for hardware

design. Handel-C allows the image processing designer to

describe the behaviour of the intended dynamic blocks in the

same sense as a software programmer describes the intended

behaviour of a processor executing his programs.

The manual translation from C-code to Handel-C is

greatly simplified because of the similar syntax and impor-

tantly the similar level of abstraction. Several levels of trans-

lation are proposed by Celoxica, as shown in figure 5:

Figure 5 – Design flow for the dynamic units’ development with

the DK Design Suite Tool

The first version is a direct mapping from C code to

Handel-C. This task is a “word for word” translation. A

Coarse parallelism consists of locating tasks that can be

simultaneously executed. A thinner version is an “Operator

level” optimisation. It consists of using, as best one can,

specifications of Handel-C language. In particular, some

high-level C operators can be replaced by a simple shift in a

gate level. The last version is the fine-grained parallelism,

meticulous analysis of instructions or set of instructions to

optimise the execution and propagation times and to detect

potential parallelisable operations.

The first three versions can be done by the image proc-

essing designer himself. But for higher performances, the

fine-grained parallelism modifications require hardware

abilities.

The Handel-C translation for the dynamic blocks is the

only manual stage in the design flow, represented in grey

color in the Fig. 4. All the others are automatically generated

thanks to appropriate Place and Route tools. Once the C-code

is translated into a Handel-C description, all following stages

are automatically achieved.

4. IMPLEMENTATION

A prototype platform with a Stratix II 2S60 FPGA device [5]

associated with an IBIS 4 CMOS sensor is used. The first

implementation is required for static module characterisation.

This architecture consists of four modules, (one module per

type of operation) and one CMOS sensor. The previous im-

plemented algorithm had the following characteristics:

• Image size: 320×256 pixels

Direct mapping

Coarse parallelism

Operator level optimisation

Thin parallelism

Place

&

Route

SIMULATION

SIMULATION

SIMULATION

SIMULATION

Version 1

Version 2

Version 3

Version 4

©2007 EURASIP 843

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

• Frequencies: Facquisition=50 MHz, Fstorage=100 MHz,

Fcontrol=150 MHz, Fprocessing=50 MHz.

We assume that an algorithm with these four modules was

implemented with the following scheduling:

• Two single exposure image frames are recorded

within a short time interval t and t+∆t

• Images are sent to the storage module.

• Sub-images are sent to the processing module

• Results are sent to the control module.

To illustrate our adaptive architecture with a fast and

easy example, the new algorithm has the same scheduling as

the previous one and the size of images remains identical. We

concentrate the study around the processing module as the

only dynamic module. Therefore, all modules except the

processing module are static modules. For more complex

algorithms, the design flow will be the same, only the num-

ber and type of modules differ.

4.1 Algorithm: multispectral imaging

Multispectral imaging has emerged as a technology that can

guarantee high quality images for many uses in contexts.

Offering independence from the illuminate and observer ef-

fects makes traditional RGB imaging taken in different con-

texts inconsistent. This type of imaging is particularly critical

for high-end color reproduction such as artwork reproduc-

tion, multi-ink printing and hyperspectral satellite observa-

tion. Common spectral image processing is the evaluation of

spectral sensor responses reconstruction in color system cali-

bration process [6], the spectral image databases indexation

[7] and the hyperspectral image identification. For comparing

and evaluating spectral application results, metrics on spectra

are used to evaluate the closeness of spectral matches.

The aim of the spectra image processing under study is

to compare two spectral images. The first step of algorithm is

to apply a segmentation stage using spectral and spatial di-

mensions. The second step is to match the different areas

between the two segmented images. Metrics are then com-

puted between the spatial mean spectra of each image areas.

Results are combined to conclude on spectral image match-

ing. The previously implemented scheduling is identical to

the scheduling required for this algorithm. The only modifi-

cation lies in the processing operation which is implemented

on the processing module. The processing operation to be

implemented on the processing module is:

() () ()1 2, , XNOR ,= − −∑∑
x y

F i j s x y s x i y j

where s1 and s2 respectively present the pixel values of the

interrogation windows from image 1 and 2.

This image processing is time consuming and user-

definable according to the application.

4.2 Global architecture analysis

Modules have already been implemented and proposed as IP

blocks such as the acquisition, control and storage modules.

These stored modules in libraries and resource information

are given in Table 2.

The only task for the image-processing designer is the

development of the processing module.

Table 2 – Predefined resources and frequency for all static modules

 Logic cells Registers Mem bits Frequency (MHz)

Storage 280 422 524 288 100
Acquisition 264 225 0 50

Control 278 265 32 150

4.3 Processing module analysis

For the processing module, only the processing unit itself

need to be modified, all the others remain unchanged. White

units correspond to the static units and the grey ones to the

dynamic units in the presented structure in Figure 6.

Decode

Unit

Storage

Unit

Results

Communication Unit

Interface Unit

Output

frames

Input

frames

Data from

the storage

module

Control

Unit

commands

data

Processing

Unit

Decode

Unit

Storage

Unit

Results

Communication Unit

Interface Unit

Output

frames

Input

frames

Data from

the storage

module

Control

Unit

commands

data

commands

data

Processing

Unit

Figure 6 – Structure of the dynamic processing module. Only the

processing unit is a dynamic unit

Static units have already been developed and stored in

libraries as well. Information about these static blocks is

given in Table 3.

Table 3 – Predefined resources for static units inside the processing

module

 Logic cells Registers Mem bits

Comm. 33 34 0

Decode 12 24 0
Control 42 49 0

Storage 48 63 0

Interface 5 4 0

The used frequency is 50 MHz for the processing module.

5. RESULTS AND INTERPRETATION

The external interface of dynamic units remains identical in

all the algorithms. For example, the interface of the process-

ing unit implemented algorithm. This interface is proposed to

the image-processing designer and it is presented in Figure 7.

All external signals for this block are inserted in a Han-

del-C file that can be directly reused by the image-processing

designer. Using these signals, the image-processing designer

develops the correlation function in a C-code and translates it

into a Handel-C version [8].

From the fully manual implementation, all IP blocks

except the processing unit are reusable. The original C-

algorithm required for the processing unit is translated from

C to Handel-C for an automatic implementation [9]. To test

the efficiency of the proposed design flow, two ways of im-

plementation have been performed. The first implementation

is a full manual implementation. The complete architecture

©2007 EURASIP 844

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

is described in VHDL. The second implementation is based

on the proposed design flow in Figure 7.

Figure 7 – Structure of the processing unit

The image-processing designer writes the C-function

and translates it in a Handel-C language. Two Handel-C

versions are proposed. The first version is a direct mapping

from C-code to Handel-C and the second version is a coarse

parallelism.

Comparative results in term of using resource and the

execution time are in Table 4 and Table 5.

Table 4 – Resource results for the dynamic processing unit of the

processing module

 LUTs Flip Flop (FFs) Mem bits

Version 3 2106 1501 0
Version 4 631 219 1280

VHDL 253 270 1280

Table 5 – Timing results for dynamic processing unit inside the

processing module

 Max frequency (MHz) N° of clock period

Version 3 85 41 923
Version 4 90 30 675

VHDL 135 4 887

.

Once written, the processing unit is included in the

complete design (with all VHDL modules) and the complete

architecture is automatically generated.

Both versions are efficient because they use the avail-

able resources without exceeding the available number. In

the same way, the maximum frequency fits with the process-

ing module’s required maximum frequency.

On the other hand, the approximate development time

remains fast with the Handel-C. Modifications from C-code

to Handel-C are difficult to quantify because it can be done

in few hours for an experienced person. Nevertheless, the

adaptive architecture can reach high performance.

6. CONCLUSION AND PERSPECTIVES

We proposed an adaptive architecture suitable for image

analysis applications. The GALS approach is used to pro-

vide an architecture whose structure is a set of stand-alone

blocks. With this architecture, a fast design flow whose most

of stages are automatic is proposed. The only manual stage

is the C to Handel-C translation by means of the DK Design

Suite [10]. This language is based on ANSI-C so that the

image-processing designer can implement new block with-

out any hardware requirement. All previously described

blocks are stored in library for an immediate reuse. Accord-

ing to the type of modifications, dynamic modules of the

architecture are identified. The designer uses the interfaces

to develop the new block. Manual translation only concern

the dynamic part, the architecture remains mainly un-

changed. The generated IP core does not give optimised

results as VHDL description but give sufficient result for

most applications suitable to our architecture in a short

development time.

REFERENCES

[1] A. Jantsch, Networks on Chip, Kluwer Academic Pulishers,
Boston, 2003

[2] S. W. Moore, G. S. Taylor, P. A. Cunningham, R. D. Mullins
and P. Robinson, “Self-calibrating clocks for globally
asynchronous locally synchronous systems” in Proc.
International Conf. Computer Design, IEEE CS Press, Los
Alamitos, Califonia, September 16-20,2000, pp. 73-78.

[3] V. S. P. Rapaka and D. Marculescu, “A mixed-clock issue
queque design for globally asynchronous, locally
synchronous processor cores” in Proc. ISLPED2003, Seoul,
Korea, Auguest 25-27,2003, pp. 372-377.

[4] Celoxica “DK Design Suite”. www.celoxica.com

[5] Altera Corp. “Altera Stratix 2S60 NIOS II Development
board”, Datasheet, 2005. http://www.altera.com

[6] E. P. Murphy, “A Testing Procedure to Characterize Color
and Spatial Quality of Digital Cameras Used to Image
Cultural Heritage”, PhD Thesis of Center for Imaging
Science, Rochester Institute of Technology, Rochester, NY,
2005.

[7] O. Kohonen, T. Jaaskelainen, M. Hautakasari, J. Parkkinen
and K. Miyazawa: “Organizing spectral image database using
self-organizing maps” The Journal of imaging science and
technology, vol. 49 , no 4 , pp. 431 - 441, 2005.

[8] M. J. Peearson, C. Melhuish, A. G. Pipe, M. Nibouche, L.
Gilhesphy, K. Gurney and B. Mitchinson “Design and FPGA
implementation of an embedded real-time biologically
plausible spiking neural network” in Proc.FPL200, Tampere,
Finland, Auguest 24-26.2005, pp.582-585.

[9] C. Bobda, B. Blodget, M. Huebner, A. Niyonkuru, A.
Ahmadinia and M. Majer, “Designing partial and
dynamically reconfigurable applications on Xilinx Virtex-II
FPGAs using HandelC”, Technical Report 03-2004,
University of Erlangen-Nuremberg, Erlangen, Germany,
November 2004.

[10] A. E. Sjogren and C. J. Myers, “Interfacing Synchronous and
Asynchronous Modules Within a High-Speed Pipeline” in
Proc.ISSS98, Hsinchu, Taiwan, December 2-4,1998, pp.573-
583.

clk
rst

Data_In

Motif_start

Data_rdy

Imag_start

Data_OutProcessing

Unit
16

32

©2007 EURASIP 845

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

