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ABSTRACT

An efficient turbo decoder must access memory in parallel
and with two different access patterns. It is shown that the
problem of accessing memory both with sequential and in-
terleaved access patterns is analogous to the graph color-
ing problem. The derivation proves that the obtained graph
is bipartite and, therefore, only two memory banks are re-
quired in theory. For practical implementations, a system
with four memory modules and a buffer is proposed. It is
shown that modest buffer length is sufficient for 3GPP stan-
dard interleavers. There is no performance degradation in
the proposed system and the address generation and memory
interfaces are of modest complexity.

1. INTRODUCTION

Turbo codes [1] are applied in 3G telecommunication sys-
tems [2, 3] and, therefore, there is strong demand for efficient
and economical implementations. Especially the memory re-
quirements of turbo decoders are high due to the long block
lengths. In addition, rapid decoding requires dual access to
the memory. An obvious solution of applying dual port mem-
ory is uneconomical as it takes more chip area than a memory
split into parallel accessible banks. Avoiding even single ac-
cess conflict is crucial, since a conflict would require more
complicated control logic capable of interrupting the decod-
ing process. Parallel memory access of a turbo decoder is
of high importance as indicated by two patent applications
[4,5].

In [6] and [4] a conflict free access scheme is developed.
The methods are based on address generation and bank selec-
tion functions, which are derived from the interleaving pat-
terns of the 3GPP standard. Both methods require six mem-
ory banks for conflict free accesses. In [6] also a structure
with four memory banks is presented. With four banks only
few access conflicts are present. As a drawback, the struc-
tures are specific to only one class of interleaver as there is
a close connection of the interleaving patterns and bank se-
lection. For the same reason, the structures depend on the
additional information provided by the interleaver.

In [7] a conflict free mapping is derived with an itera-
tive annealing procedure. The native block length of the al-
gorithm is product of the number of parallel component de-
coders and the number of memory banks. Even if the re-
configuration is mandatory for varying interleaving patterns,
no hardware implementation is presented for the annealing
procedure.

In [8] graph coloring is used to find mappings. It uses
more memory modules than [7], but a hardware architec-
ture for the reconfiguration is presented. The reconfigura-
tion takes O(10K) clock cycles for K length code block [8].
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For comparison, one conflict would take one additional clock
cycle. Therefore, it can be more advantageous to suffer all
the conflicts instead of reconfiguration in some cases. In ad-
dition, the address computations in [8] require division and
modulus computations which are difficult to implement on
hardware when the block length is not a power of two.

A different approach is applied in [9, 10,5] where buffers
are applied instead of deriving conflict free address genera-
tion and bank selection functions. In [9, 10, 5] high-speed
decoding with several write accesses is assumed. For each
writer there is one memory bank and for each bank there
is a dedicated buffer. In [10] the buffered approach is de-
veloped further and the memories are organized in ring or
chordal ring structures. The work is continued in [11] where
a packet switched network-on-chip is applied and several net-
work topologies are presented. To reduce sizes of queue
buffers and to prevent overflows the network flow control is
applied.

In this paper, an important result for parallel memory ac-
cesses in turbo decoders is derived as it is shown that the
memory can be split into two banks to maintain conflict free
accesses. The derivation is based on a graph coloring formu-
lation and on construction of the graph that is to be colored.
The result can be applied with systems relying on constant
interleaving patterns. For systems applying varying inter-
leaving patterns a practical memory structure with four banks
is proposed. The developed structure applies trivial address
generation and bank selection functions. Instead of resolv-
ing all the conflicts, the developed structure applies buffer-
ing to maintain uninterrupted memory accesses. It is shown
that only modest buffer length is sufficient for 3GPP turbo
codes. Contrary to previous buffered parallel access meth-
ods [9,10, 5] our method relies on the asymmetric through-
put rates of turbo decoder side and memory subsystem side.
Instead of one memory bank per access, we apply a total
of four banks to guarantee dual access with modest buffer
length. Furthermore, instead of dedicated buffers, we apply
a centralized buffer to balance buffer length requirements,
which leads to even shorter buffer length. The results show
that the proposed method outperforms [6] and [4] in terms
of required number of memory banks. We also show the ad-
vantage of asymmetric throughput rates in comparison with
equal number of parallel accesses and memory banks.

2. PROBLEM DESCRIPTION

In principle, the turbo decoder exploits a soft in soft out com-
ponent decoder in an iterative process where extrinsic infor-
mation generated on the previous half iteration is fed to the
next half iteration. In practical implementation the data can
reside always in sequential order in the memory and no de-
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Figure 1: In graph presentation the connected vertices are
accessed in parallel. (a) Sequential access pattern. (b) In-
terleaved access pattern. (c) Combined sequential and inter-
leaved access patterns. The graph is colored with two colors.

interleaving is required. During the first half decoding itera-
tion, it is both read and written in parallel with a sequential
access pattern. During the second half iteration, it is both
read and written in parallel with an interleaved access pat-
tern. Thus, the order remains unchanged and de-interleaving
is implicit. Avoiding explicit de-interleaving is important
due to the high implementation complexity of de-interleaving
functions. Between the read and write operations there is a
constant distance proportional to the applied window length
in sliding window algorithm [12]. The addresses, to which
data is written, are not read during the same half iteration.
Naturally, two parallel read and write operations (a total of
four operations) can be substituted with two parallel read op-
erations followed by two parallel write operations. So, the
access scheme must provide such a mapping from addresses
to parallel accessible memory banks that conflicts can be
avoided or, alternatively, performance degradation due to the
conflicts is avoided.

3. MEMORY ACCESS AS GRAPH COLORING
PROBLEM

It is assumed that the distance between parallel read and
write operations is one address unit. In practice, this is
the same condition as if parallel read operations of adja-
cent addresses were followed by parallel write operations
of adjacent addresses with arbitrary distance between read
and write operations. Thus, a sequential access pattern i =
0,1,2,3,...,K — 1 has parallel access set consisting of pairs
0,1),(2,3),...,(K—2,K — 1) with even block length K.

The memory access pattern is presented in a graph form
so that each accessed location, i.e., original address, is de-
noted with a vertex of graph. When two addresses are ac-
cessed in parallel there is an edge between them in the graph.
For the sequential parallel access set (0,1),(2,3),(4,5),(6),
such a graph is shown in Figure 1(a). Since the block
length, K, is odd, there is one unconnected vertex. With
interleaving m; = 1,4,0,5,2,6,3 and parallel access set
(1,4),(0,5),(2,6),(3), a similar graph is shown in Fig-
ure[1(b).
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The graph coloring problem involves mapping colors to
vertices of graphs in such a way that adjacent vertices, i.e.,
vertices connected with edges, do not have the same color.
For graphs in Figure[I(a) and (b) such coloring can be found
easily, since each vertex has at maximum one adjacent ver-
tex. A combined graph in Figure[1(c) presents the both the
sequential and interleaved access patterns. In addition, a col-
oring of vertices is marked in Figure[1(c). Thus, if the col-
ors represent memory banks, both sequential and interleaved
access patterns are possible, since adjacent vertices, i.e., ver-
tices which are accessed in parallel, have different colors.

A bipartite graph is a graph whose vertices can be parti-
tioned into two disjoint sets such that no vertices in the same
set are adjacent. A graph is bipartite if and only if it is a
two-colorable graph. Especially, all trees are bipartite and a
graph is bipartite if and only if all its cycles are of even length
[13]. Thus, to prove that two memory banks are enough for
conflict-free sequential and interleaved memory access pat-
terns it is sufficient to show that the combined graph of both
access patterns cannot have cycles of odd length.

The proof is based on building the combined graph, G¢.
We initialize it with the graph of the sequential access pat-
tern, Gc = Gy, and insert edges of the interleaved access
pattern graph, G, to G¢ one by one. No vertices need to
be inserted since both graphs contain the same vertices. The
degree of vertex dy(v) gives the number of edges connected
with v in graph G,, g € {S,7,C}. In the combined graph it
is always less than or equal to sum of degrees in both graphs,
ie., do(v) <ds(v) +dg(v) < 2. If the block length is odd
Gy includes an unconnected vertex u, ds(u) = 0. If it is con-
nected vertex in G, then d¢(u) = 1. If it is unconnected also
in G then dc(u) = 0. Thus, de(u) < 1.

In the beginning, there are no cycles in G¢ and the length
of all the paths equals one, i.e., paths have odd length. Arbi-
trary edges, e, from Gy are inserted to G¢, which can modify
Gc in some of the following ways:

1. e connects two odd length paths, so the length of the new
path is odd.

2. e connects an odd length path to the unconnected vertex,
u. This results in an even length path, p, . Since there
can be at maximum one u, there can be only one even
length path.

3. e connects the even length path, p, ;, to an odd length
path, which lengthens the even length path, p, ;, to
Pu,j+1-

4. e connects two ends of the odd length path which results
in even length cycle.

There are three more clarifying observations:

1. e cannot be connected to any vertex, v,,, in the middle of
any path. Otherwise d¢(vy,) > 2, which is a contradic-
tion.

2. e cannot connect two ends of the even path and result
in odd cycle. One end of the even path is always u and
dc(u) < 1. So, u cannot be included in any cycle.

3. if e is included already in G¢, the previous state remains
unchanged.

Thus, all the cycles in the combined graph, G¢, have even
length and, therefore, the graph is bipartite and it can be col-
ored with two colors. So, there exists a conflict-free memory
bank mapping for sequential and interleaved access patterns
and only two banks are required. Even if the graph coloring
can be too complex to be computed on the fly, the existence
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Figure 2: High-level description of the proposed memory
structure with buffered write operations.

of a two bank solution is important for any system applying
long block length and a constant interleaving pattern.

4. BALANCING CONFLICTS WITH BUFFERED
WRITES

In the 3GPP standard, different interleaving patterns are
specified for all the block lengths K = 40,41,...,5114 and,
therefore, the memory bank mapping should be computed on
the fly instead of statically. Even if graph coloring results in
minimum number of memory banks, the computation takes
too many clock cycles. To meet practical demands of on the
fly mapping, a simpler memory bank mapping is required for
3GPP turbo decoders.

4.1 Structure

Instead of trying to solve all the conflicts with complex mem-
ory bank mapping and address generation like in [6,4, 7, 8],
our approach in this paper is to use a very simple memory
bank selection function and to maintain a constant through-
put on the component decoder side in spite of conflicting ac-
cesses on the memory bank side. In [6, 4], a total of six
memory banks are required for conflict free memory access.
In this study, only four banks are suggested. There will be
conflicts, but they do not interrupt the decoding and degrade
the performance.

The proposed method is based on buffering the conflict-
ing write accesses. A high-level block diagram is shown in
Figure[2 The bank selection function is a simple modulo op-
eration of the address and the number of banks. So, with four
banks, the bank selection and address generation are carried
out by simply hardwiring the bits to the new positions.

In principle the proposed system in Figure [2 gives the
highest priority for memory reads. They are always served to
allow continuous decoding. On the contrary, write operations
are inserted to the buffer. All the memory banks that do not
serve the read operation are free to serve write operations in
the buffer. The described functionality of the memory bank
interface is shown in Figure[3] The proposed buffer must be
able to be read and written in a random access manner and
in parallel by all the memory bank interfaces. Thus, it must
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process memory_interface (id) begin
if bank (read.addr) = id then
data-out := memory[ag(read-addr) ]
elif bank (abuff[0]) = id then
memory[ag(abuff[0])] := dbuff[0]
elif bank (abuff[l]) = id then
memory[ag(abuff[1])] := dbuff[l]
elif bank (abuff[N-1]) = id then
memory [ag(abuff [N-1])] := dbuff[N-1]
end
end

function bank (address) begin
return address mod 4

end

function ag(address) begin
return address >> 2

end

Figure 3: Functional description of the memory bank in-
terface. Buffer length is N. Data in buffer is referred with
dbuff [] and addresses with abuff [].

be implemented with registers. However, the length of the
buffer is modest as will be shown later on. The buffer length
is obtained by simulating the system with all the targeted in-
terleaver patterns and selecting the minimum buffer length
which does not cause an overflow.

4.2 Asymmetric Throughput Rates

The ability of the proposed method to perform without per-
formance degradation is based on the asymmetric throughput
rates and throughput capability between the decoder side and
memory bank side. The decoder produces memory accesses
at a constant rate, two accesses per clock cycle, i.e., one read
and one write operation. On the contrary, the memory sys-
tem is capable of maximum throughput directly proportional
to the number of banks. In [9], the average rate of accesses
per bank is one per clock cycle. In our approach, the average
rate of accesses per bank is less than one per clock cycle.

Buffered accesses are presented in [9, 10, 5], but there
are certain crucial differences. In the aforementioned stud-
ies only the write operations are considered. A decoder
with separate read memory for extrinsic information is tar-
geted. However, several parallel write operations are as-
sumed, which results in similar types of conflicting accesses
as in our problem statement. A more significant difference is
the ratio of memory banks to the number of parallel accesses.
In [9,/10, 5], there is only one memory bank per writer. In
addition, there is a dedicated buffer per memory.

The effect of the ratio of parallel accesses to the number
of banks is exemplified in Figure |4(a) where random dual
accesses are generated for systems with 2 to 6 memory banks
and the required buffer length is reported. When the access
rate is less than the capacity of memory subsystem, there are
free clock cycles, when the accesses can be emptied from
the buffer and the required buffer length does not increase
rapidly. On the contrary, if the access rate is higher than
memory throughput, the buffer fills continuously.

EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

16 2 banks Table 1:  Overflow free buffer length of the proposed
S 14t 3 banks —=— method with 3GPP interleaving patterns. Block length K =
g spames T 2557...5114.
5 20 6 banks —— |
= ol R/W distance | buffer length
= 32 10
Z 8 48 11
= 6l 64 15
E 96 10
w4 128 10
2 o
O 1 1 1 1
0 50 100 150 200 250 Table 2: Area costs (in gates) of the proposed memory bank-
a) number of dual accesses ing structures. Clock frequency =100 MHz.
z B 2 banks Word length 6 g 10 2
ED Zb;mkz e Buffer 1478.75 | 1622.75 | 1754.75 | 1888.75
8 20 ¢ Sbanks —— ] (length=10)
3 6 banks —— Memory 353.50 | 389.50 | 397.75 | 418.50
E st ] interface
=
g
g
E oot 1
%D read and write memories and after every half iteration, the
E 5¢ 1 roles of the banks are interchanged. The distance between
- read and write operations is varied in Table 1l The distance
2 ) ) ) ) depends on the window length and schedule of forward and
0 50 100 150 200 250 backward metric computations in the sliding window algo-
b) number of dual accesses rithm. The results in Table [1 indicate clearly that modest

Figure 4: Required buffer lengths with random access pat-
terns. (a) centralized shared buffer. (b) dedicated buffers.

4.3 Centralized Buffer

In principle, the buffer balances memory accesses. Balanc-
ing is targeted also with single shared buffer instead of ded-
icated buffers for each memory bank. If there are dedicated
buffers for memory banks their length must match the max-
imum requirement. However, the length of combined buffer
is less than sum of dedicated buffers. This is natural, since
only one buffer can be filled at a time if dedicated buffers are
used. In Figurel4(b), such dedicated buffers are assumed and
the sum of required buffer lengths of all the memory banks
is reported. When compared to the proposed method with a
single shared buffer in Figure [4(a) savings in buffer length
can be noticed. In Figure [4(a) and (b) several simulations
with random access patterns are run to obtain averages of the
maximum buffer lengths.

5. RESULTS

The proposed method is applied with interleaving patterns
of the 3GPP standard and the required buffer lengths are re-
ported in Table[1. The buffer length is the minimum required
buffer size to avoid the overflows with all the 3GPP inter-
leaver patterns with K = 2557,...,5114. For practical im-
plementation only block lengths greater than 2556 are in-
teresting. Since the maximum block length is 5114, it is
the amount of available memory in four banks. If the block
length is less than 2557, banks can be organized as dedicated
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buffer length in the range 10-15 is sufficient for the parallel
memory access of the 3GPP compliant turbo decoder.

In the end of a half iteration, there are no parallel read
accesses but only write accesses for the last samples and the
utilization of the buffer cannot increase. If the buffer is not
emptied during this phase, extra clock cycles are spent to
empty the buffer. The experimented cases in Table |1]do not
require such extra cycles, i.e., the buffer is empty when the
decoder issues the last write operation.

The area costs of the proposed structure for parallel mem-
ory access are shown in Table 2l The costs of the buffer and
memory interface are separated. For four memory banks,
four interfaces are required. The word length is varied in
Table |2/ but the address width is constant 13 bits, since the
maximum block length is 5114 in 3GPP systems. The com-
plexity of memory interface is relatively low, since it does not
require complex arithmetics and the buffer length is short.

6. CONCLUSIONS

In this study, efficient parallel memory access for turbo de-
coders was addressed. With the aid of a graph coloring for-
mulation it was shown that, in theory, only two memory
banks are required to enable parallel sequential or interleaved
access patterns. For practical 3GPP compliant implementa-
tions, in which interleaving patterns are not statically known,
a structure with four memory banks was proposed. In com-
parison to existing methods the main differences in our ap-
proach are the number of banks, ratio of number of banks to
parallel accesses, and sharing of the buffer. Analysis of these
differences shows advantages of low complexity and ability
to maintain uninterrupted decoding without extra delay.
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