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ABSTRACT lution, local and directional image expansion using contou
We present a new rate-distortion optimization algorithmsegments. However, the countourlet decomposition has the
based on graph-cuts that can encode efficiently the coeffadverse property of showing other types of artifacts.
cients of a critically sampled or even redundant non orthog-  In this paper we present a rate-distortion optimization
onal transform. The basic idea is to construct a specializednethod based on graph cuts, which can compress efficiently
graph such that its minimum cut minimizes an energy functhe coefficients of a spatial transform. As described in
tional. We propose to use the graph-cut mechanism for thE’, 8, 9], problems that arise in computer vision can be nat-
minimization of the rate-distortion Lagrangian functiofio  urally expressed in terms of energy minimization. Each of
this aim, we have designed a graph able to represent the déhese methods consists in modelling a graph for an energy
composition subbands and take into consideration their cortype, such that the minimum cut minimizes globally or lo-
relations in a biorthogonal multiresolution representati ~ cally that functional. Usually, these graph constructiares
The method yields good compression results compared to tif¢nse and complex, designing the energy function at pixel
state-of-art JPEG2000 codec, as well as a general improvelevel. For example, in [10, 11] the graph cut provides a

ment in visual quality. clean, flexible formulation for image segmentation. With
a 4-connected grid design, the graph provides a convenient
1. INTRODUCTION manner to represent simple local segmentation decisiahs an

. ) o provides a set of powerful computational mechanisms to ex-

The compression of natural images is still a challenge fer thiract global segmentation from these simple local (paivis
research and industry. Indeed, the geometric features-of iNbixel similarities. Good graph-cut based energy optimiza-
ages, such as edges, characterized by abrupt changeslin piggn results have been obtained in image restoration [112, 13
intensity, are difficult to represent. The wavelet_transfhras as well as in stereo [14], motion segmentation [15], texture
been succesfully used for image representation [1], due tgynthesis in image and video [16, 17] etc. We propose to
its energy compaction capacities and compression effizieng,se the graph-cut mechanism for the minimization of the
[2]. The drawback of wavelets is the orientation selegtivit yate-distortion Lagrangian function. To this aim, we have
because they provide local frequency representation of iMyesigned a specialized graph able to represent the decom-
age regions over a range of spatial scales, and therefese, thyosition subbands and take into consideration their errel
do not represent two-dimensional singularities effe¢five  tions in a biorthogonal multiresolution representatiorhe T

In order to solve this problem, several families of geo-| agrangian functional was discretized such that it sums the
metrical wavelets able to represent the sharp transitions icontribution of each subband in terms of rate and the distor-
images have been proposed. It has been shown in [3] thgbn is computed as the direct as well as the cross-coroelati
ridgelet representations solve the problem of sparse approjmpact of quantization. Moreover, the graph model is planar
imation of smooth objects with straight edges. In [4], an at{18] and the energy function we optimize is convex, so the
tempt has been made for ridgelet image compression. Howninimum graph cut can be found in polynomial time. As it
ever, in image processing, edges are typically curved rathgs shown by the experimental results, the method gives good
than straight and ridgelets alone cannot yield efficient repcompression results compared to the state-of-art JPEG2000
resentation. But, if one uses a sufficient fine scale t0 Capsodec, as well as a general improvement in visual quality.
ture curved edges, such contours get almost straight,-there  Thjs paper is organised as follows: Section 2 describes
fore ridgelets are deployed in a localized manner. In consgne graph-cut rate-distortion algorithm used for the cgdin
quence the curvelet transform [5] has been introduced. Howrhe “interest of contourlets for image compression is pre-
ever, for discrete images sampled on a rectangular grid, thesnted in Section 3. Some experimental results are presente

discrete implementation of the curvelet transform is veryin section 4. Finally, conclusions and future work direatio
challenging. Therefore a new method was introduced: thgre given in Section 5.

contourlet transform [6]; initially described in the diste-

domain, the authors proved its convergence to an expansion 2 GRAPH-CUT RATE-DISTORTION

in the continuous-domain. Thus, a discrete-domain mstire LAGRANGIAN OPTIMIZATION

olution and multidirectional expansion is constructedthie

same way as wavelets are derived from filter banks, but usAs mentioned in the introduction, the max-flow/min-cut al-
ing non-separable ones. Due to the fast-iterated filter bangorithm has been successfully used in computer vision for
algorithm, the construction results in a flexible multireso solving different energy minimization problems. In this pa
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per we propose to apply this technique for rate-distortian L equivalently estimated in the transform domain. However,
grangian optimization in subband image coding. for arbitrary transforms (biorthogonal, redundant, niorear
Generally, for agrapls = (V,E,W), whereV/EMW isthe  etc) this property does not hold any more. In the follow-
set of vertices/edges alid represents the edges weights (i.e.ing we focus on this more complicated case and show how
capacities) and which have two special vertices (termjnalsthe distortion can be approximated and then estimated in the
01,92 € V, agi — gz cut is defined as a partition of the vertices spatial domain, allowing us a graph modelling of the subband
in V into two disjoint set€; andQ, such thaig; € Q; and interactions. If in the reconstructed imageve highlight the
02 € Q2. The cost of the cut is given by the sum of weightscontribution of each subband,= T ,%, wherex; is the

w of all edges linkingQs to Qy, i.e: contribution of theit" subband, then we can also write the
image in a similar wayx = zilexi. However, here; is com-
C(Q1,Q) = > w(u,v) (1) pletely arbitrary. In the case of a linear basis, it may begom
ueQy,veQy, (Uv)€E X = Yk (X &) e, whereg, g are the analysis, respec-
tively synthesis elements of the biorthogonal basis. Then w

The minimum cut is found thus as the cut with minimal have:
cost. There are polynomial-time methods to solve the min- '
cut problem, notably the Ford-Fulkerson algorithm [19]. X
Now consider the grapB = (V, E,W) with positive edge D= (% —Xi)
weightsW, which have not only two, but a set of terminal i;
nodes,Q € V. A subset of edgeé&; € E is called amulti-
way cutif the terminal nodes are completely separated in the In a first approximation, we can consider only the diago-
induced graphs(&c) = (V,E — éc,W) and no proper sub- nal terms, i.e.:
set of é&c separates the terminals #&. If C is the cost of X 2
the multiway cut, then the multi-terminal min-cut problesn i D = Zl 1% — 5| (5)
equivalent to finding the minimum cost multiway cut. =
In[13], Y. Boykovet al. propose to find the minimal mul- which amounts at estimating the distortion between the con-
tiway cut by succesively finding the min-cut between eachribution to the image and to the quantized image only of
terminal and the rest of them. This approximation approackhe it" subband. This means we can reconstruct the image
guarantees a local minimization of the energy functioninith onjy from theit" subband coefficients (the others being set to
a close factor from the optimal solution for concave energie zer).
and gives a global minimization solution for convex func-  |n a second approximation, one can also consider “cross-
tionals. As the rate-distortion Lagrangian lies on a convexgrrelation” terms, i.e.:
decreasing curve (i.eD(R)), we propose to use in the fol-
lowing this method for its optimization. _ DD, + z z (% — X, X — Xir) (6)
Consider the problem of coding an image at a maximal SN0 e
rate Rmax with a minimal distortionD. Each image consists Biji
of a fixed number of coding unitx (e.g., in our case, the . i . .
contourlet spatial subbands), each of them coded with a dit¥hereN(i) is a neighborhood of, containing closely cor-
ferent quantizeg;, g € Q, whereQ is the quantizer set. Let related subbands. I_ndeed, given the limited support of the
Di(qi) be the distortion of subbaridvhen quantized witk;, wavelets, the closer in space are the subban_ds, the hlgher th
and letR (g) be the number of bits required for coding it. correlation. In practice, this nelghborhogd is degcrlbyd_b
The problem can now be formulated as: find jiD; (qj), the geomep(lcal position of the subbands ina multlresmh_Jtl
such thaty; R (Gj) = R < Rmax Cjecomposmor}, where only the vertical and horizontaldire
In the Lagrange-multiplier framework, this constrainedtions are considered. _ o
optimization problem can be written as the equivalent prob- 1 ne second term involves the highest complexity (inverse

2
=YY Gxg %) (@)

lem: transforms plus inner products between images), which can
X however be divided by two, noting thf y = Dy ; and there-

minz\(Di(qi)+/\Ri(Qi))7 RS Rmax (2) fore:
i= DgZDi_FZZ_Z_Di’i, @)

where the choice of measures the relative importance
of distortion, respectively rate for the optimization anidose For D;  we need to calculate the error between the im-

optimal value can be determined using a binary search. T : : ; ;
advantage of the problem formulation in Eq. (2) is that th2§ge reconstructed from tife subbandx) and its equivalent

o . recontructed from the quantizé®@ subband %), the same
sum and the minimum operator can be exchanged to: from a neighboring subband and then compute the inner

X product.
Zmin(Di (@) +AR(q)), R<Rnax (3) The minimization of the energy function defined above
i is equivalent to the best repartition of quantizers per sub-
) ) ) _ . bands. The graph we have designed for solving this prob-
This formulation obviously reveals that the global optietiz |em has as vertices the set of spatial subbands and the set of
tion can now be carried out independently for each spatiajuantizers as terminal nodes, where the subbands are linked

subband, making an efficientimplementation feasible.  following the neighborhood systent’. Each terminal node
The distortionD between the original image and the  is connected to all terminal nodes, considering all quantiz
quantized onex can be written as the“ norm, i.e. D= tion possibilities for the spatial subbands. (i®= (V,E),

|x—x||?. For orthonormal transforms, this norm can bewhereV = X UQ andE = Ey U Eq, En denoting the regular
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Figure 1: Contourlet decomposition with three levels (a) &mree-way graph-cut repartition (kds(partition in blue,qp
partition in greenz partition in red, where the regular edges are with full bléinks, terminal links in colors and the
cut-edges in gray dash-lines).

edges between subband vertices in the neighbourhood syseing the best quantizer repartition, because its cosecorr
tem ./ and Eq the terminal links between subband nodessponds to a minimal-cut over the constructed graph.

and quantizers). One can distinguish two connexion types:

En andEqg. We define the weights for the quantizers links

Eq in terms of the rate-distortion cost; so, the weight as- 3. APPLICATION TO CONTOURLET SUBBAND

sociated to the edge connecting subband quantizerg is IMAGE CODING
defined asixq :_Dx(q) + Rx(q). For aEn Ii_nk, the as.soci-. _ o
ated weight is given by the cross-correlation distortios,:i In [6, 20] a double filter bank approach for obtaining sparse
Wy x) = (% — i, % — X%y, i’ € A (i). Sothe function we want expansions for typical images with smooth contours is pro-
to minimize can be written as: Fosed. (Ij:or its constr#ctior], the Llap.le_xcianhpyrarr(ljiqﬂ[;il] is
irst used to capture the point sigularities, then a direetio
X X . y . . L. .
: o2 ; S Ty biorthogonal filter bank [22] is applied for linking the poin
mlni;(qu =Xl +)\R(I))+i;‘/ ZV X% =) discontinuities into linear structures. The result is ange
— “trer expansion using elementary images like contour segments,
Edata Esmooth named the contourlet transform or the pyramidal directiona
py

(8) filterbank (PDFB). Due to this cascade structure, multescal

Now we establish the correspondence between our gragind directional decomposition stages in the contourlestra
and the multiway cut. In Fig. lisillustrated an induced grap form are independent one of other. At each scale, one can
G(&c) = (V,E — &c) corresponding to a three-way ofit on  decompose into any arbitrary power of two number of direc-
G. One can remark that it should be exactly one terminations and the number of decomposition directions can vary
link to each subband node in the induced graph. There exist different scales (Fig.2). This feature makes contosidet
a fast approximation algorithm that can minimize our energynique transform that can achieve a high level of flexibility
functional [13]. Once the graph construction and the energin decomposition while being close to critically samplet. |
function to be minimized have been defined, the algorithntedundancy factor has an upper limit of3 which makes
starts with an initial (random) partitioninfy wheref is a set  the scheme more appropriate for compression than other geo-
of quantizers,f : Q — R, of the graph. For each quantizer metrical transforms. Another reason for which we have con-

q € Qfinds f as the quantizers repartition which minimizes sidered this scheme is that contourlets can be approximated
E(f'),ie. Fe minE(f'), amongf’ within onea-expansion with less coefficients than the wavelets; that is, for a con-

[13] of f, wheref’ denotes the possibilites of linking the ter- oUrlet basis, the approximation error for keeping onlylhe

minal nodeq to the planar nodes that are not linked to it in most significant coefficients is:
the initial f partitioning. This operation is repeated this un-

til E(f) no longer decreases. Thiiss efficiently found as | = fMeonounerl| = O((logM)*M ~2) )
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ml— " approximation same quantizer anfl € R* otherwise (wherg8’s magni-
Subband tude enforces or diminishes the smoothing). This assump-
_ tion is coherent, as for two strong correlated subbands the
. van D ional same quantizer is imposed. The results obtained for this ap-
Stbbands proach are denoted by “first-order distortion approxinatio
whereas the “cross-correlated distortion” means that e d

tortion model in Eq. (8) has been considered.
) As shown in Fig. 4, both the numerical and visual qual-
Image Diveational ity are improved; for the same coding rate (e.g. 0.1 bpp),
Subbands one can remark almost 1 dB improvement, even though our
method employs a redundant transform. Similar results are
also depicted in Fig. 3. Note that for rate estimation in the
Figure 2: Contourlet filter bank allocation algorithm we have used a simple (non-contextual
arithmetic coder [25], while JPEG2000 codec uses a highly
optimized contextual coder.
which is smaller than the one obtained on the wavelet basis:

5. CONCLUSION
| = fMyavered| = O(M 1), (10)

In this paper we have presented a graph-cut method for rate-
distortion optimization in image coding of not necessarily

tional filter bank with respect to classical wavelets terais t ©'thogonal decompositions. As shown by experimental re-

decrease on natural images when the number of coefficien?é'lts'. it can gfficien;ly encode the: contourlet coef_ficieitts
increases. low bitrates, improving both the visual and numerical qual-

ity. Moreover, the proposed method can be further used with
vector quantizers and the graph design could be developed to
4. EXPERIMENTAL RESULTS model the coding units at a finer level of representation.

For our simulations, we have considered two representa-
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(d)

Figure 4: “Circles” (512x512)image: (a) original, (b) JPEI®O compression at 0.1 bpp (PSNR=14.19 dB), (c) first-order
distortion graph-cut method at 0.1 bpp (PSNR=14.64 dB) ¢r{ds-correlation distortion graph-cut method at 0.1 bpp
(PSNR=15.13 dB).
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