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ABSTRACT
We present a new rate-distortion optimization algorithm
based on graph-cuts that can encode efficiently the coeffi-
cients of a critically sampled or even redundant non orthog-
onal transform. The basic idea is to construct a specialized
graph such that its minimum cut minimizes an energy func-
tional. We propose to use the graph-cut mechanism for the
minimization of the rate-distortion Lagrangian function.To
this aim, we have designed a graph able to represent the de-
composition subbands and take into consideration their cor-
relations in a biorthogonal multiresolution representation.
The method yields good compression results compared to the
state-of-art JPEG2000 codec, as well as a general improve-
ment in visual quality.

1. INTRODUCTION

The compression of natural images is still a challenge for the
research and industry. Indeed, the geometric features of im-
ages, such as edges, characterized by abrupt changes in pixel
intensity, are difficult to represent. The wavelet transform has
been succesfully used for image representation [1], due to
its energy compaction capacities and compression efficiency
[2]. The drawback of wavelets is the orientation selectivity
because they provide local frequency representation of im-
age regions over a range of spatial scales, and therefore, they
do not represent two-dimensional singularities effectively.

In order to solve this problem, several families of geo-
metrical wavelets able to represent the sharp transitions in
images have been proposed. It has been shown in [3] that
ridgelet representations solve the problem of sparse approx-
imation of smooth objects with straight edges. In [4], an at-
tempt has been made for ridgelet image compression. How-
ever, in image processing, edges are typically curved rather
than straight and ridgelets alone cannot yield efficient rep-
resentation. But, if one uses a sufficient fine scale to cap-
ture curved edges, such contours get almost straight, there-
fore ridgelets are deployed in a localized manner. In conse-
quence the curvelet transform [5] has been introduced. How-
ever, for discrete images sampled on a rectangular grid, the
discrete implementation of the curvelet transform is very
challenging. Therefore a new method was introduced: the
contourlet transform [6]; initially described in the discrete-
domain, the authors proved its convergence to an expansion
in the continuous-domain. Thus, a discrete-domain multires-
olution and multidirectional expansion is constructed, inthe
same way as wavelets are derived from filter banks, but us-
ing non-separable ones. Due to the fast-iterated filter bank
algorithm, the construction results in a flexible multireso-

lution, local and directional image expansion using contour
segments. However, the countourlet decomposition has the
adverse property of showing other types of artifacts.

In this paper we present a rate-distortion optimization
method based on graph cuts, which can compress efficiently
the coefficients of a spatial transform. As described in
[7, 8, 9], problems that arise in computer vision can be nat-
urally expressed in terms of energy minimization. Each of
these methods consists in modelling a graph for an energy
type, such that the minimum cut minimizes globally or lo-
cally that functional. Usually, these graph constructionsare
dense and complex, designing the energy function at pixel
level. For example, in [10, 11] the graph cut provides a
clean, flexible formulation for image segmentation. With
a 4-connected grid design, the graph provides a convenient
manner to represent simple local segmentation decisions and
provides a set of powerful computational mechanisms to ex-
tract global segmentation from these simple local (pairwise)
pixel similarities. Good graph-cut based energy optimiza-
tion results have been obtained in image restoration [12, 13],
as well as in stereo [14], motion segmentation [15], texture
synthesis in image and video [16, 17] etc. We propose to
use the graph-cut mechanism for the minimization of the
rate-distortion Lagrangian function. To this aim, we have
designed a specialized graph able to represent the decom-
position subbands and take into consideration their correla-
tions in a biorthogonal multiresolution representation. The
Lagrangian functional was discretized such that it sums the
contribution of each subband in terms of rate and the distor-
tion is computed as the direct as well as the cross-correlation
impact of quantization. Moreover, the graph model is planar
[18] and the energy function we optimize is convex, so the
minimum graph cut can be found in polynomial time. As it
is shown by the experimental results, the method gives good
compression results compared to the state-of-art JPEG2000
codec, as well as a general improvement in visual quality.

This paper is organised as follows: Section 2 describes
the graph-cut rate-distortion algorithm used for the coding.
The interest of contourlets for image compression is pre-
sented in Section 3. Some experimental results are presented
in Section 4. Finally, conclusions and future work directions
are given in Section 5.

2. GRAPH-CUT RATE-DISTORTION
LAGRANGIAN OPTIMIZATION

As mentioned in the introduction, the max-flow/min-cut al-
gorithm has been successfully used in computer vision for
solving different energy minimization problems. In this pa-

©2007 EURASIP 826

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



per we propose to apply this technique for rate-distortion La-
grangian optimization in subband image coding.

Generally, for a graphG= (V,E,W), whereV/E/W is the
set of vertices/edges andW represents the edges weights (i.e.
capacities) and which have two special vertices (terminals),
q1,q2∈V, aq1−q2 cut is defined as a partition of the vertices
in V into two disjoint setsQ1 andQ2 such thatq1 ∈ Q1 and
q2 ∈ Q2. The cost of the cut is given by the sum of weights
w of all edges linkingQ1 to Q2, i.e:

C(Q1,Q2) = ∑
u∈Q1,v∈Q2,(u,v)∈E

w(u,v) (1)

The minimum cut is found thus as the cut with minimal
cost. There are polynomial-time methods to solve the min-
cut problem, notably the Ford-Fulkerson algorithm [19].

Now consider the graphG= (V,E,W) with positive edge
weightsW, which have not only two, but a set of terminal
nodes,Q ∈ V. A subset of edgesEC ∈ E is called amulti-
way cutif the terminal nodes are completely separated in the
induced graphG(EC) = (V,E− EC,W) and no proper sub-
set ofEC separates the terminals inEC. If C is the cost of
the multiway cut, then the multi-terminal min-cut problem is
equivalent to finding the minimum cost multiway cut.

In [13], Y. Boykovet al. propose to find the minimal mul-
tiway cut by succesively finding the min-cut between each
terminal and the rest of them. This approximation approach
guarantees a local minimization of the energy function within
a close factor from the optimal solution for concave energies
and gives a global minimization solution for convex func-
tionals. As the rate-distortion Lagrangian lies on a convex
decreasing curve (i.e.D(R)), we propose to use in the fol-
lowing this method for its optimization.

Consider the problem of coding an image at a maximal
rateRmax with a minimal distortionD. Each image consists
of a fixed number of coding units,X (e.g., in our case, the
contourlet spatial subbands), each of them coded with a dif-
ferent quantizerqi , qi ∈Q, whereQ is the quantizer set. Let
Di(qi) be the distortion of subbandi when quantized withqi ,
and letRi(qi) be the number of bits required for coding it.
The problem can now be formulated as: find min∑i Di(qi),
such that∑i Ri(qi) = R≤ Rmax.

In the Lagrange-multiplier framework, this constrained
optimization problem can be written as the equivalent prob-
lem:

min
X

∑
i=1

(Di(qi)+λRi(qi)) , R≤ Rmax (2)

where the choice ofλ measures the relative importance
of distortion, respectively rate for the optimization and whose
optimal value can be determined using a binary search. The
advantage of the problem formulation in Eq. (2) is that the
sum and the minimum operator can be exchanged to:

X

∑
i=1

min(Di(qi)+λRi(qi)) , R≤ Rmax (3)

This formulation obviously reveals that the global optimiza-
tion can now be carried out independently for each spatial
subband, making an efficient implementation feasible.

The distortionD between the original imagex and the
quantized one,̂x can be written as theL2 norm, i.e. D =

‖x− x̂‖2. For orthonormal transforms, this norm can be

equivalently estimated in the transform domain. However,
for arbitrary transforms (biorthogonal, redundant, non-linear
etc.) this property does not hold any more. In the follow-
ing we focus on this more complicated case and show how
the distortion can be approximated and then estimated in the
spatial domain, allowing us a graph modelling of the subband
interactions. If in the reconstructed imagex̂ we highlight the
contribution of each subband,̂x = ∑X

i=1 x̂i , where x̂i is the
contribution of theith subband, then we can also write the
image in a similar way,x= ∑X

i=1xi . However, herexi is com-
pletely arbitrary. In the case of a linear basis, it may become
xi = ∑k

〈
x, ẽk,i

〉
ek,i , whereẽk,i , ek,i are the analysis, respec-

tively synthesis elements of the biorthogonal basis. Then we
have:

D =

∥∥∥∥∥
X

∑
i=1

(x̂i−xi)

∥∥∥∥∥

2

= ∑
i

∑
i′
〈x̂i−xi , x̂i′ −xi′〉 (4)

In a first approximation, we can consider only the diago-
nal terms, i.e.:

DI
∼=

X

∑
i=1

‖xi− x̂i‖
2 (5)

which amounts at estimating the distortion between the con-
tribution to the image and to the quantized image only of
the ith subband. This means we can reconstruct the image
only from theith subband coefficients (the others being set to
zero).

In a second approximation, one can also consider “cross-
correlation” terms, i.e.:

D∼= DI +∑
i

∑
i′∈N(i)

〈x̂i−xi , x̂i′ −xi′〉︸ ︷︷ ︸
Di,i′

(6)

whereN(i) is a neighborhood ofi, containing closely cor-
related subbands. Indeed, given the limited support of the
wavelets, the closer in space are the subbands, the higher the
correlation. In practice, this neighborhood is described by
the geometrical position of the subbands in a multiresolution
decomposition, where only the vertical and horizontal direc-
tions are considered.

The second term involves the highest complexity (inverse
transforms plus inner products between images), which can
however be divided by two, noting thatDi,i′ = Di′,i and there-
fore:

D∼= ∑
i

Di +2∑
i

∑
i′,i′>i

Di,i′ (7)

For Di,i′ we need to calculate the error between the im-
age reconstructed from theith subband (xi) and its equivalent
recontructed from the quantizedith subband (̂xi), the same
from a neighboring subbandi′ and then compute the inner
product.

The minimization of the energy function defined above
is equivalent to the best repartition of quantizers per sub-
bands. The graph we have designed for solving this prob-
lem has as vertices the set of spatial subbands and the set of
quantizers as terminal nodes, where the subbands are linked
following the neighborhood systemN . Each terminal node
is connected to all terminal nodes, considering all quantiza-
tion possibilities for the spatial subbands. (i.e.G = (V,E),
whereV = X∪Q andE = EN∪EQ, EN denoting the regular
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Figure 1: Contourlet decomposition with three levels (a) and three-way graph-cut repartition (b) (q1 partition in blue,q2
partition in green,q3 partition in red, where the regular edges are with full blacklines, terminal links in colors and the
cut-edges in gray dash-lines).

edges between subband vertices in the neighbourhood sys-
tem N and EQ the terminal links between subband nodes
and quantizers). One can distinguish two connexion types:
EN andEQ. We define the weights for the quantizers links
EQ in terms of the rate-distortion cost; so, the weight as-
sociated to the edge connecting subbandx to quantizerq is
defined aswx,q = Dx(q)+ Rx(q). For aEN link, the associ-
ated weight is given by the cross-correlation distortion, i.e.:
wxi ,xi′

= 〈x̂i−xi , x̂i′ −xi′〉, i′ ∈N (i). So the function we want
to minimize can be written as:

min
X

∑
i=1

(‖xi− x̂i‖
2 +λR(i))

︸ ︷︷ ︸
Edata

+
X

∑
i=1

∑
i′∈N (i)

〈x̂i−xi , x̂i′ −xi′〉

︸ ︷︷ ︸
Esmooth

(8)
Now we establish the correspondence between our graph

and the multiway cut. In Fig. 1 is illustrated an induced graph
G(EC) = (V,E−EC) corresponding to a three-way cutEC on
G. One can remark that it should be exactly one terminal
link to each subband node in the induced graph. There exists
a fast approximation algorithm that can minimize our energy
functional [13]. Once the graph construction and the energy
function to be minimized have been defined, the algorithm
starts with an initial (random) partitioningf , wheref is a set
of quantizers,f : Q→ R, of the graph. For each quantizer
q∈ Q finds f̂ as the quantizers repartition which minimizes
E( f ′), i.e. f̂ ←minE( f ′), amongf ′ within oneα-expansion
[13] of f , wheref ′ denotes the possibilites of linking the ter-
minal nodeq to the planar nodes that are not linked to it in
the initial f partitioning. This operation is repeated this un-
til E( f̂ ) no longer decreases. Thuŝf is efficiently found as

being the best quantizer repartition, because its cost corre-
sponds to a minimal-cut over the constructed graph.

3. APPLICATION TO CONTOURLET SUBBAND
IMAGE CODING

In [6, 20] a double filter bank approach for obtaining sparse
expansions for typical images with smooth contours is pro-
posed. For its construction, the Laplacian pyramid [21] is
first used to capture the point sigularities, then a directional
biorthogonal filter bank [22] is applied for linking the point
discontinuities into linear structures. The result is an image
expansion using elementary images like contour segments,
named the contourlet transform or the pyramidal directional
filterbank (PDFB). Due to this cascade structure, multiscale
and directional decomposition stages in the contourlet trans-
form are independent one of other. At each scale, one can
decompose into any arbitrary power of two number of direc-
tions and the number of decomposition directions can vary
at different scales (Fig.2). This feature makes contourlets a
unique transform that can achieve a high level of flexibility
in decomposition while being close to critically sampled. Its
redundancy factor has an upper limit of 4/3, which makes
the scheme more appropriate for compression than other geo-
metrical transforms. Another reason for which we have con-
sidered this scheme is that contourlets can be approximated
with less coefficients than the wavelets; that is, for a con-
tourlet basis, the approximation error for keeping only theM
most significant coefficients is:

∥∥ f − fMcontourlet

∥∥ = O((logM)3M−2) (9)
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Figure 2: Contourlet filter bank

which is smaller than the one obtained on the wavelet basis:
∥∥ f − fMwavelet

∥∥ = O(M−1). (10)

As shown in [23], the efficiency of the pyramidal direc-
tional filter bank with respect to classical wavelets tends to
decrease on natural images when the number of coefficients
increases.

4. EXPERIMENTAL RESULTS

For our simulations, we have considered two representa-
tive test images: “Circles” (512x512 pixels) and “Mandrill”
(512x512 pixels), which have been selected for the difficulty
to encode all their texture characteristics.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5
Mandrill

Bitrate (bpp)

P
S

N
R

 (
dB

)

 

 

GCC−First order distortion approximation
GCC−Cross−correlated distortion
JPEG2000

Figure 3: Rate-distortion comparison for Mandrill image

We have used dead-zone scalar quantization, withq ∈
{20, . . . ,210} and a 5-level contourlet decomposition, where
the coarsest three decomposition levels consists in a 9/7 sep-
arable wavelet transform (i.e. 3 directions) and the finest two
levels are represented with a 16 and respectively 32 bands
biorthogonal directional filter. The efficiency of this hybrid
scheme has been proved in [23] and in [24]. One can remark
that the algorithm can also be used with vector quantizers
and the coefficient space be further partitioned into blocks.
In a first approach, we have considered a fixed, quantizer de-
pendent, weighting function for the regular links (i.e. edges
between neighbour subband nodes). Thus, the cost of the
edge(u,v) ∈ E is 0 if the nodesu,v ∈ V are linked to the

same quantizer andβ ∈ R
+ otherwise (whereβ ’s magni-

tude enforces or diminishes the smoothing). This assump-
tion is coherent, as for two strong correlated subbands the
same quantizer is imposed. The results obtained for this ap-
proach are denoted by “first-order distortion approximation”,
whereas the “cross-correlated distortion” means that the dis-
tortion model in Eq. (8) has been considered.

As shown in Fig. 4, both the numerical and visual qual-
ity are improved; for the same coding rate (e.g. 0.1 bpp),
one can remark almost 1 dB improvement, even though our
method employs a redundant transform. Similar results are
also depicted in Fig. 3. Note that for rate estimation in the
allocation algorithm we have used a simple (non-contextual)
arithmetic coder [25], while JPEG2000 codec uses a highly
optimized contextual coder.

5. CONCLUSION

In this paper we have presented a graph-cut method for rate-
distortion optimization in image coding of not necessarily
orthogonal decompositions. As shown by experimental re-
sults, it can efficiently encode the contourlet coefficientsat
low bitrates, improving both the visual and numerical qual-
ity. Moreover, the proposed method can be further used with
vector quantizers and the graph design could be developed to
model the coding units at a finer level of representation.
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