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ABSTRACT
This paper describes an adaptive image compression scheme

built upon a conventional wavelet coder. The principle is to warp
the input signal so as to minimize its coding cost. First, the warp-
ing parameters are estimated through an analysis step. Then, the
warped image is sent to the basic coder. The warping parameters
are transmitted independently. Finally, a synthesis step reconstructs
the original image by inverse warping.

This approach of the adaptivity issue is different from previous
methods seeking to adapt the wavelet rather than the signal. Our
technique enables to take advantage of optimized wavelet coders
such as JPEG2000. Moreover, the minimization procedure does not
make any assumption about the regions of high coding cost. An im-
plementation of the principles is presented where the warping trans-
form is modelized by a regular 2D-Mesh. Compression results of
the Analysis-Synthesis (A-S) scheme show a significant visual qual-
ity improvement for non-texture images compared to JPEG2000.

1. INTRODUCTION

JPEG2000 [1] is a powerful coding scheme which led to highly
optimized and widely spread fast implementations. However, the
core of this latest compression norm is the 2D-separable Discrete
Wavelet Transform (DWT) which sub-optimality has been estab-
lished (see [2] for example). Indeed, the DWT takes advantage of
the correlations along the horizontal and vertical directions only,
but natural images include regularity curves of various shapes. This
work is particularly interested in improving the reconstruction qual-
ity of contours provided by JPEG2000. In other words, we want to
get rid of the ringing artefacts which impair the visual reconstruc-
tion quality of contours at low rates.

A great effort has been made through the past decade to find
new representation basis possessing directional properties. A first
class of approaches aims to project the image on a dictionary of
fixed anisotropic atoms, such as Contourlets [3]. But the redun-
dancy and the non-adaptivity of these techniques motivates the re-
search on new adaptive basis. Adaptivity can be looked for in a
variety of ways. We essentially distinguish between two kinds of
approaches. On the one hand, adaptivity can be obtained by ex-
tracting from the signal a relevant geometrical content beforehand.
Whether this extraction resorts on detection of contours [4] or reg-
ular curves [2], these techniques are based on geometrical a pri-
ori. This does not insure a fair modelization of energetical proper-
ties in the transform domain. On the other hand, recent approaches
proposed to express an energy in the transform domain as a func-
tion of adaptivity parameters. Minimizing this energy leads to op-
timal parameters in a certain sense. For this purpose, most tech-
niques [5, 6, 7] implement an exhaustive search. For complexity and
compacity concerns, this imposes to segment the image into blocks
and independently compute for each of these blocks a limited num-
ber of parameters. Hence, it leads to a discontinuous and low-level
adaptivity. Note that some techniques, like [2, 8], propose regular-
ization procedures to optimize the parameters in a Rate/Distorsion
(R/D) sense.

In this paper, we propose a new approach to the adaptivity issue.
Instead of modifying the core structure of a conventional wavelet
coder, we choose to warp the input image so as to adapt it to the

Figure 1: The A-S scheme. Analysis warps the input image so as to
adapt the resulting signal to any conventional wavelet coder.

coder. It can be argued that a similar purpose is pursued in [2]
and [4] on a Block basis. However this block-based processing re-
quires to modify the wavelet coder to insure a special treatment for
border cases. Also, the signal adaptation we propose is not based on
any geometric a priori but aims to minimize the coding cost of the
warped image. The next section describes our Analysis-Synthesis
(A-S) scheme with a particular focus on this energy formulation and
minimization considering any warping model. In the third section,
we present the specificities of an implementation with a 2D Mesh.
Different R/D improvements of the model are proposed. The last
section will present comparative compression results.

2. A-S SCHEME

2.1 Notations

Let us define a reversible transformation w that maps a position p̃
in a Domain D̃(⊂ Z2) - which we call the Warped Domain - to a
position p in the Image Domain D(⊂ Z2). Given w, the original
Image I and the Warped Image Ĩ are related as follows:

Ĩ(p̃) = I(w(p̃))⇔ I(p) = Ĩ(w−1(p))

With these notations, our proposed coding scheme is presented in
Fig. 1. It is composed of three blocks:
Analysis: estimates the parameters of w. This estimation follows
an energy formulation which aims to minimize the coding cost of Ĩ
in a conventional wavelet basis.
Codec: Ĩ is encoded and decoded using any conventional wavelet
coder. Parameters of w are coded and transmitted independently.
Synthesis: takes as inputs the decoded warping transformation
ŵ and warped image ˆ̃I and reconstructs the original image by
inverting the warping, i.e. Î = ˆ̃I(ŵ−1).

In this section, we will only assume w to be a parametric model
composed of a set of Np undefined parameters {pi}i=1..Np

. In the
next paragraph, we focus on the Analysis Step. The key issue of
this step is to express the coding cost of the Warped Image Ĩ as a
function of the parameters. Because geometrical features of natural
images strongly contributes to the coding cost of I, one can expect
the computed w to have some relation with the image geometry.
This will be supported by the analysis results provided in section 3.
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2.2 Analysis
2.2.1 Energy Formulation

Let ψ jn refer to a 2D discrete analysis Wavelet scaled with a factor
2− j ( j ∈ Z+) and translated to a position n ∈ Z2. The dot product
of Ĩ with ψ jn gives a wavelet coefficient c jn.

Considering the set of wavelet coefficients
{

c jn
}

j=0..J−1 for a
user-fixed J, we define the Coding Cost CCJ as:

CCJ =
J−1

∑
j=0

γ
2
j ·∑

n
c2

jn (1)

γ j is a weight which can be adjusted in relation to the prob-
ability law P(c jn) of the coefficients at the scale 2− j . This for-
mulation is particularly well fitted to Gaussian distributions in the
subbands. Indeed, if we assume P(c jn) to be a gaussian probability
law N (0,1/γ2

j ), then the Coding Cost of the transformed signal is
CCJ =−∑

J−1
j=0 log2(P(c jn)) which can be reduced as in Eq. (1).

To make the minimization of CCJ tractable, we need to express
it as a function of w. Now, an inverse wavelet transform gives:

Ĩ(p̃) =
jmax

∑
j=0

∑
n

c jn ·ψ∗jn(p̃) (2)

where ψ∗jn refers to the synthesis kernel corresponding to ψ jn,
and jmax to the greatest possible decomposition level of Ĩ.

The right part of Eq. (2) can be decomposed to yield:

j0−1

∑
j=0

∑
n

c jn ·ψ∗jn(p̃) = Ĩ(p̃)−
jmax

∑
j= j0

∑
n

c jn ·ψ∗jn(p̃) (3)

for any j0 ∈ [0, jmax].
As the signal ∑

jmax
j= j0 ∑n c jn ·ψ∗jn is the approximation of Ĩ ob-

tained by setting to 0 each coefficient c jn for j ∈ {0.. j0−1}, we
will refer to it as Ĩ j0 .

From Eq. (3), Parseval theorem gives:

j0−1

∑
j=0

∑
n

c2
jn = ∑

p̃

(Ĩ(p̃)− Ĩ j0(p̃))2

We then obtain the desired relation between CCJ and w:

CCJ(w) =
J

∑
j0=1

η j0 ·∑
p̃

(I(w(p̃))− Ĩ j0(p̃))2, (4)

with the new weights η j0 verifying the following relations:

γ
2
j =

J

∑
j0= j+1

η j0 ⇒
{

ηJ = γ2
J−1

η j0 = γ2
j0−1− γ2

j0

In practice, under the gaussian assumption, all the weights η j0
are positive. Indeed, for most natural images, the variance 1/γ2

j in
a subband j increases with j, which means γ2

j−1 > γ2
j ∀ j.

Because CCJ is now expressed as a function of w, we can search
for the set of parameters {pi}i which minimizes it.

2.2.2 The Minimization Algorithm

Each signal Ĩ j0 in Eq.(4) can be computed only after w and Ĩ have
been computed. For that reason, we decide to consider Ĩ as a new
variable in the minimization process, from which each Ĩ j0 can be
computed. Then, we formulate the minimization issue as a joint
optimization where the best couple (w, Ĩ) is looked for, subject to
the constraint: Ĩ = I(w(p̃)). We propose to solve this optimization

problem through an iterative Expectation Maximization-like
procedure. At each iteration, an estimate of w is updated given
the current observation of Ĩ. This Update-Warping process is
based on the minimization of Eq.(4). In return, Ĩ is refined given
the updated observation of w:

COMPUTE-WARPING(I)
1 n← 0,w← Id, Ĩ(0)← I // Initialization
2 while (n < nmax)
3 do n← n+1
4 w(n)← UPDATE-WARPING(I,w(n−1), Ĩ(n−1))
5 Ĩ(n) = I(w(n))
6 return w

From the previous algorithm, it is clear that the optimization
complexity is related to step 4. Knowing Ĩ(n−1), it is possible to
compute each current approximation Ĩ(n−1)

j0 and minimize Eq. (4)

taking w(n−1) as the initial guess for w(n).
Further, it is possible to simplify the energy to minimize. In-

deed, under the condition that ∑
J
j0=1 η j0 6= 0 (verified in practice by

the gaussian model), we can demonstrate that:

argmin
w(n)

CCJ(w(n)) = argmin
w(n)

∑
p̃

(I(w(n)(p̃))− Ĩ(n)
re f (p̃))2, (5)

with Ĩ(n)
re f (p̃) =

∑
J
j0=1 η j0 · Ĩ

(n−1)
j0 (p̃)

∑
J
j0=1 η j0

.

The problem expressed in the right hand side of Eq. (5) is the
minimization of a Displaced Frame Difference between Ĩ and a cur-
rent reference frame Ĩ(n)

re f . It is a well-known problem in the Video
Coding Community, where w does not refer to a spatial but a tem-
poral operator. A variety of solutions has been proposed, which
complexity depends on the chosen motion model. In the next sec-
tion, we will present the specificities of an implementation using an
active mesh as the model for w.

2.3 Synthesis

The synthesis step consists on inverting the warping carried out at
the end of the analysis step. Whatever warping model may be cho-
sen, the complexity of this processing remains very low and can be
performed in real-time by today’s processors. This low complex-
ity upgrade on the decoding side is very important for the clients in
applications such as Video Streaming or Broadcasting.

3. IMPLEMENTATION WITH A MESH

3.1 Warping Transform Modelization

Let us recall that the warping transform w is a coordinate mapping
between D̃ and D . If we modelize this transform with any active
mesh [9], two types of parameters must be taken into account: geo-
metric parameters, i.e. the positions of the nodes in D̃ and D , and
connectivity parameters, i.e. how these nodes are linked to one an-
other. All these parameters have a cost.

Here, we choose to work with a regular mesh so that no con-
nectivity parameter must be transmitted. Let {pi}i=1..Np

be the Np

positions of its nodes in D . In accordance with Fig. 2, each position
pi is arbitrarily mapped to a position p̃i in D̃ . We decide to place
the positions p̃i on a uniform grid of squares in D̃ . The positions
of the mesh in D̃ are completely known once the edge size Se of a
square is given. Eventually, the only warping parameters to transmit
are Se and the Np displacements from the uniform grid in D .
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Figure 2: Modelization of w with a quadrangular mesh.

Letting φ(p̃) refer to a 2D shape function defined in D̃ (e.g. the
bilinear function), the warping transform w is defined as follows:

w(p̃) =
Np

∑
i=1

φ(p̃− p̃i) ·pi (6)

Notice that all the tests presented in this paper were carried out
with a quadrangular mesh, as represented in Fig. 2.

3.2 Analysis applied to a Mesh

3.2.1 Estimation of Nodes Displacements in D

The computation of the positions {pi}i follows the algorithm de-
scribed in paragraph 2.2.2. As we said, the technical issue of this
algorithm is the update of w at each iteration. In this work, we
choose to implement this step using a gradient descent algorithm
(see [9] for details). The linearization of Eq. (5) gives a sparse lin-
ear system. The solution of this system is a set of displacements
for each position pi. Initially, the nodes are placed uniformly in
D so that pi = p̃i ∀i ∈

{
1, ..,Np

}
(i.e. w = Id). At each iteration,

the positions are updated globally by solving the linear system. Ex-
periments have shown that no significant displacement occurs after
10 to 15 iterations. In term of complexity, this procedure can be
compared to a motion estimation (with an active mesh) between a
current frame and a reference frame, with the reference frame being
updated at each iteration. The basic algorithm is greedy but can be
sped up in numerous ways, which is not the topic of this article.

3.2.2 Visual Results

Fig. 3 shows the outputs of the analysis step when applied to im-
ages Cameraman and Barbara 256×256 with Se = 4. For illustra-
tion convenience a deformation energy such as the one introduced
in [9] was added to the minimization process. This energy acts like
a spring force between each pair of nodes and forces the mesh not
to be overly deformed.
On the right, the estimated meshes in D are shown. We here re-
call that our energy formulation do not integrate any assumption
about the Image geometry. It is clear however that the computed
meshes do have some geometrical properties. Particularly, we no-
tice a significant concentration of nodes around contours, so that it
is possible to recognize the main geometric features of the images.
On the left, the warped Image Ĩ in D̃ is represented. Two main ob-
servations can be made. Firstly, we notice that the warping acts as a
magnifying mirror on discontinuities: contours are stretched in the
direction orthogonal to the regularity. This is a property we could
expect because stretching means smoothing and smooth discontinu-
ities can be represented with fewer wavelet coefficients. Secondly,
we observe that w has a tendency to produce ”stairs-like” shapes in
D̃ . This is particularly noticeable on the tripod in Cameraman but
can be observed by zooming on almost all contours. Again, this is
a result we could expect because conventional wavelets efficiently
represent horizontal and vertical regularity lines.

Figure 3: Analysis Results. [RIGHT] Mesh obtained in D , [LEFT]
The warped Image Ĩ in D̃ .

3.3 R/D Improvements
3.3.1 Limitation of Texture Distortion

As we work in a discrete setting, a non-isotropic transformation w,
as defined in Eq. (6), cannot comply with the reversibility assump-
tion due to the resampling implied. Indeed, such a transformation
authorizes non-reversible warpings, such as stretchings or contrac-
tions. Considering the properties of the estimated mesh, this non-
reversibility has a different visual impact on reconstructed contours
and reconstructed textures:
Contours: we noticed that w has a general tendency to stretch the
discontinuities. This means that the resolution is increased on these
areas when going from D to D̃ . After inverse warping, the loss
introduced has an impact on the MSE, but not visually.
Textures: textures are here considered as very fine features - like
the feathers on Lena’s hat or the checked materials in the image
Barbara - that cannot be extracted well by a mesh. Because these
regions sometimes have a significant gradient activity, they can pro-
voke displacements of nodes during the estimation process. Also,
these regions can be close to contours where the nodes have moved.
In those cases, the non-reversibility of the resampling has a bad im-
pact on the MSE and produces some smoothing on the reconstructed
texture areas. If the user has a precise knowledge of the original im-
age, the visual loss on textures can be disturbing. We now propose
a simple post-processing after analysis to limit this loss.

Let us denote by Inew the image obtained after inverting the
warping: Inew(p) = Ĩ(w−1(p̃)). Experiments have shown that the
image residue Ires = Inew− I has most of its energy in texture ar-
eas. The idea is to analyze Ires on a block basis in order to detect
the regions of highest variances. In a R/D sense, it can then be
preferable not to perform any warping in these regions: the nodes
are put back to their initial location on the uniform grid. More
precisely, let Bs denote a block of size s× s and Tvar a tolerance
threshold. Then, we compute the variance in each block Bs of Ires.
If this variance is greater than Tvar, the region is recognized as a
texture region. Tvar is an adjustment parameter which must be set
appropriately. We observed that Tvar ≈ 30 gives a fair separation of
textures and contours errors. Fig. 4(a) shows an estimated mesh on
Lena and Fig. 4(b) the result of the described post-processing tak-
ing Tvar = 36. We notice that most of the quadrangles covering the
feathers have been forced to squares, whereas contours remain well
extracted.
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(a) Original Mesh
4098 bytes

(b) Texture loss limitation
3848 bytes

(c) Precision reduction
3256 bytes

(d) Generated Quadtree
3187 bytes

Figure 4: R/D Post-processings on the mesh.

3.3.2 Mesh Entropy Reduction

The previous post-processing has a good side effect: forcing some
quadrangles to be squares increase the number of null displacements
and reduces the coding cost of the mesh. In this paragraph, we
propose another simple trick to reduce its cost while keeping its
geometrical properties. Indeed, the estimated mesh contains many
quadrangles which are very close in shape to their initial square.
In a R/D sense, it can be preferable to constrain these quadrangles
to be squares. More precisely, let {∆pi, i = 1..4} be the estimated
displacements of the 4 nodes of a quadrangle, and Tdisp a tolerance
threshold. Then, for each quadrangle, we compute the deforma-
tion criteria ∑

4
i=1 ‖∆pi‖2. If this criteria is lower than Tdisp, then

the quadrangle is forced back to its initial square. Fig. 4(c) shows
the result of applying this procedure after the texture loss reduction
process. Experiments have shown that Tdisp ≈ S2

e/10 was generally
a good compromise.

After performing the two previous processings, the set of sym-
bols representing the mesh includes a large number of zeros. Rather
than encoding all these zeros, we finally propose to represent and
encode the mesh as a quad-tree structure. The construction of this
quad-tree is an up-to-bottom procedure. The value of the root is
decided at the level of the mesh. If the mesh has at least one non-
square quadrangle, we set this value to 1. Then, a dyadic decom-
position of the nodes is made, and the decision process is repeated
on each of the 4 dyadic sets of quadrangles. Otherwise, we set this
value to 0 and end the process on the current branch. Fig. 4(d)
presents the quad-tree obtained with this procedure. Comparing the
cost of the quad-tree to the cost of the initial estimated mesh, we
notice a reduction of the coding cost of about 20%. This rate saving
is important because more bits can be used for the encoding of Ĩ.

The quad-tree representation has an important visual interpreta-
tion: it clearly delineates regions for which the analysis step brings
a gain from regions which are better encoded by JPEG2000 alone.
The notions of gain or quality are closely related to the values of
Tvar and Tdisp and can be left to the appreciation of the user. In the
extreme case that Tvar = 0 or Tdisp = ∞, the quad-tree is reduced
to its root (i.e. 1 bit) and the coding scheme reduces to JPEG2000.
This case is better suited to images only composed of textures. At
the other end of the range of possibilities, Tvar = ∞ or Tdisp = 0,
and the leaves of the quad-tree are the entire set of estimated dis-
placements {∆pi}i = 1..Np. This choice is particularly relevant for
cartoon images with no texture. Between those 2 extreme cases, the
user can choose to give more weight to contours or textures in the
visual quality of reconstructed images.

4. COMPRESSION RESULTS

4.1 Coding Parameters

The compression results presented here were obtained by applying
the A-S scheme on Lena, Barbara, Peppers and Airplane. All the
input images have a dimension of 512× 512. We used the same

coding parameters for all tests. For the analysis step, we set Se = 16
and J = 4. After analysis, the meshes were processed as described
in paragraph 3.3 setting Tvar = 36 and Tdisp = S2

e/10. Non-zeros
displacements were quantized with a half-pixel precision and the
set of quad-tree symbols was encoded using arithmetic coding. Ĩ
was encoded with JPEG2000 VM8.0 with its default parameters.

4.2 Quality Assessment
The non-reversibility of w was mentioned in paragraph 3.3.1 and
a method was proposed to limit the visual impact on textures. Al-
though this method enables to increase PSNR values, the goal of
the A-S scheme upgrade is clearly not to obtain high PSNR val-
ues because the loss on contours will always have a bad impact on
these values. However, all the experiments we carried out showed
that this loss on contours has no visual impact. Therefore, to assess
fairly the efficiency of our approach we will present two different
curves denoted Cu and Cnew. The first one is the usual PSNR curve
measuring the distortion between the decoded image Î and the orig-
inal image I . The second one measures the distortion between Î
and Inew (we recall that Inew(p) = I(w−1 ◦w(p))). We claim that
the second curve better fits the subjective visual quality at low to
medium rates. A similar evaluation strategy was proposed in [10]
in the context of scalable t+2D wavelet video coding. Let us notice
that the usual PSNR value of Inew with respect to I is about 44 dB
for every tested images and visually no distortion is perceivable.

4.3 Results
Fig. 5 shows the numerical compression results obtained with the A-
S scheme. The cost of the mesh is included in the curves. Values are
compared to those obtained with JPEG2000 alone. We also present
in Fig. 4 different zooms on reconstructed contours which illustrate
the visual gain provided by the A-S scheme compared to JPEG2000.
The same gain is noticed on most contours for the tested images.

Even though the A-S scheme is not expected to provide high
PSNR values, we observe that Cu remains very close to the
JPEG2000 curve for each image at all rates. This gives a good
indication that the visual quality of reconstructed textures is very
close in both cases. To assess the visual quality of reconstructed
contours at low to medium rates, we recommend to compare the
JPEG2000 curve with Cnew. The set of tested images covers a fair
range of possible natural content. In the case of Barbara, we do not
observe a significant gain of the A-S scheme. The reason is that the
image is a complex combination of geometrical objects and textures
which cannot be well described altogether by a mesh with Se ≈ 16.
A larger Tvar would better reconstruct textures, but at the price of
the visual gain on contours. In the case of Lena and Airplane, we
do observe a significant visual gain on contours as well as in the
overall quality of reconstructed images. This gain is well indicated
by Cnew at low rates. These two images are composed of one dom-
inant object surrounded by a reasonable amount of texture. The
contours of the object are finely extracted during the analysis and
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Original Image Original (zoom) JPEG2000 at 0.2 bpp A-S scheme at 0.2 bpp

subsequent post-processings do not alter this precision. Finally, the
results obtained for Peppers illustrate all the potential of the A-S
scheme. Indeed, Peppers is very like a cartoon image: it is com-
posed of geometrical objects and almost no texture appears. There-
fore, no conflict between geometry and textures occurs during the
estimation of the mesh or the post-processings, and contours can be
represented very finely with a small number of coefficients.

5. CONCLUSION

We have presented a new adaptive coding scheme built upon a con-
ventional wavelet coder. Adaptivity is not obtained by changing the
representation basis but by changing the input image. An analy-
sis step computes the warped version of the original image which
has the lowest coding cost. The warped image is then sent to the
wavelet coder. After reception of the decoded warped image, the
original image is reconstructed through a synthesis step. An im-
plementation of this scheme has been described where the warping
transformation is modelized by a regular quadrangular mesh. Dif-
ferent R/D improvements have been proposed. Compression results
have shown that the A-S scheme brings a significant gain in the
visual quality of reconstructed contours. The extension of the A-
S scheme to video coding is currently in development. For future
work, we wish to investigate the scalable properties of the new rep-
resentation. Also, replacing the wavelet coder by a DCT coder is
under study.
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