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ABSTRACT weighting matrices are calculated by deriving an exactesqr
In this paper we explore the possibility of using a weightingsion of the noise perturbation, and empirical studies show a
matrix to improve the accuracy of F-ESPRIT - a recently depromising performance.
veloped frequency estimation algorithm. In F-ESPRIT, the In the frequency estimation problem we are considering,
estimation is based on frequency domain data, and the aHata is modelled as a sum of vector valued damped complex
gorithm is developed to enable a frequency selective estimainusoids buried in additive noise
tion. The estimation is based on forming a data matrix which n
for i.i.d. measurement noise, is perturbed by a non-diagjona y(t) = Z Bre™t +v(t), (@)
noise matrix. Since F-ESPRIT is a subspace based algorithm, k=1

the non-diagonal perturbation matrix will for low Signal to whered, € C™ is the unknown complex gain, and. —

Noise Ratios (SNR) reduce the estimation accuracy. In thl;}}/k +iw, € C contains the dampingy, and frequency,

paper, we derive an exact expression for the perturbation mawk, parameters. The objective is to retriedg, 7 andw;

trix, and evaluate a weighting strategy for improving the-pe from a measured data se¢(t), ¢ — 0 N — 1}, which
formance. Empirical results show a large improvement in the_ perturbed by an i.i.d noiée procgééfs To m,ake the

low SNR case. model unique, the signal parameters are constraineg &s
(—m, 7], wr#w for k#1landB, #0.
1. INTRODUCTION AND PROBLEM The main focus will be on the estimation of the non-linear
FORMULATION \ix-parameters and, once the-parameters are estimated and

) o ] ) ] assumed known, thg, -parameters can be recovered using
Frequency estimation is a well studied topic due to its vasf,egr regression.

number of applications - it occurs in such different areas as
sonar and radar applications, speech analysis and MR speg
troscopy [1]. Consequently, a large number of estimators”
have been suggested, and subspace based estimators sucfit&ssignal model in (1) can be written in the form of a time
MUSIC [2], and ESPRIT [3] have been recognized to pro-domain state space modeg. a scheme in whicly(¢) recur-
vide very accurate estimates. In [4], a new frequency domaisively can be computed as

subspace algorithm was presented which enables a frequency

1. Timedomain State Space Model

x(t+1) = Ax(t), x(0)=x¢,

selective estimation. Such a feature can be useful to incor- )

porate prior knowledge regarding the location of the fregue y(t) = Cx(t) + v(t),

cies and to reduce the influence of unmodelled spectral dis-_. . -

turbances. The algorithm has been analyzedin [5, 6, 7] whe?ésmg the matrix definitions

it is referred to as F-ESPRIT - a label which we also will use A = diagle™ e ... M) e Cn 3)

here. Additionally, --ESPRIT has been evaluated emplyical C— omxn 4

in several applications.g, [8, 9]. 181 B2 Tﬁ”]i “)
The frequency selective property of the F-ESPRIT algo- X, =[11... 1" €R™ 5)

rithm.is achieved by deriving a parametric relation betweenl-he vectorx(t) is called the state vector, anl is the state
the signal parametgrs and a subset of the frequency domaiy ition matrix. The tripléA, C, x,, ) is called a state space
da’Fa, calqulateq using the Discrete Founer transfgrm IOFT e alization ofy(¢) and is not unique. By a change of variables
This relation will, for the case when the original signal eon x(t) = Tx(t), whereT is a non-singular matrix, a new state
tains white noise, be perturbed by a non-white noise proces§pace realization of (¢) is formed by the triple

In this paper we explore the possibility of including weight

ing matrices in the estimation of the signal parameters. The (A,C, %) 2 (T'AT,CT, T 'xy,). (6)
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Note that the state transition matrices for the differeatiza-  and when the number of block rows,is chosen larger than
tions, T~' AT, are similar matrices and hence share the same, the signal model ordef), is referred to as the extended
set of eigenvalues. From (3) we see that the eigenvalues observability matrix. Note that i > n the block Vander-
A are equal te*+, which implies that the\, parameters can monde structure o, and the constraints an in the prob-
be retrieved from the eigenvalues of the state transitiamixna lem formulation implies that the rank @9, is equal ton, the

regardless of the realization. number of complex sinusoids.
Utilizing the structure of the observability matrix, it is
1.2. Frequency Domain State Space M odel possible to compute the state-transition matrix using h-tec

nique known as shift-invariance estimation [10]. The name
The desired frequency selective feature is obtained byiranghift-invariance originates from the fact that the statesi-
forming the state space model in (2) to the frequency domaifion matrix is related to the observability matrix by constr
using the DFT. Let theV-point DFT of the state vector time  jng yp- and down shifted sub-matrices of the latter. An equa-

seriesx(t), fork =0,..., N — 1 be given by tion describing the relation is written as
N—-1
J,0.A = 1,0, (13)
xp =DFT{x(t)}x £ Y x(t)W", 7)
t=0 where

Ji = [I(s—l)m O(S—l)TTLX’HL]

—IF imi i
wherelWy = e/~ , and similarly define J, = [0(5—1)m><m I(s—l)'rn] .

yN 2 DFT{y(t)}r, v 2 DFT{v(t)}s. (8)  The retrieval ofA from (13) is possible if ranid, O;) = n,
_ _ . . _ which is guaranteed if is chosen as > n + 1. However,
The DFT of the time-shifted state vector is derived in [4] as in the presence of noise(t), the estimation accuracy isim-

proved by choosing larger tham: + 1, and a state transition
(9) matrixis determined as the least-squares solution of

min = [J10,A — 10,7, (14)

DFT{x(t + 1)}x = Whxl — (I - AM)x, , Wk
- JI\GIX;CV - BW]]\%

where
B2 (I-AY)x,. (10)  where, is the, from data, estimated extended observability
atrix. The state-transition matrix can also be determined
rom Equation (13) using the method of Total-Least-Squares

WhxN = AxY + BWE a1 [11].

A frequency domain representative model of (2) can now b
written as

N N N
=C . N
Yk Xk T Vi 2.2. Subspace Based Estimation
Note that if any modes in the state vector Argeriodic, then ) . o . .
the corresponding rows in tiié vector are zero. Itis easy to verify that ifO, is the observability matrix of the

realization(A, C,xy,), then the observability matrix corre-
sponding to the realizatiofA, C, x;, ) from (6) is given by

Z, = O,T. (15)

2. ESTIMATION ALGORITHM

In (11), we have derived a relation between frequency domain . o
data and the state transition mateix In this section we will ~ The refation above implies that the range spac# oéquals
see how state space theory and subspace based methods ®& of Os, and is a property of the signgl(¢), usually de-

be applied to estimate the signal parameters of interest fronoted the signal subspace. In this section we describe how a
frequency domain datg . subspace based approach can be used to find an estimate of

Zs.
First we phase shift the vectoys andvy, to construct a

2.1. Theaobservability matrix and itsshift-invarianceprop- relation to the observability matrix using (11)

erty

In linear systems theory, the observability matrix is used t Yi = Osxp + Toug + Vi, (16)

deduce whether a change in the state vector is observable,jjhere
the output signal. It is defined as

-~ T
. Yoo 2 [yf whyl wiiyE Wi (17)
o CA 12 w, & (Wh Wi w . owE]” (18)
s = . ) T
: s—1)k
Cae ' {vg WhvT w2kyT TR } . (19)
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and The last term in (29) is not a matrix proportional to the iden-
tity matrix, and will hence perturb the eigenvectors of

COB 0 O XTI X" O Therefore, the estimation accuracy can be
improved using pre-whitening techniques.
;2| CAB - (20) To derive an exact expression 16K VII* V7 | we start
: with the factorizatiolv. = GH, whereG andH are defined
CA*2B CA*3B --- CB 0 as
Using the phase shifted vectors in Equation (16), all DFT diag(vy; ) diag(vi,,)
data points can be related to the observability matrix. Con- W diag(vy, ) e W diag(vi,,)

sequently, we can focus the estimation on a frequency intefs = . . )
val by selecting a subset of the DFT data. Let the size of this ' :

ki(s—1) ;. kar(s—1) 5.
subset be denoted by, and we can form the matrix relation Wy diag(ve,) oo WY dlag(vké )0)
Y=0X+T,U+V, (21) and
1,
where 1,
. H = . : (31)
Y 2 (Y Yi, ... Yi,] (22) .
VAV, Vi, ... Vi (23) Lm
U2 [uy, w, ... wy (24) wherel,, is a column vector of length containing ones.
L M The G andH matrices can be written in a more condensed
X = [Xkl Xko « - XkM]- (25) form
) . = I.,)A
The second step is to remove the influence of Eh&J G=(Wel)Ap (32)
term, which can be accomplished using a projection matrix H=1y® 1,
IT* projecting onto the nullspace &f using the matrices
n-21-uvwuu)tu. (26) 1 1 1 1
k1 ko k
Post multiplyingY with IT+ results in W Wy Wy e WY
L_ 1 1 : : : ’
YH — OSXH + VH . (27) Wkl(sfl) sz(sfl) o Wkl\l(sfl)
N N N
Finally, we estimate a basis of the range spac®gfus- (33)
ing the Singular Value Decomposition (SVD) ®fII*- and  and
partitioning it as
R R diag(vy, )
L[5 5 X, 0 vi diag(vi,)
we-fao 2] [T g [V ] e - 2 7
whereZ, contains then principal left singular vectors and diag(v,, )
3, the corresponding singular values. By viewifig as an hich its in the followi ion &7 (34)
estimated observability matrix for some realizationydt), which results in the following expression
the shift-invariance techniques described in Equatiof¢a8 V = (W@ L) Ap(Ly ® 1,). (35)

be used to compute the corresponding state transitionxmatri
estlmate,A The 5|gnal parameters are then recovered fron:].he expected valub

{VHLVH} can now be written as
the eigenvalues oA.

E VHLVH =(WoL,)E{}l(W®I,, H 36
3. NOISE PERTURBATION MATRIX { } (WeLn)E{}(Wel,)", (36)
The SVD onYTI* basically implies an eigenvalue decompo- V€™

sition of YII (YII)” and the expected value of this matrix

is E{} :E{AD(IM®1,,,L)HL(IM®1,,L)HAg}

p{ymty"} = o xmx" o + g {virtvy | = E{ApIT* @ (1,17)A% } (37)
(29) = opAppe ® I,
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andApy. is a diagonal matrix whose diagonal elements are

identical to those idI™.
Finally, by combining (36) and (37) we end up with

E {VHLVH} =0o(W @ L) (A @ Ln)(W @ 1,)"

= 0'3 (WAHL WH) ® I7,L.
(38)

3.1. Noise matrix diagonalization

4. PERFORMANCE STUDY

To examine the performance of the weighting technique sev-
eral empirical studies have been conducted. In this section
we present one such study which well presents the typical be-
havior of using the regularized weighting matrix. The test
signal contains two undamped complex exponentials located
atw; = 0.20 andw, = 0.203. The data length isv = 256,

of which a total ofM/ = 51 frequency domain data located
betweenuv; = 0.1 andw, = 0.3 are used in the estimation.
The noise variance is varied betwegh= 1 ands? = 0.01,

To reduce the impact of the noise matrix, we seek to make @&nd for each setting the MSE of the different techniques is

proportional to the identity matrix it using a weighting mat
K~ satisfying

I - K_l(WAHLWH) ® I’mK_H; (39)

or identically

KK = (WAHLWH ) (40)

To obtainK, the SVD is used to compute the factorization

(WA W) @1, = Uy Sy U, (41)

which results in

— —1/2
K'=x,"?ul

(42)
K=Uy=}/ .

Finally, the SVD ofK ' YTII* is partitioned into a signal and
noise subspace

.0

K*lYni:[Z; z} O

n

} (43)

n

andKZ is taken as an estimate 6.

3.2. Regularized weighting matrix

estimated using 1000 Monte Carlo simulations. In Fig 1 the
noise free spectrum of the signal is presented, and in Fig. 2
the performance of F-ESPRIT is compared to that when a reg-
ularized weighting matrix wittx = 10~1° is employed. To
avoid confusion, only the estimate of is shown in Fig. 2.
However, the performance is similar for both frequencies. |
Fig. 2, also the Cramér Rao lower bound (CRLB) daris
displayed along with a curve denot&&r{w;} which cor-
responds to an analytical variance expression for F-ESPRIT
derived in [7]. As can be seen, using a regularized weight-
ing matrix can significantly improve the performance of F-
ESPRIT in the case of a low SNR.
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In many scenarios, especially when the number of time do- _ o
main data is high and the estimation is based on a narrow fré=g. 1: Frequency spectrum of the test signal containing two

quency interval, the matrié&WAHLWH) ®1I,, becomesiill-
conditioned. To improve the results WheW Ay« Wi

undamped complex exponentials with frequencies lo-
cated atv; = 0.20 andwy = 0.203.

I, is close to singular, the weighting matrix can be regular-

ized by adding a multiple of the identity matrix to tBey,
matrix, which results in the following weighting matrix pai

K.\ =(Sw+al) 2Uf,

(44)
K,y = U (Sw + al)'/2.

How to optimally choose the regularization parametés not

5. CONCLUSION

In this paper, we have derived a weighting matrix to improve

the accuracy of F-ESPRIT, an algorithm enabling a frequency
selective estimation of the parameters in a sinusoidal inode

From empirical studies the suggested algorithm shows aigrom

yet investigated, but has empirically been tuned to be of thang performance, especially in the low SNR case and when

order10—19,
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Fig. 2: Theoretical mean square error as a function of SNR
and an empirical evaluation based on 1000 Monte
Carlo simulations.
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sampled frequency interval.

6. REFERENCES

[1] P. Stoica, N. Sandgren, Y. Selén, L. Vanhamme, and
S. V. Huffel, “Frequency-domain method based on the
singular value decomposition for frequency-selective
NMR spectroscopy,Journal of Magnetic Resonance
vol. 165, pp. 80—88, Nov. 2003.

[2] R. O. Schmidt, “Multiple emitter location and signal pa-

rameter estimation,” ifProc. RADC Spectrum Estima-

tion WorkshopRome, NY, 1979.

[3] R. Roy and T. Kailath, “ESPRIT - estimation of signal

parameters via rotational invariance techniquésEE

[7] J. GunnarssonFrequency Selective ESPRIT: consis-
tency and performance analysiSothenburg, Sweden,
October 2004.

[8] T. McKelvey, T. Rylander, and M. Viberg, “Estimation
of damped and undamped sinusoids with application to
analysis of electromagnetic FDTD simulation data,” in
Preprints of the 13th IFAC Symposium on System Iden-

tification, Rotterdam, The Netherlands, August 2003.

[9] T. Rylander, T. McKelvey, and M. Viberg, “Estima-
tion of resonant frequencies and quality factors from
time domain computationsJournal of Computational
Physicsvol. 192, pp. 523-545, 2003.

S. Kung, “A new identification and model reduction
algorithm via singular value decomposition,” Rroc.

of 12th Asilomar Conference on Circuits, Systems and
ComputersPacific Grove, CA, 1978.

G. H. Golub and C. F. V. Loanyatrix Computations
2nd ed. Baltimore, Maryland: The Johns Hopkins Uni-
versity Press, 1989.

Transactions on Acoustics, Speech and Signal Process-

ing, vol. 37, no. 7, pp. 984-995, 1989.

[4] T. McKelvey and M. Viberg, “A robust frequency do-
main subspace algorithm for multi-componentharmonic
retrieval,” in Proc. of 35th Asilomar Conference on Sig-
nals, Systems and ComputegPscific Grove, CA, 2001.

[5] J. Gunnarsson and T. McKelvey, “Consistency analysis
of a frequency domain subspace algorithm for multi-
component harmonic retrieval,” iRroc. IEEE ICASSP
04, Montreal, Canada, May 2004.

[6] ——, “High SNR performance analysis of F-ESPRIT,”
in Proc. of 38th Asilomar Conference on Signals, Sys-
tems and ComputersPacific Grove, CA, November
2004.

©2007 EURASIP 787

EUSIPCO, Poznan 2007



	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

