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ABSTRACT
In this paper we explore the possibility of using a weighting
matrix to improve the accuracy of F-ESPRIT - a recently de-
veloped frequency estimation algorithm. In F-ESPRIT, the
estimation is based on frequency domain data, and the al-
gorithm is developed to enable a frequency selective estima-
tion. The estimation is based on forming a data matrix which
for i.i.d. measurement noise, is perturbed by a non-diagonal
noise matrix. Since F-ESPRIT is a subspace based algorithm,
the non-diagonal perturbation matrix will for low Signal to
Noise Ratios (SNR) reduce the estimation accuracy. In this
paper, we derive an exact expression for the perturbation ma-
trix, and evaluate a weighting strategy for improving the per-
formance. Empirical results show a large improvement in the
low SNR case.

1. INTRODUCTION AND PROBLEM
FORMULATION

Frequency estimation is a well studied topic due to its vast
number of applications - it occurs in such different areas as
sonar and radar applications, speech analysis and MR spec-
troscopy [1]. Consequently, a large number of estimators
have been suggested, and subspace based estimators such as
MUSIC [2], and ESPRIT [3] have been recognized to pro-
vide very accurate estimates. In [4], a new frequency domain
subspace algorithm was presented which enables a frequency
selective estimation. Such a feature can be useful to incor-
porate prior knowledge regarding the location of the frequen-
cies and to reduce the influence of unmodelled spectral dis-
turbances. The algorithm has been analyzed in [5, 6, 7] where
it is referred to as F-ESPRIT - a label which we also will use
here. Additionally, F-ESPRIT has been evaluated empirically
in several applicationse.g., [8, 9].

The frequency selective property of the F-ESPRIT algo-
rithm is achieved by deriving a parametric relation between
the signal parameters and a subset of the frequency domain
data, calculated using the Discrete Fourier transform (DFT).
This relation will, for the case when the original signal con-
tains white noise, be perturbed by a non-white noise process.
In this paper we explore the possibility of including weight-
ing matrices in the estimation of the signal parameters. The

weighting matrices are calculated by deriving an exact expres-
sion of the noise perturbation, and empirical studies show a
promising performance.

In the frequency estimation problem we are considering,
data is modelled as a sum of vector valued damped complex
sinusoids buried in additive noise

y(t) =

n
∑

k=1

βkeλkt + v(t), (1)

whereβk ∈ Cm is the unknown complex gain, andλk =
γk + iωk ∈ C contains the damping,γk, and frequency,
ωk, parameters. The objective is to retrieveβk, γk andωk

from a measured data set{y(t), t = 0, . . . , N − 1}, which
is perturbed by an i.i.d. noise processv(t). To make the
model unique, the signal parameters are constrained asωk ∈
(−π, π] , ωk 6= ωl for k 6= l andβk 6= 0.

The main focus will be on the estimation of the non-linear
λk-parameters and, once theλk-parameters are estimated and
assumed known, theβk-parameters can be recovered using
linear regression.

1.1. Time domain State Space Model

The signal model in (1) can be written in the form of a time
domain state space model,i.e. a scheme in whichy(t) recur-
sively can be computed as

x(t + 1) = Ax(t), x(0) = xt0

y(t) = Cx(t) + v(t),
(2)

using the matrix definitions

A = diag[eλ1 eλ2 . . . eλn ] ∈ C
n×n (3)

C = [β1 β2 . . . βn] ∈ C
m×n (4)

xt0 = [1 1 . . . 1]T ∈ R
n. (5)

The vectorx(t) is called the state vector, andA is the state
transition matrix. The triple(A,C,xt0) is called a state space
realization ofy(t) and is not unique. By a change of variables
x(t) = Tx̄(t), whereT is a non-singular matrix, a new state
space realization ofy(t) is formed by the triple

(Ā, C̄, x̄t0) , (T−1AT,CT,T−1xt0). (6)
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Note that the state transition matrices for the different realiza-
tions,T−1AT, are similar matrices and hence share the same
set of eigenvalues. From (3) we see that the eigenvalues of
A are equal toeλk , which implies that theλk parameters can
be retrieved from the eigenvalues of the state transition matrix
regardless of the realization.

1.2. Frequency Domain State Space Model

The desired frequency selective feature is obtained by trans-
forming the state space model in (2) to the frequency domain
using the DFT. Let theN -point DFT of the state vector time
series,x(t), for k = 0, . . . , N − 1 be given by

xN
k = DFT{x(t)}k ,

N−1
∑

t=0

x(t)W−kt
N , (7)

whereWN = ej 2π

N , and similarly define

yN
k , DFT{y(t)}k, vN

k , DFT{v(t)}k. (8)

The DFT of the time-shifted state vector is derived in [4] as

DFT{x(t + 1)}k = W k
NxN

k − (I − AN )xt0W
k
N

= W k
NxN

k − BW k
N ,

(9)

where
B , (I − AN )xt0 . (10)

A frequency domain representative model of (2) can now be
written as

W k
NxN

k = AxN
k + BW k

N

yN
k = CxN

k + vN
k .

(11)

Note that if any modes in the state vector areN -periodic, then
the corresponding rows in theB vector are zero.

2. ESTIMATION ALGORITHM

In (11), we have derived a relation between frequency domain
data and the state transition matrixA. In this section we will
see how state space theory and subspace based methods can
be applied to estimate the signal parameters of interest from
frequency domain data,yN

k .

2.1. The observability matrix and its shift-invariance prop-
erty

In linear systems theory, the observability matrix is used to
deduce whether a change in the state vector is observable in
the output signal. It is defined as

Os =











C

CA
...

CAs−1











, (12)

and when the number of block rows,s, is chosen larger than
n, the signal model order,Os is referred to as the extended
observability matrix. Note that ifs ≥ n the block Vander-
monde structure ofOs and the constraints onωk in the prob-
lem formulation implies that the rank ofOs is equal ton, the
number of complex sinusoids.

Utilizing the structure of the observability matrix, it is
possible to compute the state-transition matrix using a tech-
nique known as shift-invariance estimation [10]. The name
shift-invariance originates from the fact that the state transi-
tion matrix is related to the observability matrix by construct-
ing up- and down shifted sub-matrices of the latter. An equa-
tion describing the relation is written as

J1OsA = J2Os, (13)

where
J1 =

[

I(s−1)m 0(s−1)m×m

]

J2 =
[

0(s−1)m×m I(s−1)m

]

.

The retrieval ofA from (13) is possible if rank(J1Os) = n,
which is guaranteed ifs is chosen ass ≥ n + 1. However,
in the presence of noise,v(t), the estimation accuracy is im-
proved by choosings larger thann + 1, and a state transition
matrix is determined as the least-squares solution of

min
A

= ‖J1ÔsA − J2Ôs‖
2
F , (14)

whereÔs is the, from data, estimated extended observability
matrix. The state-transition matrix can also be determined
from Equation (13) using the method of Total-Least-Squares
[11].

2.2. Subspace Based Estimation

It is easy to verify that ifOs is the observability matrix of the
realization(A,C,xt0), then the observability matrix corre-
sponding to the realization(Ā, C̄, x̄t0) from (6) is given by

Zs = OsT. (15)

The relation above implies that the range space ofZs equals
that of Os, and is a property of the signaly(t), usually de-
noted the signal subspace. In this section we describe how a
subspace based approach can be used to find an estimate of
Zs.

First we phase shift the vectorsyk andvk to construct a
relation to the observability matrix using (11)

Yk = Osxk + Γsuk + Vk (16)

where

Yk ,

[

yT
k W k

NyT
k W 2k

N yT
k . . . W

(s−1)k
N yT

k

]T

(17)

uk ,
[

W k
N W 2k

N W 3k
N . . . W sk

N

]T
(18)

Vk ,

[

vT
k W k

NvT
k W 2k

N vT
k . . . W

(s−1)k
N vT

k

]T

, (19)
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and

Γs ,

















0

CB 0

CAB
. . .

. . .
. . .

...
. . .

CAs−2B CAs−3B · · · CB 0

















. (20)

Using the phase shifted vectors in Equation (16), all DFT
data points can be related to the observability matrix. Con-
sequently, we can focus the estimation on a frequency inter-
val by selecting a subset of the DFT data. Let the size of this
subset be denoted byM , and we can form the matrix relation

Y = OsX + ΓsU + V, (21)

where

Y , [Yk1
Yk2

. . . YkM
] (22)

V , [Vk1
Vk2

. . . VkM
] (23)

U , [uk1
uk2

. . . ukM
] (24)

X , [xk1
xk2

. . . xkM
]. (25)

The second step is to remove the influence of theΓsU

term, which can be accomplished using a projection matrix
Π⊥ projecting onto the nullspace ofU

Π⊥
, I − UH(UUH)−1U. (26)

Post multiplyingY with Π⊥ results in

YΠ⊥ = OsXΠ⊥ + VΠ⊥. (27)

Finally, we estimate a basis of the range space ofOs us-
ing the Singular Value Decomposition (SVD) ofYΠ⊥ and
partitioning it as

YΠ⊥ =
[

Ẑs Ẑn

]

[

Σ̂s 0

0 Σ̂n

] [

V̂H
s

V̂H
n

]

, (28)

whereẐs contains then principal left singular vectors and
Σ̂s the corresponding singular values. By viewingẐs as an
estimated observability matrix for some realization ofy(t),
the shift-invariance techniques described in Equation (13) can
be used to compute the corresponding state transition matrix

estimate,ˆ̄A. The signal parameters are then recovered from

the eigenvalues of̄̂A.

3. NOISE PERTURBATION MATRIX

The SVD onYΠ⊥ basically implies an eigenvalue decompo-
sition ofYΠ⊥(YΠ)H and the expected value of this matrix
is

E
{

YΠ⊥YH
}

= OsXΠ⊥XH
O

H
s + E

{

VΠ⊥VH
}

.

(29)

The last term in (29) is not a matrix proportional to the iden-
tity matrix, and will hence perturb the eigenvectors of
OsXΠ⊥XH

O
H
s . Therefore, the estimation accuracy can be

improved using pre-whitening techniques.

To derive an exact expression forE
{

VΠ⊥VH
}

we start

with the factorizationV = GH, whereG andH are defined
as

G =











diag(vk1
) · · · diag(vkM

)

W k1

N diag(vk1
) · · · W kM

N diag(vkM
)

...
...

W
k1(s−1)
N diag(vk1

) · · · W
kM (s−1)
N diag(vkM

)











,

(30)
and

H =











1m

1m

. . .
1m











, (31)

where1m is a column vector of lengthm containing ones.
TheG andH matrices can be written in a more condensed
form

G = (W ⊗ Im)ΛD

H = IM ⊗ 1m,
(32)

using the matrices

W =











1 1 1 1

W k1

N W k2

N · · · W kM

N
...

...
...

W
k1(s−1)
N W

k2(s−1)
N · · · W

kM (s−1)
N











,

(33)
and

ΛD =











diag(vk1
)

diag(vk2
)

. . .
diag(vkM

)











,

(34)
which results in the following expression forV

V = (W ⊗ Im)ΛD(IM ⊗ 1m). (35)

The expected valueE
{

VΠ⊥VH
}

can now be written as

E
{

VΠ⊥VH
}

= (W ⊗ Im)E {·}(W ⊗ Im)H , (36)

where

E {·} = E
{

ΛD(IM ⊗ 1m)Π⊥(IM ⊗ 1m)HΛH
D

}

= E
{

ΛDΠ⊥ ⊗ (1m1T
m)ΛH

D

}

= σ2
vΛΠ⊥ ⊗ Im,

(37)
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andΛΠ⊥ is a diagonal matrix whose diagonal elements are

identical to those inΠ⊥.
Finally, by combining (36) and (37) we end up with

E
{

VΠ⊥VH
}

= σ2
v(W ⊗ Im)(ΛΠ⊥ ⊗ Im)(W ⊗ Im)H

= σ2
v(WΛΠ⊥WH) ⊗ Im.

(38)

3.1. Noise matrix diagonalization

To reduce the impact of the noise matrix, we seek to make it
proportional to the identity matrix it using a weighting matrix
K−1 satisfying

I = K−1(WΛΠ⊥WH) ⊗ ImK−H , (39)

or identically

KKH = (WΛΠ⊥WH) ⊗ Im. (40)

To obtainK, the SVD is used to compute the factorization

(WΛΠ⊥WH) ⊗ Im = UW ΣW UH
W , (41)

which results in

K−1 = Σ
−1/2
W UH

W

K = UW Σ
1/2
W .

(42)

Finally, the SVD ofK−1YΠ⊥ is partitioned into a signal and
noise subspace

K−1YΠ⊥ =
[

Ẑ
′

s Ẑ
′

n

]

[

Σ̂
′

s 0

0 Σ̂
′

n

]

[

Ê
′H
s

Ê
′H
n

]

, (43)

andKẐ
′

s is taken as an estimate ofOs.

3.2. Regularized weighting matrix

In many scenarios, especially when the number of time do-
main data is high and the estimation is based on a narrow fre-
quency interval, the matrix(WΛΠ⊥WH)⊗Im becomes ill-
conditioned. To improve the results when(WΛΠ⊥WH) ⊗
Im is close to singular, the weighting matrix can be regular-
ized by adding a multiple of the identity matrix to theΣW

matrix, which results in the following weighting matrix pair

K−1
reg = (ΣW + αI)−1/2UH

W ,

Kreg = UW (ΣW + αI)1/2.
(44)

How to optimally choose the regularization parameterα is not
yet investigated, but has empirically been tuned to be of the
order10−10.

4. PERFORMANCE STUDY

To examine the performance of the weighting technique sev-
eral empirical studies have been conducted. In this section
we present one such study which well presents the typical be-
havior of using the regularized weighting matrix. The test
signal contains two undamped complex exponentials located
at ω1 = 0.20 andω2 = 0.203. The data length isN = 256,
of which a total ofM = 51 frequency domain data located
betweenωl = 0.1 andωu = 0.3 are used in the estimation.
The noise variance is varied betweenσ2

v = 1 andσ2
v = 0.01,

and for each setting the MSE of the different techniques is
estimated using 1000 Monte Carlo simulations. In Fig 1 the
noise free spectrum of the signal is presented, and in Fig. 2
the performance of F-ESPRIT is compared to that when a reg-
ularized weighting matrix withα = 10−10 is employed. To
avoid confusion, only the estimate ofω1 is shown in Fig. 2.
However, the performance is similar for both frequencies. In
Fig. 2, also the Cramér Rao lower bound (CRLB) forω1 is
displayed along with a curve denotedVar{ω1} which cor-
responds to an analytical variance expression for F-ESPRIT
derived in [7]. As can be seen, using a regularized weight-
ing matrix can significantly improve the performance of F-
ESPRIT in the case of a low SNR.
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Fig. 1: Frequency spectrum of the test signal containing two
undamped complex exponentials with frequencies lo-
cated atω1 = 0.20 andω2 = 0.203.

5. CONCLUSION

In this paper, we have derived a weighting matrix to improve
the accuracy of F-ESPRIT, an algorithm enabling a frequency
selective estimation of the parameters in a sinusoidal model.
From empirical studies the suggested algorithm shows a promis-
ing performance, especially in the low SNR case and when
the estimation is based on data from a narrow and densely
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Fig. 2: Theoretical mean square error as a function of SNR
and an empirical evaluation based on 1000 Monte
Carlo simulations.

sampled frequency interval.
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