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ABSTRACT
The need to repeat alignments on a pair of amino acid

residue sequences to select an appropriate scoring function
and detect a significance of score arises in genomics and pro-
teomics. While computing the alignments obtained through a
set of typical scoring matrices with the corresponding default
gap cost, we observe that many aligned segments are shared
with a reference global alignment. We show that parameters
extracted from the search for an alignment corresponding to
a good scoring system can be used to predict the deviation
of alignments computed with respect to different scoring ma-
trices. By training sample pairs of protein sequences from
SCOP 1.71 of the ASTRAL database, we build the approx-
imated probability distribution of distance from a node on
a reference path to the alignments based on other scoring
schemes with respect to the proposed parameters. We show
that the overall computational cost to perform alignments us-
ing ‘three’ scoring matrices and the proposed method can be
reduced to 11% of a normal Needleman-Wunch global align-
ment with an average 92% accuracy.

KEYWORDS: dynamic programming, heuristic search-
ing space, global sequence alignment, scoring matrices

1. INTRODUCTION

When investigating an unknown biological sequence from
a living organism looking for its origin, we usually seek
which previously identified sequences are similar. In gen-
eral, we perform a matching procedure based on Dynamic
Programming (DP) on the sequence of interest against
known sequences in a Database. The naive DP approach
is the Needleman-Wunch (NW)procedure, a global sequence
alignment where the entire sequence is involved in the align-
ment [1]. The problem of calculating an edit distance be-
tween two sequences is a simple version of NW. The cor-
responding sequence similarity could serve as evidence of
structural and functional conservation, as well as of evolu-
tionary link [2]. In particular, the outcome of the align-
ing procedure is highly affected by the scoring scheme we
selected. There are several scoring matrices such as BLO-
SUM, PAM, and Gonnet [3]. Suppose a scoring matrix you
select yields a certain alignment score for the pair of se-
quence. However, what would you say about this score if,
with the same scoring matrix, any randomly selected two
sequences return a score as large as the score? This prob-
lem is called the statistical significance of sequence align-
ment score. Once we model a probability distribution of an
alignment score assessed by its P-value [4], we can define
a cutoff score such that we can safely claim that any higher
score can be observed among truly highly closed sequences

by chance. The NW procedure must be updated in order
to find an application-dependent good scoring scheme that
yields a meaningful inference in the sense of biological sim-
ilarity. This is computationally very expensive.

High performance in computational biology has been ad-
dressed in depth. However, no prior work has highlighted
the relationship among result of alignments with respect to
the multiple scoring matrices and how different alignments
relate to each other. For example, a heuristic DP [7, 8, 9]
has a limitation because of high computational overhead with
on-line prediction of a threshold for promising entries. Gap
parametric alignment [11] is only defined for the dependency
of a gap model. Both approximate alignments [10] and sub-
optimal alignments [12] focus on providing a reliability of
an optimal alignment in O(N3) operations (N is a sequence
length), which is infeasible. Sparse DP [13] is not relaxed in
relatively remote homologue family of sequences.

We list out a notation used in this work to keep our dis-
cussion succinct in the following table.

SYMBOL MEANING
(M,N) (length(s1),length(s2))

Sk scoring matrix k
gO open gap cost in an affine gap model
gE gap extension cost in an affine gap model
qk alignment by a reference Sk
qk′ alignments by Sk′ other than Sk
ϒ searching space for {qk′} into DP mat.
η percentage identity
λ diagonal line from (0,0) to (M,N) in DP mat.
u index of qk’s path state
α distance from qk(τ) to λ
β max. distance from qk(τ) to qk′(τ)
ν searching band offset at qk(u)

φ ,ψ (conditional) probability distribution function

We select a reference scoring matrix and perform an align-
ment. From the reference alignment, we infer which pa-
rameter may control the similarity among those alignments
when we repeat the same job over multiple scoring matrices.
This inference is accomplished through a statistical model
from training a data set of pairs of alignments. Having pa-
rameters suggested by the statistical distribution, we design
a novel tighter searching space around the reference path in
a DP matrix. In section 2, we briefly review DP for sequence
alignment and then we define our problem. In section 3, our
novel work is detailed in off-line and on-line computational
step of alignments. Then, the performance of our proposed
algorithm is validated through experimental results in section
4. In section 5, we discuss a future work and limitation.
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Figure 1: Dynamic Programming with updated input config-
urations. Is qk′ is same as qk? If not, should we repeat Eq.1?

2. PROBLEM DEFINITION

Given two sequences s1[1 · · ·M]and s2[1 · · ·N] where M and
N corresponds to the length of each sequence and sx[i] is one
of the 20 amino acid residues (i.e., A, R, N,...,Y, V), a global
sequence alignment is defined as transforming one into the
other such that the similarity score is maximized with respect
to two scoring rules. The first is a scoring matrix that is de-
fined as a similarity between two residues in the evolution-
ary distance (i.e., BLOSUM50, BLOSUM62, PAM120, and
PAM240). The second is a gap model, helping create align-
ments that better conform to underlying biological models
as the model must specify how to weight gaps depending on
either single or consecutive mutations so as to reflect their bi-
ological meanings [9]. In our problem, we use an affine gap
model [15]. Let gO, gE , and Sk(s1[i],s2[ j]) be an opening gap,
an extension gap, and a similarity score between a residue
s1[i] and s2[ j] from a scoring matrix Sk respectively. For a
number of either single or consecutive gaps, j, the affine gap
model is defined as w j = gO + gE · j. The DP solution guar-
antees an optimal alignment which can be represented into a
sequence of states such as (mis)match, insertion, and deletion
by the following equations [17],

d(i, j) = max{d(i−1, j−1) +Sk(s1[i],s2[ j]),max
k≥1

{d(i, j−k)−wk}
(1)

,max
l≥1

{d(i−1, j)−wl}}

with a zero boundary condition of d(i,0) = −gO− i · gE and
d(0, j) = −gO− j · gE . In Eq.1, note that d(i, j) represents the
best score between two suffix s1[1 · · · i] and s2[1 · · · j].

Assuming that we obtain qk, say, a reference optimal
alignment of s1 and s2 with respect to Sk, we are asked to find
an updated alignment for the same pair of sequences, given a
different scoring matrix, say, Sk′ . This procedure can be sim-
plified as shown in Fig.1, when we look at s1, s2, Sk, and x%
(alignment confidence level) as input parameters and both qk
and its similarity score as outputs. In analogy to the scenario
of updated scoring matrix as an input, the authors investi-
gated how the previous optimal alignment can be updated
efficiently when we face with changes on multiple residues
of sequences [16].

In general, all we can do is to repeat the recursion over
all the searching space in a DP matrix for every Sk. In our
problem, however, we are curious to know how different a
new alignment, qk′ , would be from the previous alignment
qk and examine changes in the alignment score. Especially,
our primary objective is to design a new DP process box in

order to save a computational cost under the typical situation
of long sequences1 and multiple scoring matrices, instead of
starting from scratch, while controlling the trade-off between
the alignment quality and speed.

3. PROPOSED SEARCHING SPACE OVER
MULTIPLE SCORING SCHEMES

It is frequently observed that qk′s overlap with a large num-
ber of segments of qk. The evidence can be easily recog-
nized in Fig2. Not surprisingly, this observation is obvious
because all the scoring schemes have a common property
that large positive score are assigned to matched residues.
In other words, scoring matrices have a high correlation with
each other. As a consequence, the framework of our pro-
posed approach is built on a heuristic DP method to estimate
a searching bound after a reference alignment is established.
In general, this approach, called a pruning DP, gets rid of un-
promising nodes having sum of forward score with expected
backward score lower than a certain threshold such that the
node would unlikely be part of qk [8]. While computing qk′s,
however, a reasonable bound approximated from backward
score based on a geometry cost model cannot be found be-
cause the affine gap model leads inconsistency with the ac-
tual cost. Alternatively, when we consider using a backward
intermediary distance from qk instead of that of qk′ , we face
the problem of not only carrying O(NM) space memory but
also having a difficulty in selecting a threshold value for a
searching bound. Evaluating the updated sum distance to de-
sign a searching path is computational overhead.

Instead monitoring the updated forward distance, we
simply focus on qk in order to derive hints for a potential
‘static’ searching bound, ϒ. Note that we want to emphasize
the term, static, since the bound can be decided during the
calculation of qk.

3.1 Two Design Parameters (η ,αmax)
Assuming that we are allowed to perform a normal NW of
Eq.1 based on Sk, then we infer which information that can be
obtained from qk would be closely related to the deviation of
{qk′} from qk. Again, this information should be computable
from qk to avoid an overhead before starting to compute any
qk′ .

Here, we introduce two off-line parameters. First, we ob-
serve that the more matches show up in a pair alignment, the
more likely qk′ would traverse those highly conserved seg-
ments. Then, ϒ probably shrinks into a narrow band around
those segments. In order to describe this information, a per-
centage identity2is given to represent the degree of inherent
similarity between two sequences [14]. Let’s define this pa-
rameter as η . Second, if those highly matched segments
are spread out, forming a large set of suboptimal alignments
which is called as ‘a twilight zone’ in bioinformatics, then
η alone would not be perfect to predict a shape for ϒ. For
example, let λ be a diagonal line connected from (0,0) to
(M,N) in the DP matrix and define α as a perpendicular dis-
tance from qk to λ . Then, as qk holds a larger αmax, we fre-
quently observe that qk′s either sit farther from λ or sweep a
larger space around qk.

1The median length of the protein annotated among Eukaryotes and Bac-
teria is 361 and 267 respectively

2In our work, it defines as (num. of matched residues)·100/min{M,N}%
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3.2 Phase 1:Off-line building a probability distribution
model
Once we identify a parameter set (η ,αmax), our objective is
to design ϒ along with qk, based on probabilistic model of
alignments from a group of pairs having the similar param-
eter set. Accordingly, it is required to build the quantified
correlation between (η ,αmax) and its corresponding ϒ.

Let’s consider a node (r,c) on qk. Denote β (u = r + c)
as a maximum distance from the node on qk′ to qk. Param-
eter u is defined as a state index of qk and satisfies the in-
equality, 1 ≤ u = (r′ + c′) ≤ U ≤ (M + N). Here, U indi-
cates the length of qk. In Fig. 2, note that β+ is obtained
from an upper alignment and β− from a lower one. The per-
formance of computational cost will highly depend on how
close the searching offset we can predict is to these β ’s. Let
(ν+

u ,ν−u ) be a searching band offset at u on qk. Now, suppose
we are given a conditional probability distribution, ψk′(β |α)
for each S′k. If ν+ is greater than β+ and nu− is smaller than
β− for each u, the ϒ to be build by the chain of offsets would
cover all alignment paths, {qk′}, correctly. In Fig. 2, for ex-
ample, an upper bound of ϒ fails to include a part of qb50.
When we want more than x% confidence level, our objective
is to find a ϒ such that {(ν+

u ,ν−u )} satisfies

min{ΣU
u=1|ν+

u −ν−u |;

x%≤
U

∏
u=1

(φk′(α)
∫ ν+

u
ψk′(β |α)dβ (2)

+(1−φk′(α))
∫ ν−u

ψk′(β |α)dβ )}

Here, the φk′(α) is the probability that any qk′ is above qk or
not. When α is equal to 0, the probability is approximately
0.5. In reality, it is infeasible to model both ψk′ and φk′ with
respect to each continuous variable α since it is hard to get
unbiased samples for each specific α from a training data set.
This situation becomes even worse since we need repeat this
for all scoring schemes. Furthermore, the exact distribution
must exist foreach parameter domain of (η ,αmax).

In order to overcome this difficulty in practice, three sim-
plified approximations are incorporated into finding ϒ. First,
we fix the mostly suggested affine gap model to the cor-
responding scoring matrix in Table 1. Those parameters
are recommended by Vingron and Waterman, Mount, and
Pearson for a global alignment [6]. In particular, we em-
ploy BLOSUM62 as our reference scoring matrix in this
work. Second, we make categories with the combination
of (η ,αmax), grouping continuous values into a set of grid
points. For example, we choose five distinct groups for η
from 18.5 to 70% and also four groups for αmax from 0
to 50% where αmax is computed as a ratio to an average
length of two sequences. This configuration yields twenty
ψ(β |α;(η ,αmax))’s. Unfortunately, the distribution is un-
known. Therefore, a kernel density estimator ksdensity
from MATLABr is used to fit each distribution. For the
sake of space complexity, we construct distributions for only
several confidence values (i.e., x% is .83, .88, .93, .98). Fi-
nally, instead of storing the ψ for each α in a (η ,αmax), we
only focus on three ψ’s. The first is ψ(β |α = .5αmax) for
generating smallest one out of either β+ or β− at .5αmax and
the second is ψ(β |α = αmax) at αmax. The third ψ is a distri-
bution for βmax which is the maximum β in all the u.

Table 1: Default affine gap cost of scoring matrices.
PPPPPSk

cost gE gO

BLOSUM50 10 2
BLOSUM62 7 1
PAM120 16 4
PAM250 11 1

Figure 2: Overlapped alignments w.r.t. all different scor-
ing matrices. Note that q1,2

b62 is a reference alignment based
on BLOSUM62. The primary objective is to find a potential
searching space that would contain all {qk′}within a tighter
bound.

The last step in particular plays a crucial role in captur-
ing a ϒ for qk′s for the on-line computation. The reason why
those ψ’s are chosen will become clear in the following dis-
cussion.

3.3 Phase 2: Proposed on-line searching space
In this section, we describe the method we use to esti-
mate a ϒ such that we can control the computational perfor-
mance and the alignment quality. Once we identify (η ,αmax)
from qk, we lookup the three ψ(β |α ;η ,αmax)’s that corre-
spond to the parameter in order to evaluate repeated align-
ments for {Sk′}. The ψ’s suggest a ϒ design parame-
ter set, (βmax,β (.5αmax),β (αmax))x, which satisfies a con-
fidence level x% of interest. The easiest way to define a ϒ
is simply to offset qk with βmax into both the upper right and
lower left direction respectively, since we do not know which
direction qk′s would follow. This configuration of ϒ is ex-
actly to go back to the procedure used to derive ψ during the
off-line training phase.

Since the uniform offset of βmax is applied to (ν−,ν+)
without considering α , and ψ(β |α) varies with α , it turns
out that there are lots of wasteful searching space. In most
cases, we observe that the qk′s encompass the space between
qk and λ as qk diverges from λ . In other words, the proba-
bility that qk′ goes by qk, below it or above it highly depends
upon α in this case. As a consequence, it is necessary to
handle ν− and ν+ separately based on the following discus-
sion. BLOSUM62 has smaller default gap penalty. Thus the
scoring matrix itself can dominate the alignment path more
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Figure 3: Two mapping functions for ϒ. Method I uses an
equivalent searching offset (ν−u = ν+

u = βmax) for ∀u. On the
other hand, method II uses a varying offset (ν−u ,ν+

u ) on u as
a function of α calculated along with qk.

%

off-line building
searching parameters

training data

MySQL

NW Alignment
/Parameter Selection

for the Searching Bound
on-line NW alignment

Figure 4: A flow graph from building a off-line resource from
a training data to performing alignments with a test data.

than other effects, which means that qk can go further from
λ . This is the reason why this scoring scheme is selected in
the sense that qk is more informative. Also note that this is a
global alignment which is highly affected by a geometry gap
cost. Even If qk stays at a distant u from λ showing conser-
vation right there, qk′ is also controlled by the Sk′ ’s gap cost.
This observation is consistent with the fact that β is mostly
retained from, a qk′ that is within λ from qk.

Taking advantage of these observations, we propose a
simple technique to design a searching bar, (ν+

u ,ν−v ), along
with qk at v. If qk stays below λ , ν− has smaller offset
while u+ is designed based on βmax and vice versa. Thus,
the former aims at saving computational cost and the lat-
ter is for higher accuracy. From a parameter set, we gen-
erate three linear functions for ν . One is for governing larger
ν . For more refinement of accuracy, the bound toward λ
from qk is designed such that the ν has the value between
w1 ·βmax and w2 ·βmax, where w1 is deduced to be .8 and 1.1
for w2 empirically. For example, as α is close to αmax, ν
is equal to 1.1βmax. For shorter ν , on the other hand, two
separate linear functions are applied to save computational
cost. Here, both ψ(β |α = .5αmax) and ψ(β |α = αmax) are
used for this bound. This is based on the assumption of

∫
ψ(β |α1)≤

∫
ψ(β |α2), where α1 ≤ α2. However, consider

a smaller ν which is derived by an linearized model of ψ(y)

at αy between .5αmax and αmax. At the same x% confidence
level, this approximation is not always true, even if the as-
sumption of monotonic function with respect to α greater
than a specific value is still valid. However, finer grained
linearized approximation leads to higher accuracy and more
computational cost.

In Fig.3, we summarize how (ν+
u ,ν−u ) can be calculated

at each u = (r,c) on qk.

4. EXPERIMENTAL RESULTS

We follow a standard cross validation procedure. The flow
chart for the overall algorithm is illustrated in Fig.4. In a
training step, we sample pairs of protein sequences from the
ASTRAL database to generate the corresponding probability
distributions with respect to (η ,αmax) [5]. We only collect
samples having % identity from 18.5% to 70.0%. For test-
ing data, the sequences are randomly sampled to be aligned
with the remaining part of the database3. Since the global
sequence alignment is mostly used to evaluate sequences
among more closely related proteins, the samples of higher η
are preferred. The average sequence length we worked with
is varied from 70 to 1221. In our preliminary experiment,
both alignment accuracy and computational cost are eval-
uated. A parameter set (βmax,β (.5αmax),β (αmax)) for de-
signing ϒ is normalized with respect to the average sequence
length of two sequences. When we apply this parameter to a
short sequence with a lower x%, its ν is equal to 0. In order
to avoid this case, threshold values for those parameters are
assigned.

The varied offset design method (II) with α outperforms
a simple half band searching offset method (I) with respect
to three different confidence level from 88% to 98% in most
η . When pairs of longer sequences are compared, the lower
probability of successful ϒ is generated. This method is
shown in Eq.2. Sometimes, this is true for method I but not
method II. This means that the accuracy of method II de-
pends less on the length of sequence. Furthermore, in the
lower accuracy experiment of Table 2, the overall accuracy
of method II is dramatically improved. However, since less
samples are collected in the category of less than 70% of η ,
which yields a biased distribution model, method II exhibits
lower accuracy performance. Table 3 shows the comparison
for the computational cost. Both method I and II for higher
η consume significantly less searching space. Furthermore,
this performance holds with longer sequences. As we ex-
pect, higher accuracy consumes more space. Method II saves
even more searching space than method I while increasing
the overall correctness of alignment.

In three different x% experiments, the proposed ϒ of
method II is reduced to an average 32.9% with overall 92.3%
correct alignments for three scoring schemes, compared to
a normal NW algorithm. The computational cost is calcu-
lated as a ratio of ϒ to a whole DP matrix space. All en-
tries on a correct alignment, qk′ , should be contained within
ϒ. Therefore, the correctness of ϒ is defined as a ratio of a
number of Sk′ satisfying the requirement to a total number
of Sk′ . Note that both methods complete all matching proce-

3A global alignment for randomly-selected pairs yields 20%. In order to
obtain an uniform a number of samples over η , we take a different number
of samples into hierarchical protein family clusters
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Table 2: Correctness of proposed heuristic approaches. Refer
to Fig.3 for definition of the method I and II.
PPPPPη

x% .88 .93 .98 length
I† II‡ I II I II

18.5∼23.5
.821 .887 .861 .914 .910 .959 ∼114
.834 .930 .864 .939 .930 .947 ∼164
.794 .943 .830 .945 .900 .967 ∼576

∼25.6
.738 .883 .814 .913 .889 .922 ∼129
.784 .930 .841 .931 .920 .937 ∼237
.843 .968 .890 .970 .935 .972 ∼1221

∼27.7
.754 .898 .792 .910 .892 .928 ∼148
.800 .898 .864 .916 .955 .940 ∼249
.810 .926 .857 .927 .947 .947 ∼1177

∼30.7
.799 .849 .843 .899 .937 .923 ∼140
.802 .873 .859 .906 .906 .944 ∼246
.785 .899 .865 .901 .933 .940 ∼713

∼70.0
.883 .846 .913 .896 .946 .913 ∼97
.862 .924 .893 .938 .946 .941 ∼187
.887 .923 .931 .936 .957 .939 ∼508

Table 3: Computational cost of proposed methods.
PPPPPη

x% .88 .93 .98 length
I† II‡ I II I II

18.5∼23.5
.320 .316 .350 .347 .402 .403 ∼114
.303 .297 .332 .329 .385 .385 ∼164
.278 .276 .304 .307 .355 .360 ∼576

∼25.6
.316 .304 .351 .339 .405 .393 ∼129
.303 .296 .337 .331 .393 .383 ∼237
.272 .284 .303 .318 .363 .369 ∼1221

∼27.7
.323 .318 .354 .354 .434 .428 ∼148
.301 .301 .330 .333 .411 .407 ∼249
.272 .274 .303 .307 .386 .379 ∼1177

∼30.7
.325 .317 .357 .352 .434 .422 ∼140
.317 .308 .350 .341 .425 .410 ∼246
.296 .289 .330 .322 .395 .384 ∼713

∼70.0
.316 .306 .356 .343 .437 .418 ∼97
.228 .223 .259 .251 .330 .316 ∼187
.193 .192 .222 .221 .289 .280 ∼508

dures over three Sk′ ’s at once. As a consequence, the overall
searching space based on method II is dramatically reduced
to 32.9/3 ≈ 11%. As more scoring matrices are required to
seek appropriate alignment parameters, this advantage can be
significantly higher.

5. DISCUSSION

This work can contribute to assist in finding an appropriate
scoring matrix efficiently when a global pairwise sequence
alignments are needed usually at a high computational cost.
By focusing on the reference alignment and building a prob-
ability density function to provide a correlation factor to de-
sign a tighter pruned searching space along with the the ref-
erence path, the proposed alignment has the advantage of
avoiding on-line evaluation time of typical heuristic approach
and is designed to be governed by highly controllable design
parameters that provide a trade-off between an alignment ac-
curacy and computational cost.

There will be a several extensions of our work. Our ψ
possibly can include gap models as other input variables,
since we use only fixed default gap costs. While we shift
αy between 0 and αmax rather than .5αmax, it would be more
interesting to find a position for ψαy such that it can mini-
mize an error of the linearized approximation for the other
ψ . The proposed work has a computational overhead to cal-
culate α(u) for each u of O(M + N) operations. However,
this overhead can be diminished with an additional parallel
computation node that takes the dedicated computation on it
since this does not affect on-line alignment.
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