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ABSTRACT
In this paper, a learning approach to semantic image analysis

and classification is proposed that combines global and local infor-
mation, with explicitly defined knowledge in the form of an ontol-
ogy. The ontology specifies the selected domain, its sub-domains,
the concepts related to each sub-domain as well as contextual in-
formation. Support Vector Machines (SVMs) are employed in order
to provide image classification to one of the defined sub-domains
based on global image descriptions and, after a segmentation al-
gorithm is applied, to perform an initial mapping between region
low-level visual features and the concepts in the ontology. Then,
a decision function, that receives as input the region to concepts
associations together with contextual information, realizes image
classification based on local-level information. The contextual in-
formation used is in the form of frequency of appearance of each
concept in every particular sub-domain. A fusion mechanism com-
bines the intermediate classification results, provided by the local-
and global-level information processing, and decides on the final
classification. A Genetic Algorithm (GA) is employed for optimiz-
ing the fusion process. Experiments with images from the personal
collection domain demonstrate the performance of the proposed ap-
proach.

1. INTRODUCTION

During the recent years, important advances in the hardware tech-
nology have led to the development of devices for capturing high-
quality images quickly and conveniently, devices with great storage
capabilities and the appropriate mediums for fast and efficient dis-
tribution of the acquired content. As a consequence, literally vast
multimedia databases have been created and the problem of effec-
tive and efficient manipulation of the available content has emerged
[1]. This has triggered intense research efforts towards the de-
velopment of appropriate systems and algorithms for solving this
challenging issue. Most emerging approaches adopt the fundamen-
tal principle of shifting image manipulation techniques towards the
process of the visual content at a semantic level, thus attempting to
bridge the so called semantic gap [2]. To this end, research efforts
have concentrated on the semantic analysis and classification of im-
ages, often adopting techniques that exploit a priori domain specific
knowledge [3], so as to result in a high-level representation of them
[1].

Image classification is an important component of image ma-
nipulation attempts. Several approaches have been proposed in the
relevant literature regarding the task of the categorization of images
in a number of predefined classes based on global image descrip-
tions [4][5]. However, image manipulation based solely on global
low-level features does not always lead to the best results. Com-
ing one step closer to treating images similarly as human does, im-
age analysis tasks (including classification) shifted to treating im-
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ages at a finer level of granularity, i.e. at the region or local level,
taking advantage of segmentation techniques applied to the image
[6][7]. Furthermore, incorporating knowledge into classification
techniques emerges as a promising approach for improving classi-
fication efficiency. Such an approach provides a coherent semantic
domain model to support “visual” inference in the specified context
[8].

In this paper, a semantic image analysis and classification ap-
proach is proposed that combines global and local information with
explicitly defined knowledge in the form of an ontology. The ontol-
ogy specifies the selected domain, its sub-domains, the concepts re-
lated to each sub-domain as well as contextual information. SVMs
are employed for image classification in one of the defined sub-
domains based on global image descriptions, by generating an im-
age to sub-domain association hypothesis set. Additionally, after
a segmentation algorithm is applied and the image is divided into
regions, SVMs are again employed, this time for performing an ini-
tial mapping between region low-level visual features and the con-
cepts in the ontology (i.e. generating region to concept association
hypothesis set for every region). Then, a decision function, that re-
ceives as input the regions to concepts association hypothesis sets
together with contextual information, realizes image classification
based on local-level information. Contextual information consists
of the frequency of appearance of each concept in every particular
sub-domain. A fusion mechanism combines the global and local
features-based classification information and decides on the final
image classification. A GA is introduced for optimizing the per-
formed information fusion step. Finally, a refined region to concept
association is performed, while considering only the concepts that
are related to the sub-domain to which the image is classified to.

The paper is organized as follows: Section 2 presents the overall
system architecture. Sections 3 and 4 describe the low-level infor-
mation extraction and the employed high-level knowledge, respec-
tively. Sections 5 and 6 detail the individual system components.
Experimental results are presented in Section 7 and conclusions are
drawn in Section 8.

2. SYSTEM OVERVIEW

The first step in the development of the proposed semantic image
analysis and classification architecture is the definition of an appro-
priate knowledge infrastructure. This is defined in the form of an
ontology suitable for describing the semantics of the selected do-
main. The proposed ontology comprises of a set of sub-domains to
which images of the domain can be classified to and a set of con-
cepts, each associated with at least one of the afore-mentioned sub-
domains, which represent objects of interest that may be depicted
in the images. In addition to the above, the ontology also includes
contextual information in the form of the frequency of appearance
of each concept in the images of each sub-domain.

Then, a set of images, Q, belonging to the aforementioned do-
main was assembled. Each image was manually annotated (i.e.
manually generated image classification and -after segmentation is
applied- region-concept associations) according to the ontology def-

©2007 EURASIP 708

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



Segmentation

Knowledge
Infrastructure

Domain
Ontology

Information
Fusion

Hypothesis
Refinement

Coarse-grained Low-
level Descriptors

Coarse-grained
Classification

Fine-grained
Classification

Fine-grained Low-
level Descriptors

   Final Sub-domain
Classification Results

Fine-grained Low-
level Descriptors

Final Region
Semantic Annotation

Multimedia
Content

Local-features
      Based
Classification

Global-features
      Based
Classification

GA-based
Optimization

Figure 1: System architecture

initions. This set was divided into two equal in terms of amount
sub-sets, Qtr and Qte. Qtr was used for training purposes, while
Qte served as a test set for the evaluation of the proposed system
performance, as will be described in the sequel.

At the signal level, low-level global image descriptors are ex-
tracted for every image and form an image feature vector. This is
utilized for performing image classification based on global descrip-
tions to one of the sub-domains, supplied as input to a set of SVMs,
each trained to detect images that belong to a certain sub-domain.
Every SVM returns a numerical value which denotes the degree of
confidence to which the corresponding image is assigned to the sub-
domain associated with the particular SVM; the maximum of the
degrees of confidence over all sub-domains for an image indicates
its classification based on global features.

In parallel to this process, a segmentation algorithm is applied
to the image and low-level descriptions are estimated for every re-
sulting segment. These are employed for generating initial hypothe-
ses regarding the region’s association to an ontology concept. This
is realized by evaluating the low-level region feature vector, using
a second set of SVMs, where each SVM is trained to identify in-
stances of a single concept defined in the ontology. SVMs were
selected for the aforementioned tasks due to their reported general-
ization ability [9]. The computed hypothesis sets are subsequently
introduced to a decision function which realizes image classification
based on local-level and the ontology provided contextual informa-
tion.

Then, a fusion mechanism is introduced, which implements the
fusion of the computed global- and local-features based classifica-
tion information, in order to make a final image classification deci-
sion. A genetic algorithm is employed for optimizing the parame-
ters of the fusion mechanism. The choice of a GA for this task is
based on its extensive use in a wide variety of global optimization
problems [10], where they have been shown to outperform other
traditional methods.

Once the image sub-domain is selected, a second region-
concept association hypothesis generation process is performed.
The procedure is similar to the one described at the previous stage,
the difference being that now only the SVMs that correspond to con-
cepts of the selected sub-domain are employed. Thus, sub-domain-
specific hypothesis sets are computed and final region-concepts as-
sociation is accomplished. The overall architecture of the proposed
system for semantic image analysis and classification is illustrated
in Fig. 1.

3. LOW-LEVEL VISUAL INFORMATION PROCESSING

The global image classification procedure, as will be described in
detail in the sequel, requires that appropriate low-level descriptions
are extracted at the image level for every examined image and form
an image feature vector. The image feature vector employed in this
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Figure 2: Sub-domains and concepts of the ontology developed for
the personal collection domain

work comprises of three different descriptors of the MPEG-7 stan-
dard, namely the Scalable Color, Homogeneous Texture and Edge
Histogram descriptors. Following their extraction, the image fea-
ture vector is produced by stacking all extracted descriptors in a
single vector. This vector constitutes the input to the SVMs struc-
ture which realizes the image classification using global features, as
described in Section 5.1.

Moreover, in order to perform the region-concept association
procedure, the examined image has to be segmented into regions
and suitable low-level descriptions have to be extracted for every
resulting segment. In the current implementation, an extension of
the Recursive Shortest Spanning Tree (RSST) algorithm has been
used for segmenting the image [11]. Output of this segmentation al-
gorithm is a segmentation mask S, S = {si , i = 1, ..., N}, where si,
i = 1, ...N are the created spatial regions. For every generated image
segment, the following MPEG-7 descriptors are extracted: Scalable
Color, Homogeneous Texture, Region Shape and Edge Histogram.
The above descriptors are then combined to form a single region
feature vector. This vector constitutes the input to the SVMs struc-
ture which computes the region-concept association hypothesis sets
for every segment, as described in Section 5.2.

4. KNOWLEDGE INFRASTRUCTURE

Among the possible domain knowledge representations, ontologies
[12] present a number of advantages, the most important being that
they provide a formal framework for supporting explicit, machine-
processable semantics definition and they enable the derivation of
new knowledge through automated inference. Thus, ontologies are
suitable for expressing multimedia content semantics so that au-
tomatic semantic analysis and further processing of the extracted
semantic descriptions is allowed [8]. Following these considera-
tions, an ontology was developed for representing the knowledge
components that need to be explicitly defined under the proposed
approach. More specifically, the images of concern belong to the
personal collection domain. Thus, in the developed ontology, a
number of sub-domains, related to the broader domain of interest,
are defined and denoted by Dl , l = 1, ...L. For every sub-domain,
the particular semantic concepts of interest are also defined and de-
noted by c j , where C = {c j, j = 1, ...J} being the set of all defined
concepts.

Contextual information in the form of frequency of appearance
of each concept in every particular sub-domain, is also included in
the ontology and is acquired according to a certain ontology popu-
lation procedure. For that purpose, a set of segmented images, Qtr,
with ground truth classification and annotations, which serves as a
training set, is assembled as described in Section 2. Then, the re-
ported frequency of appearance of each concept c j with respect to
the sub-domain Dl , f req(c j,Dl), is defined as the percentage of the
images belonging to sub-domain Dl where concept c j appears. The
computed values are stored in the developed domain ontology. The
sub-domains and concepts of the ontology employed in this work
are presented in Fig. 2.
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5. IMAGE CLASSIFICATION AND REGION-CONCEPT
ASSOCIATION

5.1 Image Classification Using Global Features
In order to perform the classification of the examined images to
one of the sub-domains defined in the ontology using global im-
age descriptions, an image feature vector is initially formed, as de-
scribed in Section 3. Then, a SVM structure is utilized to compute
the class to which every image belongs. This comprises L SVMs,
one for each defined sub-domain Dl , each trained under the ‘one-
against-all’ approach. For the purpose of training the SVMs, the
sub-domain membership of the images belonging to the training
set, Qtr, assembled in Section 2 is employed. The aforementioned
image feature vector constitutes the input to each SVM, which at
the evaluation stage returns for each image of unknown sub-domain
membership a numerical value in the range [0,1] denoting the de-
gree of confidence to which the corresponding image is assigned
to the sub-domain associated with the particular SVM. The metric
adopted is defined as follows: For every input feature vector the
distance zl from the corresponding SVM’s separating hyperplane
is initially calculated. This distance is positive in case of correct
classification and negative otherwise. Then, a sigmoid function is
employed to compute the respective degree of confidence [13], hD

l ,
as follows:

hD
l =

1
1+ e−t·zl

, (1)

where the slope parameter t is experimentally set. For each image,
the maximum of the L calculated degrees of membership indicates
its classification, whereas all degrees of confidence, hD

l , constitute
its sub-domain hypotheses set HD, where HD = {hD

l , l = 1, ...L}.
The SVM structure employed for image classification based on
global features, as well as for the region-concept association tasks
described in the following sections, was realized using the SVM
software libraries of [14].

5.2 Image Classification Using Local Features and Initial
Region-Concept Association
As already described in Section 2, the SVM structure used in the
previous section for global image classification is also utilized to
compute an initial concept-region association for every image seg-
ment. Similarly to the global case, an individual SVM is introduced
for every concept c j of the employed ontology, to detect the corre-
sponding association. For that purpose, a training process identical
to the one performed for global image classification is followed.
The differences are that now the region feature vector, as defined in
Section 3, is utilized and that each SVM returns a numerical value in
the range [0,1] which in this case denotes the degree of confidence
to which the corresponding segment is assigned to the concept asso-
ciated with the particular SVM. The respective metric adopted for
expressing this degree is defined as follows: Let hC

i j = IM(gi j) de-
note the degree to which the visual descriptors extracted for segment
si match the ones of concept c j , where gi j represents the particular
assignment of c j to si. Then, IM(gi j) is defined as

IM(gi j) =
1

1+ e−t·zi j
, (2)

where zi j is the distance from the corresponding SVM’s separating
hyperplane for the input feature vector used for evaluating the gi j
assignment. The pairs of all supported concepts and their respective
degree of confidence hC

i j computed for segment si comprise the seg-
ment’s concept hypotheses set HC

i , where HC
i = {hC

i j, j = 1, ...J}.
After the concept hypotheses sets, HC

i , are generated for ev-
ery image region si, a decision function is introduced for realiz-
ing image classification based on local features, i.e. estimating the

sub-domain membership of the image on the basis of the concept
hypotheses sets of its constituent regions and the contextual infor-
mation:

g(Dl) = ∑
si, where c j∈Dl

IM(gi j) ·F (si, c j, al , Dl) (3)

F (si, c j, al , Dl) = al · f req(c j,Dl)+(1−al) ·area(si) (4)

where f req(c j,Dl) is the concept frequency defined in Section 4
and area(si) is the percentage of the image area captured by region
si. Parameters al are introduced for adjusting the importance of
the aforementioned frequencies against the regions’ areas for every
defined sub-domain. Their values are estimated according to the
procedure described in Section 6.

5.3 Information Fusion for Image Classification and Final
Region-Concept Association
After image classification has been performed using global, hD

l , and
local, g(Dl), information, a fusion mechanism is introduced for de-
ciding upon the final image classification. This has the form of a
weighted summation, based on the following equation:

G(Dl) = µl ·g(Dl)+(1−µl) ·hD
l (5)

where µl , l = 1, ...,L are sub-domain-specific normalization param-
eters, which adjust the magnitude of the global features against the
local ones upon the final outcome and their values are estimated
according to the procedure described in Section 6. The domain
with the highest G(Dl) value constitutes the final image classifica-
tion. Since the final image classification decision is made, a refined
region-concept association procedure is performed, where now only
concepts associated with the estimated sub-domain can be detected.
Thus, final region-concept association is accomplished.

6. OPTIMIZING INFORMATION FUSION

In Sections 5.2 and 5.3, variables al and µl are introduced for ad-
justing the importance of the frequency of appearance against the
region’s area and the global against the local information on the fi-
nal image classification decision, respectively. A genetic algorithm
is employed for estimating their values, as outlined in Section 2.

Initially, the image set Qtr, that was assembled as described in
Section 2, is divided into two subsets, namely a sub-training Q2

tr
and a validation Q2

v set. Q2
tr is used for training the employed

SVMs framework and Q2
v for validating the overall system clas-

sification performance.
Subject to the problem of concern is to compute the values of

parameters al and µl that lead to the highest correct image classifi-
cation rate. For that purpose, Classification Accuracy, CA, is used
as a quantitative performance measure and is defined as the fraction
of the number of the correctly classified images to the total number
of images to be classified.

Under the proposed approach, each chromosome C represents
a possible solution, i.e. a candidate set of values for parameters al
and µl . In the current implementation, the number of genes of each
chromosome is predefined and set equal to 2 · l ·2 = 4 · l. The genes
represent the decimal coded values of parameters al and µl assigned
to the respective chromosome, according to the following equation:

C ≡ [ c1 c2 ...c4·l ] = [µ1
1 µ2

1 ...µ1
l µ2

l a1
1 a2

1...a
1
l a2

l ] (6)

where ci ε {0,1, ...9} represents the value of gene i and µt
r , at

r rep-
resent the tth decimal digit of variable µr, ar, respectively. The
genetic algorithm is provided with an appropriate fitness function,
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which denotes the suitability of each solution. More specifically,
the fitness function f (C) is defined as equal to the CA metric al-
ready defined, f (C) ≡ CA(C), where CA(C) is calculated over all
images that comprise the validation set Q2

v , after applying the fu-
sion mechanism (Section 5.3) with parameter values for al and µl
denoted by the genes of chromosome C.

Regarding the GA’s implementation details, an initial popula-
tion of 100 randomly generated chromosomes is employed. New
generations are iteratively produced until the optimal solution is
reached. Each generation results from the current one through the
application of the following operators:
• Selection: a pair of chromosomes from the current generation

are selected to serve as parents for the next generation. In the
proposed framework, the Tournament Selection Operator [10],
with replacement, is used.

• Crossover: two selected chromosomes serve as parents for the
computation of two new offsprings. Uniform crossover with
probability of 0.2 is used.

• Mutation: every gene of the processed offspring chromosome is
likely to be mutated with probability of 0.4.
To ensure that chromosomes with high fitness will contribute

to the next generation, the overlapping populations approach was
adopted. More specifically, assuming a population of m chromo-
somes, ms chromosomes are selected according to the employed
selection method, and by application of the crossover and mutation
operators, ms new chromosomes are produced. Upon the result-
ing m + ms chromosomes, the selection operator is applied once
again in order to select the m chromosomes that will comprise the
new generation. After experimentation, it was shown that choosing
ms = 0.4m resulted in higher performance and faster convergence.
The above iterative procedure continues until the diversity of the
current generation is equal to/less than 0.001 or the number of gen-
erations exceeds 30. The final outcome of this optimization proce-
dure are the optimal values of parameters al and µl , used in Eq. 3
and 5. The above GA-based optimization procedure was realized
using the GA software libraries of [15].

7. EXPERIMENTAL RESULTS

In this section, experimental results of the application of the pro-
posed approach to images belonging to the personal collection do-
main are presented. Initially, an appropriate ontology was devel-
oped for representing the knowledge components that need to be
explicitly defined, as described in detail in Section 4. Then, a set of
800 randomly selected images, Q, belonging to the aforementioned
domain was assembled, as described in detail in Section 2.

According to the SVMs training process (Section 3), a polyno-
mial function was used as a kernel function by each SVM for both
global image classification and region-concept association cases.
The respective low-level image feature vector and region feature
vector are composed of 398 and 433 values respectively, normal-
ized in the interval [−1,1].

Based on the trained SVMs structure, global image classifica-
tion is performed as described in Section 5.1. Then, initial con-
cept hypotheses are generated for each image segment and a deci-
sion function realizes image classification based on local features
(Section 5.2). Afterwards, the approach described in Section 5.3 is
employed for implementing the fusion of the global and the local
classification information and computing the final image classifica-
tion, where the values of its parameters are estimated according to a
GA-based optimizer (Section 6). Using the computed image classi-
fication decision, the final region-concept association procedure is
performed.

In Fig. 3 and 4 indicative classification results are presented,
showing the input image, the image classification using only global
(row 2) and only local (row 3) information and the final classifica-
tion after the implementation of the fusion mechanism. In Table 1,
quantitative performance measures of the image classification algo-
rithms are given in terms of accuracy for each sub-domain and over-
all. Accuracy is defined as the percentage of the images, belonging
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Figure 3: Indicative image-sub-domain association results

to a particular sub-domain, that are correctly classified. The results
presented in Table 1 show that the global classification method gen-
erally leads to better results than the local one. Additionally, it must
be noted that the performance of both algorithms is sub-domain de-
pendent, i.e. some sub-domains are more suitable for classification
based on global features (e.g. Rockyside and Forest), whereas for
other sub-domains the application of a region-based image classifi-
cation approach is advantageous (e.g. Buildings). For example, in
the Rockyside sub-domain the presented color distribution and tex-
ture characteristics are very similar among the corresponding im-
ages. Thus, image classification based on global features performs
better than the local-level case. On the other hand, for sub-domains
like Buildings, where the color distribution and the texture charac-
teristics of the depicted real-world objects may vary significantly
(i.e. buildings are likely to have many different colors and shapes),
the image classification based on local-level information presents
increased classification rate. Furthermore, it can be verified that
the proposed global and local classification information fusion ap-
proach leads to a significant performance improvement. Regarding
the exploitation of the contextual information in the form of fre-
quency of concept appearance in every sub-domain, extensive ex-
periments were conducted, while using different image sets. This
has resulted into negligible variations of the local-features based as
well as the overall image classification performance.

The respective representative examples and performance mea-
sures for the concept detection case along the sequential steps of
the proposed approach are illustrated in Fig. 5 and Table 2, respec-
tively. It can be shown that the overall as well as all the sub-domain
specific concept detection accuracies are improved after the imple-
mentation of the proposed classification algorithm, compared to the
performance which corresponds to the initial region-concept asso-
ciation. This increase in performance justifies the assumption that
the reduction of the total number of concepts to be detected, after
image classification is performed, leads to better concept detection
results. It must be noted that for the numerical evaluation, any con-
cept present in the examined image test set that was not included in
the ontology definitions, e.g. umbrella in the seaside sub-domain,
was not taken into account.

8. CONCLUSIONS

In this paper, an approach to semantic image analysis and clas-
sification that combines global, local and contextual information
with explicitly defined knowledge in the form of an ontology
was presented and produced encouraging results in a relatively
broad domain. The proposed framework can easily be extended
by including additional sub-domains and concepts, provided that
the employed knowledge representation is appropriately extended
and that the employed training set is enriched with suitable training
samples.
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Table 1: Sub-domain detection accuracy
Method

Accuracy
Global
Image

Classification

Local
(Region-based)

Image
Classification

Final Image
Classification

Using
Information

Fusion
Buildings 44.64% 76.92% 85.72%
Rockyside 73.24% 42.86% 72.73%

Forest 85.72% 50.00% 63.38%
Seaside 78.18% 81.40% 90.48%

Overall 71.02% 63.75% 77.55%
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