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ABSTRACT

This communication concerns the problem of blind sources
separation (BSS) of non stationary sources in the instan-
taneous mixture case. We consider an approach based
on joint-diagonalization of some hermitian matrices con-
structed by a family of spatial complex cross-wavelet
transform. We show that mixing matrix can be estimated
by using some algebraic properties of considered matrices.
Computer simulations are provided to demonstrate the
effectiveness of the proposed method, which is compared
with other approach based on the joint-diagonalization.

keywords : Blind sources separation, wavelet transform,
cross-wavelet, joint-diagonalisation.

1. INTRODUCTION

We consider the blind separation of ainstantaneous mixture
of signals calledsources. The problem has found numerous
solutions in the past twenty years.
However, more recently, interest on solutions based on the
use of joint-diagonalization of matrices from spatial time-
frequency representations was growing [1, 3, 4, 5, 6].
In fact, such an approach, by taking advantage of the non-
stationarity of the sources, makes it possible to consider
a wider class of source signals than the classical “statisti-
cally independent random sources”. The selection of time-
frequency(t − f ) points that correspond only to sources
auto-term with a view to build a set of matrices to be joint-
diagonalized, is the main point with this kind of methods.
The purpose of this communication is to provide a original
manner to build the set of Hermitian matrices to be joint-
diagonalized. The approach is not based on spatial time-
frequency representations, but on spatial time-scale(t − s)
ones – so-calledwavelets transform – who have recently
emerged as a strong mathematical tool for processing dif-
ferent types of signals [7, 9].
After introducing cross-wavelet and spatial-wavelet defini-
tions in section 3, we will show that mixing matrix can be
estimated by exploiting some algebraic properties of spatial-
wavelet transform of sources (section 4). Section 5 will in-
troduce a criterion for the automatic selection of matricesto
be joint-diagonalized.

2. MATHEMATICAL MODELING

Suppose thatN signals are received onM sensors (M ≥ N).
In matrix and vector notations, the input/output relationship

of the mixing model reads:

x(t) = As(t) (1)

with A the(M,N) real mixing matrix which is assumed full
rank,x(t) = [x1(t), . . . ,xM(t)]T the observations vector and
s(t) = [s1(t), . . . ,sN(t)]T the deterministic sources vector.T

denotes the transposition operator.
Recall that the BSS problem consists in estimating a “sepa-
rating” matrix, sayB, when applied to the observation as

y(t) = Bx(t), (2)

that yields an estimation of the source signals.
Let’s defineG = BA as the resulting matrix of the global
system. The source separation problem is solved when one
has found a matrixB in such a way that

G = DP (3)

whereD is an invertible diagonal matrix which corresponds
to arbitrary attenuations for the restored sources andP is a
permutation matrix which corresponds to an arbitrary order
of restitution of source signals.
A discriminating property for source signals is always re-
quired in order to perform separation,e.g. statistical inde-
pendence for random signals, decorrelation, stationarity, etc.
In the following, we consider only nonstationary determin-
istic signals whosetime-scale representation do not overlap
completely, i.e. the signatures of sources in the time-scale
plane are localized in “sparse” areas. Under such assump-
tion, we are capable to find time-scale points in each area
corresponding to a different source signals (see for an illus-
tration Fig. 2).

3. SPATIAL-WAVELET TRANSFORM

The proposed approach is based on the use of spatial-
wavelets transform (SWT) and theirs properties. We briefly
recall in this section outstanding points related to their uti-
lization. More details about wavelets transform can be found
in [7, 9].

3.1 Wavelet transform

A wavelet family is defined by its scale and shift parameters
a andb resp. as

ψa,b(t) =
1√
a

ψ(
t −b

a
), (4)
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where so-called mother waveletψ(t) is a real or complex
function. The wavelet transform of signals(t) is the inner
product:

Ws(a,b) =
∫ +∞

−∞
ψa,b(t)s

∗(t)dt, (5)

wherea ∈ R+, b ∈ R and∗ denotes the conjugaison opera-
tor.
The most important properties of wavelets are theadmissi-
bility and theregularity conditions. These are the properties
which gave wavelets their name. It can be shown that square
integrable functionsψ(t) satisfying the admissibility condi-
tion :

∫ +∞

−∞

|Ψ(w)|2
|w| dw < +∞, (6)

whereΨ(w) stands for the Fourier transform ofψ(t), can
be used to first analyze and then reconstruct a signal without
loss of information.

3.2 Cross-wavelet and spatial-wavelet transform

The cross-wavelet transform (CWT) between two signals
s1(t) and s2(t) is defined, when the same mother wavelet
ψ(t) is considered, as :

Ws1s2(a,b) = Ws1(a,b).W ∗
s2

(a,b). (7)

From (7), one can define the spatial-wavelet transform
(SWT) matrix of vectors(t) = [s1(t), . . . ,sN(t)] as the col-
lection of the cross-wavelet components :

{Ws(a,b)}i, j = Wsis j(a,b). (8)

Under the mixture model (1),∀(i, j) ∈ {1, . . . ,M} :

Wxix j (a,b) = Wxi(a,b).W ∗
x j

(a,b)

=
N

∑
l,m=1

aila jmWslsm(a,b). (9)

Then, the SWT of vectorx(t) can be written as :

Wx(a,b) = AWs(a,b)AT . (10)

If the mother waveletψ(t) is complex1, then matrix
Ws(a,b) is N × N square Hermitian. When matrices
Ws(a,b) are diagonal for some(a,b), A can be estimated
using simultaneous joint-diagonalization algorithm of matri-
ces{Wx,(a,b)}.

4. NON ORTHOGONAL JOINT
DIAGONALIZATION

Let us now describe briefly the problem of non-orthogonal
joint-diagonalization. We consider the setM of K matrices
Mi, i ∈ {1, . . . ,K} which all admit the following decompo-
sition : there exists a matrixA andK diagonal matricesDi,
i ∈ {1, . . . ,K} such that

Mi = ADiA
T , ∀i ∈ {1, . . . ,K} .

The problem is to estimate the matrixA and the diagonal
matricesDi, i ∈ {1, . . . ,K} from the matrices setD .

1This condition will be considered in all next sections.

WhenA is orthogonal, the above problem has been reported
in [1] where some solution can be found. For thenon-
orthogonal case, we propose to consider the following ob-
jective function:

C (B) =
K

∑
i=1

‖OffDiag{BT MiB}‖2, (11)

where the operatorOffDiag{·} is defined as the zero-
diagonal matrix built from the off-diagonal components of
the matrix argument. In fact we are looking for matrixB
that minimizes the criterionC (B). In that case, this opti-
mal matrix argument plays directly the role of a separating
matrix.

In [3], we have proposed an algorithm for the optimiza-
tion of C (B) without the unitary constraint. Other methods
without constraint can be found in [10].

5. TIME-SCALE POINT SELECTION

In order to build the matrice setM = {Wx(a,b)/(a,b)} to
be joint-diagonalized, it is necessary to find, only from ob-
servation data, a set of points(a,b) in time-scale plane for
which the matricesWs(a,b) are diagonal.
Let us discuss here about different algebraic structure of ma-
tricesWs(a,b),(a,b) ∈ R+ ×R. We can distinguish three
different cases :

• Matrix Ws(a,b) is zero, then‖Wx(a,b)‖ = 0 and the
point(a,b) is not considered.

• Matrix Ws(a,b) has no particular algebraic structure,
then,Wx(a,b) is not “interesting” for the matrice setM .

• Finally, matrixWs(a,b) is diagonal, soWx(a,b) can be
added toM .

In the last case,i.e. when matrixWs(a,b) is diagonal, ac-
cording to hermitian symmetry and because the matrixA is
real, the matriceWx(a,b) is real. This last property can be
exploited to select point(a,b) in the time-scale plane where
Ws(a,b) is diagonal :

‖Wx(a,b)‖ > ε1 (12)
‖ℑ{Wx(a,b)}‖ < ε2 (13)

whereℑ{.} and‖.‖ respectively stands for the imaginary part
and the Euclidian norm,ε1 andε2 being fixed thresholds.
We can also generalize time-frequency points selection pro-
cedure proposed in [6] to time-scale plane. The idea of pro-
posed criterion is to keep points with a sufficient energy and
then to use the rank one property to detect single auto-terms.
Indeed, if matrixWs(a,b) is diagonal, then it is rank one,
because, if we suppose thatWsi(a,b) 6= 0 andWs j(a,b) 6= 0
for somei 6= j, then, from (7)Wsis j(a,b) 6= 0 and matrix
Ws(a,b) will not be diagonal.
Notice that other points selection procedure in time-
frequency plane requiring spatial whitening step can be
found in [1, 5]. We recall that spatial whitening stage lim-
its the performance of separation due to error estimation of
whitening matrix. For this reason, it is not considered here
both for the joint-diagonalization and the time-scale point se-
lection procedure.
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6. COMPUTER SIMULATIONS

In this simulation, we considerN = 3 source signals (Fig-
ure 1) of lengthT = 2048 andM = 3 mixtures. The
sources are defined by :s1(t) = sin(250πt2), s2(t) =
sin(150πt3), s3(t) = sin(350πt), t ∈ [0,1].
The mixing matrix is :

A =

(

1 0.7 0.4
−0.3 1 −0.7
0.9 1.5 1

)

(14)

The following performance index is used as a measure of the
separation quality [8] :

I(G) =
1

N(N −1)

N

∑
i=1





N

∑
j=1





|(G)i, j|2
max

`
|(G)i,`|2

−1









+
1

N(N −1)

N

∑
j=1





N

∑
i=1





|(G)i, j|2
max

`
|(G)`, j|2

−1







 ,

with N = 3 the dimension ofG. This index, given indB,
is defined byI(.) dB = 10log(I(.)). It measures the distance
between the global matrix and the product of diagonal matrix
and permutation matrix.
We consider the complex Morlet mother wavelet defined as :

ψ(t) = 1√
π fb

e2iπ fcte
− t2

fb . Time-scale values(a,b) are calcu-

lated on[1, . . . ,32]× [1, . . . ,T ].
The sources are represented in time in Figure 1 and in the
time-scale plane in Figure 2, Figure 3 shows mixtures in the
same plane. In Figure 4 are selectedK = 3944 points by re-
spect to criteria (12) and (13) withε2 = 10−2 andε1 equal to
the mean of‖Wx(a,b)‖ from all points(a,b). As shown in
this figure, every selected point must corresponds to only one
source and all other points are rejected. In other words, the
points where there is “interference” between two time-scale
signatures (Figure 3) are not selected.
After joint-diagonalizing the set matricesM built from se-
lected points, matrixB is estimated and the value of perfor-
mance index isI(BA) dB = −69.7677.
Finally, in Figure 6, the performance index of the proposed
approach (WBSS) is compared to JADE2 algorithm [2] in
noisy mixture case for SNR varying between 5dB and 50dB.
The noisy mixture is achieved by adding random signal with
uniform distribution to each components of the vectorx(t).
The SNR is defined by 10log( 1

σ2 ), whereσ2 denotes the
variance of the noise. The result shows the superiority of
WBSS as compared to JADE at higher SNR.

7. CONCLUSION

We emphasize in this paper that the separation of non station-
ary deterministic sources having different time-scale repre-
sentations can be realized. Proposed solution is based on the
joint-diagonalization of matrices set built from spatial time-
scale transform, using some automatic selection criterionin
time-scale plane. We have illustrated the effectiveness ofthe
proposed method thanks to computer simulations.

2This algorithm is based on use of joint diagonalization of cumulant ma-
trices.
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Figure 1: Source signalss1(t), s2(t) ands3(t) before mixing.
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Figure 2: Time-scale transform of sources using complex
Morlet wavelet.
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Figure 3: Time-scale transform of mixtures using complex
Morlet wavelet.
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Figure 4: Time-scale points(a,b) selected to build matrices
to be diagonalized. Each “energetic” point corresponds to
only one source.
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Figure 5: Time-scale representations of the three recon-
structed sources.
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Figure 6: Performance index (dB) for proposed approach
(WBSS) and JADE.

A deep study of noisy mixture can be interesting for future
work since the wavelet transform can be used both for noise
cancellation and source separation. A more challenging case
will be also when the mixing system is a convolutive one,
i.e., when the sources are mixed through a linear filtering op-
eration.
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