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ABSTRACT

The analytic signal is a complex signal derived from a real
signal such that its real part is identical to the original real
signal, and its imaginary part is in quadrature (orthogonal) to
the original signal. The analytic signal permits the envelope
of the original signal to be computed, and it also admits the
definition of an instantaneous frequency and phase.

In this paper we present some initial results on extending
this idea to the case of a complex signal using a hypercom-
plex analytic signal. We show that using the hypercomplex
analytic signal it is possible to calculate a complex envelope
of the original complex signal and that the modulus of this
complex envelope is the envelope of the modulus of the orig-
inal signal.

1. INTRODUCTION

Given a real signal f(¢), the corresponding analytic signal
a(t) is a complex signal with real part identical to f(¢):

where f(r) is the Hilbert transform of f(z). The imaginary
part of the analytic signal is orthogonal to the real part (this
is also described as being in quadrature). The modulus of
the analytic signal is an envelope of the original signal (also
known as an instantaneous amplitude) and the phase of the
analytic signal (the argument at each time point) may be used
to derive an instantaneous frequency (the derivative of the
phase gives the instantaneous frequency).

The analytic signal was first defined by Ville in 1948 [1].
A modern account is given by Bracewell [2, pp359-364].

In the frequency domain, the analytic signal is simply
defined in terms of the Hermitian symmetry of the Fourier
transform of a real signal. Since the Fourier coefficients of
a real signal exhibit Hermitian symmetry (the negative fre-
quency coefficients are the complex conjugates of the pos-
itive frequency coefficients) it is obvious that only half of
the Fourier coefficients are needed to represent the original
signal. If the negative frequency coefficients are suppressed,
then the inverse transform of the modified Fourier spectrum
gives the analytic signal’.

In this paper we consider the problem of extending the
analytic signal concept to the case of a signal f(z) which is

'n the discrete-time case, the positive frequency coefficients must be
doubled, the DC and Nyquist coefficients must be left unchanged and the
negative frequency coefficients must be zeroed.
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complex, so that we can construct orthogonal complex sig-
nals, and a complex envelope. In order to do this, it is nec-
essary to use Fourier transforms based on a higher-order al-
gebra than the complex numbers and in this paper we use
a newly-defined biquaternion (or complexified quaternion)
Fourier transform published in 2006 [3]. We have also made
use of a freely-available Matlab library which implements
this transform [4] without which we would not have been
able to investigate this idea nearly so easily.

Complex signals occur where amplitude and phase are
measured simultaneously. Synthetic Aperture Radar (SAR)
imaging is a classic case, but there are many other possibili-
ties where complex signals may occur.

In what follows, we limit ourselves to the case of a band-
limited discrete-time signal and consider the discrete-time
analytic signal obtained by simple Fourier methods which
assume that the original signal and its analytic signal is peri-
odic. The full theory of continuous-time analytic signals in
the complex case, and the generalization of the Hilbert trans-
form are left for a later paper. The results we present here
demonstrate the validity of the approach.

2. HYPERCOMPLEX SIGNAL PROCESSING

The idea of extending signal processing beyond complex sig-
nals to signals with more than two components is not new.
Various authors have studied the use of hypercomplex alge-
bras including quaternions and Clifford algebras, and have
defined and studied Fourier transforms based on such alge-
bras. Sommer, Biilow and Felsberg, in particular, have con-
sidered the extension of the concept of the analytic signal to
2-dimensions or higher [5, 6], but not to the case of complex
samples as is done in this paper. In this paper our exten-
sion of the analytic signal concept to hypercomplex analytic
signals is based on the use of a complexified quaternion (or
biquaternion) Fourier transform [3] which is an extension of
earlier work on quaternion transforms [7]. The complexi-
fied quaternions are a relatively straightforward development
of the quaternions. A general introduction is given by Ward
[8]. A complexified quaternion has four complex compo-
nents based on a complex operator different from all three
of the quaternion operators 7, j and k. In this paper we fol-
low the example of [3] and denote the complex operator by /.
It commutes with the three quaternion operators, and there-
fore all complex numbers commute with the three quaternion
operators. Therefore a complexified quaternion can be rep-
resented in the following form:

qg=w4+xi+yj+zk
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where w = R(w) + I3 (w) and similarly for the other three
complex components.

Complexified quaternion Fourier transforms are a
straightforward extension of the quaternion Fourier trans-
forms, although some questions remain about their behaviour
in the presence of samples or coefficients with vanishing
semi-norms” (the complexified quaternions are not a divi-
sion algebra, and there exists a well-defined set of non-zero
complexified quaternions with zero semi-norm). The com-
plexified quaternion Fourier transform used in this paper is
defined as follows:

F[u] = BiQFT (f[n])
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where the signal f[n] and its ‘spectrum’ F[u] have N samples.
The key to the existence of this transform is that y is a com-
plexified quaternion root of —1 and therefore the exponential
has complexified quaternion values [10]. Full details of the
transform are given in [3] including an algorithm for com-
puting the transform using decomposition into four complex
Fourier transforms.

The QTFM toolbox for Matlab by Sangwine and Le Bi-
han [4] includes functions for computing with complexified
quaternions, including a complexified quaternion FFT, and it
is this toolbox which we have used to obtain the results in
this paper.

1
N

u=

3. THE HYPERANALYTIC SIGNAL

In this section, we present a definition, computation and
some properties of the hyperanalytic signal. (It may be that
this is not the only possible definition of a hyperanalytic sig-
nal and therefore we use the indefinite article in referring to
it, because at this stage we cannot prove that our definition is
unique.)

3.1 Definition

The hyperanalytic signal defined here is based on the clas-
sical complex analytic signal: given a non-analytic complex
signal (in the classical sense defined by Ville [1]), it is possi-
ble to construct a one-sided Fourier spectral representation.
This is achieved as follows:

Definition 1 Given a non-analytic complex-valued discrete-
time signal f[n], we define its complexified quaternion repre-
sentation q[n] = f[n](14 0i+0j +0k), and its Biquaternion
Fourier Transform F[u] = BiQFT (¢[n]). The hyperanalytic
signal aln] associated with f[n] is given by:

aln] = BiQFT ! (F'[u]) )

where the F'[u] is simply derived from F|u] by scaling the
positive frequency coefficients by two and the negative fre-
quency coefficients by zero (the DC and Nyquist frequency
components are not modified).

2 A semi-norm is a generalization of the concept of a norm, with no re-
quirement that the norm be zero only at the origin [9]. It is possible for the
norm of a complexified quaternion ||g|| to be zero, even though g # 0. The
set of complexified quaternions with vanishing semi-norms is well-defined:
they have real and imaginary parts that are of equal modulus, and are or-
thogonal.
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This definition ensures that a[n] is a signal with a single-sided
spectrum. The hyperanalytic signal a[n| defined in this way
is a complexified quaternion valued signal.

In the classical case, with a real signal and a complex an-
alytic signal, the analytic signal is defined for a continuous-
time signal f(¢) in terms of the Hilbert transform, as dis-
cussed in section 1. We see no reason why a similar defi-
nition should not exist in the hyperanalytic case, but at the
time of writing we have not yet identified the hyperanalytic
equivalent of the Hilbert transform.

The complexified quaternion spectrum of the signal f[n]
will consist of complexified quaternion coefficients. Their ar-
rangement in terms of frequency representation follows that
of standard discrete-time Fourier transforms. Thus the first
element of the spectrum as computed by [4] is the DC coef-
ficient, which we leave unmodified; the next N/2 — 1 coef-
ficients represent the complexified quaternion ‘amplitudes’
of positive frequencies, and we scale them by a factor of
2; the next coefficient (if N is even) represents the Nyquist
frequency, and we leave it unmodified; and the remaining
N /2 —1 coefficients correspond to negative frequencies, and
we zero them. (If N is odd there is no Nyquist coefficient,
but otherwise the algorithm is unchanged.)

3.2 Some properties of the hyperanalytic signal

We give here a non-exhaustive list of properties of the hy-
peranalytic signal without proofs. The complexified quater-
nion valued hyperanalytic signal a[n], calculated from a com-
plex valued signal f[n], is expressible in the form: a[n] =
Wa(n] 4 x4[n)i + ya[n]j + za[n]k, Where w,[n],x4[n],y4[n] and
zq[n] are complex-valued signals.

Property 1 The scalar part of the hyperanalytic signal a[n)
is identical to the original signal f|n), i.e.

Property 2 The three components of the vector part of the
hyperanalytic signal are orthogonal to the scalar part, and
thus to the original signal, f[n]:

0

(Waln], za[n])

(waln], xa[n]) = (wa[n], yaln])
where {(a[n],b[n]) = Y ali]bi].

Property 3 The semi-norm of the hyperanalytic signal aln]
is a complex valued signal called the complex envelope.

Some details of this envelope are developed in Section 3.3,
where we show an example.

Property 4 The phase of the hyperanalytic signal aln] is
complex valued and called the complex phase.

This property is based on the existence of the Euler formula
for biquaternions. It is not yet known what significance the
complex phase has, if any. It should also be noted that a com-
plexified quaternion has an axis or direction in 3-space with
complex components (analogous to the axis of a quaternion).
Again, it is not yet known what significance this has.
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3.3 The complex envelope

A striking property of the analytic signal is that its modulus
gives the envelope of the original signal, and the most signif-
icant finding that we present in this paper is that the hyper-
analytic signal as defined here does indeed yield a complex
envelope by a fairly simple process mathematically. Numer-
ical implementation depends on phase unwrapping which is
done with the standard Matlab unwrap function. In simple
mathematical terms the complex envelope c|n] is the absolute
value or modulus of the analytic signal a[n], but since a[n]
is a complexified quaternion signal, its modulus is complex.
The QTFM toolbox implements the abs function for com-
plexified quaternions, but the implementation uses the sqrt
function which results in complex values which are always
in the right half-plane (because the sgrt function halves the
argument of its complex parameter). We believe a complex
envelope with values in only half the complex plane cannot
be a correct generalization of the concept of the envelope,
even though in the case of the standard analytic signal, the
envelope is always positive-valued because again, the square
root function returns the positive root. We therefore use the
idea of phase-unwrapping to yield a true complex envelope
which is not limited to half the complex plane. The algo-
rithm simply requires us to compute the complex modulus of
the analytic signal ourselves in three steps:

1. Compute the semi-norm of the analytic signal samples,

using the following formula:

laln]|| = waln] +2xgln] + yaln] + z3[n]

where the squaring applies to individual samples (i.e. el-
ementwise). The samples of the semi-norm will be com-
plex, of course.

. Construct the samples of the complex envelope as the
square root of the samples of the semi-norm using phase
unwrapping and polar form to implement the square root:

(a) Compute the amplitude of the samples of the com-
plex envelope using the square root of the modulus of
the semi-norm samples. This is a straightforward cal-
culation using real numbers and yielding a real result,
which we denote by Aln].

Calculate the arguments of the samples of the semi-
norm using a standard complex function (known in
Matlab as angle or atan2). The argument will
exhibit discontinuities which must be eliminated by
phase unwrapping, which adds multiples of 27 to the
samples in order to yield a smoothly varying phase
(which is no longer limited to the range (0,27)). Let
the unwrapped angle signal be ®[n]. Then the com-
plex envelope is simply computed as:

®ln]
4. ILLUSTRATIVE RESULTS

c[n] = Aln]exp (I >
We show some results graphically using the following ex-
ample complex function calculated over N = 1000 sample
points:

fIn] = sin(16zn/N) [sin(4wn/N) +Isin(67n/N)]

(b)

This signal can be described as a ‘carrier’ of 8 cycles mod-
ulated with two sinusoids of 2 and 3 cycles respectively to
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Figure 1: Original signal, showing real and imaginary parts.
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Figure 2: Hypercomplex (biquaternion) analytic signal

showing four complex components with real parts (blue) and
imaginary parts (green).

give the real and imaginary parts. It is plotted in Fig 1 as real
and imaginary parts. Figure 2 shows the four complex com-
ponents of the hyperanalytic signal. Notice that the scalar
component is the same as the original signal. Figure 3 is the
most significant illustration in the paper. It shows the orig-
inal signal as a three-dimensional plot with discrete time as
the left-to-right axis and the real and imaginary parts plotted
perpendicular to this axis. As can be seen, the signal samples
trace out a complicated trajectory. The green signal in the
figure is the complex envelope. It traces out a much less com-
plicated trajectory which ‘encloses’ the original signal, and
touches it at several points, roughly on the points where the
original signal has a peak in modulus. This can also be seen
in Fig 4 where the modulus of the complex envelope is super-
imposed on the modulus of the original signal. Finally, Fig 5
shows the real and imaginary parts of the complex envelope,
demonstrating its simplicity, despite the apparent complexity
in Fig 3. The envelope has two cycles in the real part, and
three in the imaginary part, as would be expected from the
construction of the original signal.
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Figure 3: Original complex signal (blue) and complex enve-
lope (green).
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Figure 4: Modulus of original complex signal and modulus
of the complex envelope.
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Figure 5: Real and imaginary parts of the complex envelope.

5. DISCUSSION AND CONCLUSIONS

The results presented in this paper demonstrate that the con-
cept of the analytic signal can be extended to the case of
a complex signal. The analytic signal corresponding to the
original complex signal can be constructed by methods anal-
ogous to those used to construct the analytic signal from an
original real signal. The generalization depends on complex-
ified quaternion Fourier transforms.

There remain some important questions to be resolved
by further work. Firstly, we have not yet established the
analogue of the Hilbert transform, that is how to define the
‘quadrature’ components directly from the original signal.

©2007 EURASIP 624

We have also not established whether the use of a complexi-
fied quaternion transform is essential. In using the complex-
ified Fourier transform we have constructed a hyperanalytic
signal of 8 dimensions when perhaps 4 would be enough.
However, we cannot be certain that because the analytic sig-
nal of a real signal requires two dimensions, the hyperana-
Iytic signal of a complex signal requires only 4.

Secondly, we could extend the concept further to the case
of an original signal with quaternion samples (of which pure
quaternion, or vector samples would be a special case). If this
requires a 16-dimensional or 32-dimensional analytic signal
then it is probably not worthwhile to pursue, but if this can be
done with an 8-dimensional complexified quaternion analytic
signal it could be both possible and useful.

Thirdly, the extension of the analytic signal to two-
dimensional signals (that is signals which are functions of
two independent variables, such as images) has been stud-
ied: this is known as the monogenic signal [6]. Whether the
monogenic signal can be combined with complex samples,
to give a hypermonogenic signal is unknown, but it would be
an important generalization as it would permit the definition
of the envelope of a vector (e.g. colour) image, which could
have important applications in image segmentation.

We conclude overall therefore, that the idea of extend-
ing the concept of analytic signals to hyperanalytic signals
of complex signals is valid, and worthy of further research.
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