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ABSTRACT
In this paper we consider 1-D (one dimensional) phase re-
trieval problem from the point of view of magnitude in-
put data. We claim that magnitude input data should sat-
isfy certain requirements in order to provide the acceptable
minimum-phase solution. The Fejér-Riesz Theorem guaran-
tees us that 1-D discrete phase retrieval problem has always
a solution if the trigonometric polynomial is positive definite,
but an arbitrary set of magnitudes does not provide always
a positive definite trigonometric polynomial. Sometimes this
may be the reason for iterative methods to stagnate or for
direct methods to give undesired results. Finally we discuss
a criterium to decide whether a set of magnitude input data
can solve the 1-D phase retrieval problem.

1. INTRODUCTION

For both continuous-time and discrete-time signals, the mag-
nitude and phase of the Fourier transform are, in general,
independent functions , i.e., the signal cannot be recovered
from knowledge of either alone [1]. Since the recovering
problem does not have a unique solution in general, re-
searchers have tried many ways by providing information
of the signal a priori or constraining the properties of the
signal [2]. Nevertheless, in certain cases relationships may
exist between these components leading to certain signal re-
construction methods using only partial information in fre-
quency domain [3]. The condition under which such signal
reconstruction problems have unique answer is known [4].
Often these solutions are closed form expressions in terms of
the given partial knowledge, but they still may be computa-
tionally intractable.

Signal reconstruction from Fourier transform magnitude
has been called phase retrieval [5]. The term comes from the
fact that the Fourier phase is not known and the signal should
be reconstructed [6]. As an example, in a Fourier transform
coding system, both the magnitude and the phase are usually
coded and transmitted. However, for signals which can be re-
covered from only the magnitude, unnecessary redundancy is
inherent in the coder. Therefore for these signals it may be
possible to realize a significant bit-rate reduction by simply
coding the magnitude and then reconstructing the sequence
at the receiver from the coded magnitude [7]. Besides cod-
ing, the phase retrieval problem has attracted considerable
interest in recent years because of its importance in a variety
of applications, including optical astronomy, microscopy [8],
Fourier-transform spectroscopy, x-ray crystallography, par-
ticle scattering, speckle interferometry, lens testing, single-
side communication, and design of radar signals [9].

In order to find the minimum-phase solution of 1-D phase
retrieval problem, the most common approaches are iterative
transform algorithms [3], which alternate between time and
frequency domains. This type of algorithms can implement
very easily time-domain constraints like compactness of the
support. It has been observed that these algorithms fail to
converge to a solution as they usually stagnate [10]. Alter-
native for solving the 1-D phase retrieval problem are: find-
ing the zeros of z-transform [11], Hilbert transform [12, 13],
computation of cepstral coefficients [14, 15] or solving linear
systems of equations [6].

In this paper we consider 1-D (one dimensional) phase
retrieval problem from the point of view of magnitude in-
put data. We claim that magnitude input data should sat-
isfy certain requirements in order to provide the acceptable
minimum-phase solution. The Fejér-Riesz Theorem guaran-
tees us that 1-D discrete phase retrieval problem has always a
solution if the trigonometric polynomial is positive definite,
but an arbitrary set of magnitudes does not provide always a
positive definite trigonometric polynomial. Sometimes this
may be the reason for iterative methods to stagnate or for
direct methods to give undesired results.

First we recall 1-D discrete phase retrieval problem (Sec-
tion 2), the sampling conditions and the ambiguities of 1-D
phase retrieval problem. The Fejér-Riesz Theorem and its
implication in the subject are presented in Section 3. The
conditions which should be satisfied by magnitude input data
are discussed in Section 4. Experimental results are also
shown.

We shall use the following notations:
z∗ complex conjugate of z

r(n) autocorrelation of x(n)
r̃(n) circular autocorrelation of x(n)
X(z) z-transform of x(n)

X(ω) = F{x(n)} Fourier transform of x(n)
X(k) DFT of x(n)
S(z) z-transform of r(n)
S̃(z) z-transform of r̃(n)
S(ω) Fourier transform of r(n)
S̃(ω) Fourier transform of r̃(n)

We note that nonminimum-phase phase retrieval is an in-
teresting subject, but in this work we shall focus only on
minimum-phase phase retrieval.

2. 1-D DISCRETE PHASE RETRIEVAL PROBLEM

Although certain constraints may be added according to ap-
plication, the main 1-D discrete phase retrieval problem can
be stated as follows [6]:
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Let x(n) be a discrete signal of length N and let X(k) be its
N-point Discrete Fourier Transform (DFT):

X(k) =
N−1

∑
n=0

x(n)e− j 2πkn
N , k = 0,1, . . . ,N−1. (1)

Given knowledge that only M consecutive values of x(n) dif-
fer from zero, i.e. x(n) has M-point support, and given the
values of the DFT magnitudes |X(k)|, k = 0,1, . . . , N − 1,
determine x(n) or equivalently X(k).

Certain constraints should be imposed on the type of sig-
nal x(n), otherwise a zero-phase or random phase associated
with given magnitudes can provide a valid signal x(n).

2.1 Minimum-phase functions
Basically, a sequence is not uniquely defined by its magni-
tude, as is illustrated by the observation that a sequence con-
volved with any all-pass sequence will produce another se-
quence with the same magnitude [7]. Thus, without some
assumptions about the sequence, the magnitude may, at best,
uniquely specify a sequence to within an arbitrary all-pass
factor. However, if some additional knowledge is available
and under certain conditions the sequence may be uniquely
defined by its magnitude.

Traditionally real and imaginary parts of Fourier trans-
forms X(ω) are related each other when signal is causal. For
the case of finite-length sequences where DFT is usually im-
plemented to compute the spectrum, this leads to the concept
of ”causal” periodic sequence [12], i.e. a sequence which is
zero on the second half. In such situation the number of con-
straints in time-domain equalizes the number of relationships
between real and imaginary parts.

When all zeros of the finite length sequence are within
the unit circle, the sequence is minimum-phase and thus it
is uniquely defined to within a shifting factor by its magni-
tude. In this case in order to compute phase from magnitude,
we shall focus on the logarithm of Fourier transform lnX(ω)
[11] which is a Hilbert pair with phase.

2.2 Sampling requirements
The 1-D discrete phase retrieval problem deals with se-
quences having finite length and finite length spectrum. Thus
the z-transform of involved sequences are always polynomi-
als. In order to satisfy the finite support requirements, any
kind of time or frequency aliasing has been properly avoided
previously. Note that it is imperative to know the support or
some bound of the support, otherwise one cannot specify the
sampling requirements of Fourier transform magnitude [8].

Let consider the signal with M-point support. Since its
autocorrelation function has the support

[−(M−1),M−1]

the sampling of the Fourier transform magnitude at ωk = 2πk
N ,

with
N ≥ 2M−1, (2)

will be sufficient to extract autocorrelation without time-
domain aliasing. It follows that if the support of x(n) does
not satisfy (2), we have an ill-posed problem. Indeed, the set
of squares of the DFT magnitudes is the DFT of the circular

autocorrelation r̃(n) of x(n):

r̃(n) =
N−1

∑
k=0

x(k)x((k−n))N .

On the other hand, the autocorrelation r(n) of x(n):

r(n) = x(n)∗ x(−n),

has 2M − 1 length, if x(n) has M-point support. If (2) is
not satisfied, then r̃(n) will be corrupted because of time-
aliasing, and r(n) cannot be recovered from r̃(n).

Furthermore, even when time-aliasing has been avoided,
we note that the succession of samples of r(n) and r̃(n) is not
the same. Actually the first M samples of r(n) are shifted to
obtain the last M samples of r̃(n), and the last M samples of
r(n) are equal with the first M samples of r̃(n) with positive
index:

r̃(n) =





r(0) n = 0

r(n) n = 1,2, . . . ,M−1

r(n−N) n = N−1, . . . ,N−M +1

0 otherwise.

Thus in general, the z-transforms S(z) and S̃(z) will not have
common zeros.

2.3 Ambiguities in 1-D phase retrieval problem
Even we constrain x(n) to be a finite-length sequence, then
other finite-length sequences having the same Fourier magni-
tude as x(n) may be generated by the process of zero flipping
[2]. Actually, in the discrete phase retrieval problem, we have
a predetermined system of equations where the null space of
the data matrix gives the desired flip coefficients [6]. Conse-
quently, there are some ambiguities in phase-retrieval prob-
lem: if x(n) is a solution, then x∗(−n), cx(n) and x(n− b)
are also solutions for any integer b and any complex number
c having unity magnitude c = 1. If x(n) is a real sequence,
then c =±1. These are called the trivial ambiguities and they
are associated solutions to a given solution x(n). Excluding
these associated solutions [16], there are almost everywhere
2M solutions to the discrete 1-D phase retrieval. If x(n) is a
real sequence, the zeros must be chosen in complex conju-
gates pairs, so there are only 2

M−1
2 solutions if all zeros of

X(z) are complex [17]. Note that only one of these solutions
is a minimum-phase sequence.

Finally we note the phase ambiguity 6 X(k) when |X(k)|=
0. This differs from 1-D continuous phase retrieval case,
where 6 X(Ω) when |X(Ω)|= 0 can be determined based on
continuous assumption.

3. THE FEJÉR-RIESZ THEOREM AND SEVERAL
CONSEQUENCES

For the beginning we recall few results on trigonometric
polynomials, then we shall relate them to 1-D discrete phase
retrieval problem.

A trigonometric polynomial is an expression in one of the
equivalent forms:

A0 +
M

∑
n=1

[An coskω +Bn sinkω]
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or
M

∑
n=−M

Cne jnω .

If a trigonometric polynomial has only real values for all
real ω , then the coefficients An, Bn in the first form must be
real; moreover coefficients Cn should satisfy

C∗n = C−n,

for all indexes n.
It seems that Lipót Fejér (1880-1959) was the first to con-

sider the class of trigonometric polynomials that assume only
nonnegative real values. His conjecture of the form of such
function was proved by Frigyes Riesz (1880-1956), conse-
quently the result has been named as the Fejér-Riesz Theo-
rem [18].

Theorem 1 (Fejér and Riesz)
If

X(z) =
M

∑
n=−M

x(n)z−n

and
X(e jω)≥ 0,

then there is

Y (z) =
M

∑
n=0

y(n)z−n

such that
X(e jω) = |Y (e jω)|2

and Y (z) unique if maximum phase.

It should be noted that Fejér-Riesz Theorem does not men-
tion anything about the set from which coefficients y(n) be-
long, i.e. they may have real or complex values.

Going back to 1-D discrete phase retrieval problem, the
set of squares of Fourier transform magnitudes is the Fourier
transform of the autocorrelation:

S(ω) = |X(ω)|2 = F{r(n)}.
On the other hand, for a M-point support sequence x(n), the
sequence and its circular autocorrelation can be written via
2M−1-point DFT as follows [11, 13, 12]:

X(k) =
M−1

∑
k=0

x(n)e− j 2πkn
2M−1

|X(k)|2 =
2M−1

∑
k=0

r̃(n)e− j 2πkn
2M−1 .

(3)

If time aliasing has been avoided and taking into account the
periodicity of DFT kernel, we have

|X(k)|2 =
M−1

∑
k=−(M−1)

r(n)e− j 2πkn
2M−1 . (4)

In view of (3) and (4), finding x(n) from r(n) means to find
a trigonometric polynomial X(k) from a given nonnegative
trigonometric polynomial |X(k)|2.

The Fejér-Riesz Theorem guarantees us that 1-D discrete
phase retrieval problem has always a solution if the trigono-
metric polynomial is positive definite, but random magni-
tudes do not provide always a positive definite trigonometric
polynomial.
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Figure 1: Square of DFT samples for N=5 (◦) and N=20 (∗).

Example 1. A set of magnitude input data which does not
provide positive definite trigonometric polynomial

Let x(n) have 3 samples length and N = 5 with

|X(k)|=
{ √

10, k = 0;

1 k = 1,2,3,4.

Then

r̃xx(n) = DFT−1{|X(k)|2}=

{
2.8, n = 0;

1.8 n = 1,2,3,4.

Taking into account the periodicity and the symmetry prop-
erties, we have

r̃xx(n) =

{
2.8, n = 0;

1.8 n =±1,±2.

Its Fourier transform

S̃xx(ω) = F{r̃xx(n)}= 2.8+3.6cosω +3.6cos2ω

is not always positive as S̃xx(π/2) < 0. Figure 3 presents the
graphic of S̃xx(ω) and its samples for N = 5 and N = 20.

When S̃xx(ω) is not always positive, it cannot be written
as a square of modulus of a trigonometric polynomial. Con-
sequently S̃xx(ω) 6= Sxx(ω), thus r̃xx(n) 6= rxx(n) and time-
aliasing should be supposed. In such a situation, when
magnitude input data |X(k)|2 do not provide a valid always
positive S̃xx(ω), any attempt to solve correctly 1-D discrete
phase-retrieval problem will be unsuccessful.

Example 2. Standard algorithms for solving 1-D phase
retrieval problem

In the following we shall present one direct method (find-
ing the zeros of z-transform of the autocorrelation) and the
iterative technique for solving 1-D phase retrieval problem.
Hilbert transform [13], computation of cepstral coefficients
[14] or solving linear systems of equations [6] can be sus-
pected of time-aliasing, and thus they are not considered
here.
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Figure 2: Number of minimum-phase sequences detected
versus sequence length (symmetric, asymmetric magni-
tudes and magnitudes generated from sequences of different
length).

The most straightforward method for solving direct the 1-
D phase retrieval problem consists of finding the zeros of
z-transform of the autocorrelation. If X(z) is z-transform of
x(n), then X(z)X∗(1/z∗) = S(z) is the z-transform of r(n).
The zeros of S(z) occur in conjugate reciprocal pairs. From
every pair, one of the zeros should be selected to form X(z).
If the selected zeros are chosen inside the unit circle, we get
a minimum-phase sequence. From the all 2M choices, we
should select only one who has all zeros inside the unit circle.

The standard iterative technique is an algorithm in which
the estimate of x(n) is improved in each iteration [1, 3, 4].
This algorithm belongs to the class of iterative algorithms
developed by Gerchberg and Saxton [19] and Fienup [20] for
reconstructing a signal from magnitude information, under
the assumption that the signal is minimum phase.

To test these two methods for discrete phase retrieval, in
every case we shall generate random positive sequences of
certain length, as inputs of algorithms. They may represent
the values |X(k)|2 of DFT square magnitudes corresponding
to a certain sequence x(n). However, this sequence may be
not real and may have certain length which is greater than
M. Thus we also generate symmetric random positive mag-
nitudes as inputs of algorithms. Moreover, we consider as
inputs the magnitudes of DFT of L-point length sequences,
where L = M,M + 1, . . . ,N. For every method we recon-
struct the signal x(n) and we verify if its DFT magnitudes are
equal with initial data. Also we shall check if the obtained
sequence is minimum-phase.

Within the mentioned framework we implement the
method of finding the zeros of z-transform of the autocor-
relation. We run many times and the outcomes show that all
the time the phase retrieval test passes, but minimum-phase
sequence is not always detected. Sometimes we can have ze-
ros on unit circle. This happens for sequences having length
greater than M, then for antisymmetric magnitudes, and fi-
nally for symmetric DFT magnitudes. The minimum-phase
test passes whenever the sequence length is less or equalize
M. For M = 9 the results are presented in Figure 3. The num-
ber of runs was 1000 and it can be seen that phase retrieval

10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sequence length

lo
g 

ra
tio

 m
ax

/m
in

 o
f a

bs
 ff

t

mean
median
std

Figure 3: Mean, median and standard deviation of log ratio
of maximum and minimum deviation between initial magni-
tudes and obtained magnitudes.

has been always detected when the sequence length is less or
is equal with 9.

We experienced a similar behavior in the case of iterative
technique. Until the sequence length is less or equal than
half of DFT length, the initial magnitudes and obtained mag-
nitudes are equal. However, when the length exceeds half of
DFT length, there are many differences between given and
obtained magnitudes. We have run many times this algo-
rithm and the results of averages show an increasing error
with sequence length. Mean, median and standard deviation
of log ratio of maximum and minimum deviation between
initial magnitudes and obtained magnitudes are presented in
Figure 3.

4. CONDITIONS ON MAGNITUDE INPUT DATA

The Fejér-Riesz Theorem is a key issue in spectral fac-
torization and estimation, and one can find applications in
approximation theory, moments problem, bounded bilinear
forms, Hankel operator or Nevalinna-Pick interpolation. For
our purposes it is important to find conditions to determine
whether a certain set of magnitude input data can provide a
positive definite trigonometric polynomial.

One way is to compute DFT of r̃xx(n) for a certain num-
ber of points and then to decide whether the number of DFT
samples are enough to guarantee the positive definiteness of

S̃xx(ω) =
M−1

∑
n=−(M−1)

r̃xx(n)e− jωn =

r̃xx(0)+2
M−1

∑
n=1

r̃xx(n)cosnω

Note that spectral density derivative is continuous. Indeed,
we have:

S̃′xx(ω) = 2
M−1

∑
n=1

nr̃xx(n)sinnω

and
∣∣S̃′xx(ω)

∣∣≤ 2
M−1

∑
n=1

n|r̃xx(n)|.
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Given |X(k)| and accuracy ε

STEP1: Compute r̃xx(n) = DFT−1
2M−1{|X(k)|2};

STEP2: Compute N with (5);

STEP3: Compute S̃xx = DFTN{r̃xx(n)};

Figure 4: The algorithm to compute S̃xx(ω)

By Mean Theorem

S̃xx(ωk+1)− S̃xx(ωk)
ωk+1−ωk

= S̃′xx(ξ ), ξ ∈ (ωk,ωk+1)

we get

∣∣S̃xx(ωk+1)− S̃xx(ωk)
∣∣≤ 2|ωk+1−ωk|

M−1

∑
n=1

n|r̃xx(n)|.

If we want to compute S̃xx(ω) with ε accuracy we need a
DFT in N samples, where

N ≥ 4π
ε

M−1

∑
n=1

n|r̃xx(n)|. (5)

The algorithm to compute S̃xx(ω) with ε accuracy is
shown in Figure 4. Based on this algorithm one can find
if S̃xx(ω) is positive definite and can decide whether 1-D dis-
crete phase retrieval problem can be solved properly. Indeed,
if ε is selected much smaller than min[DFTN{r̃xx(n)}] and
this minimum is positive, then S̃xx(ω) can be considered pos-
itive.

5. CONCLUSIONS

We can conclude that if magnitude input data do not provide
a positive definite trigonometric polynomial, solving 1-D dis-
crete phase retrieval problem will be difficult. We add that
such special situation cannot appear in the case of 1-D con-
tinuous phase retrieval problem, as there from the beginning
it is known that the input data is always positive and thus in-
put data provide a positive definite trigonometric polynomial.
Moreover, aliasing of autocorrelation and phase ambiguity
for zero samples are not present.
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