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ABSTRACT 

In this paper, we present the application of particle filtering to 
build efficient equalizer structures for mobile station terminals. 
We begin by recalling the theory of particle filtering and we 
put the emphasis on the key point of such a technique, the 
sampling importance resampling (SIR) or the sequential 
importance sampling (SIS). Then, we present a mathematical 
model which allows to represent the transmitted symbols as the 
state of a stochastic system which can be estimated by particle 
filters. Furthermore, we propose a basic equalizer structure 
with particle filters and we investigate several improvement 
strategies which help to obtain better estimation results with a 
lower number of particles. Finally, simulation results in the 
context of GSM/EDGE are given which show that the proposed 
particle filter equalizer, outperforms the well known extended 
Kalman filter. 

1. INTRODUCTION 

Particle filters, also known as Sequential Monte Carlo methods 
(SMC) are sophisticated model estimation techniques based on 
simulation. They are usually used to estimate Bayesian models 
and are the sequential analogue of Markov Chain Monte Carlo 
(MCMC) batch methods. If well designed, particle filters can 
be much faster than MCMC. They are often an alternative to 
the Extended Kalman Filter (EKF) with the advantage that, 
with sufficient samples, they approach the Baeysian optimal 
estimate. So they can be made more accurate than the EKF. 
Since the pioneering work of Gordon, Salmond and Smith [1], 
particle filters are used in many fields. For example image 
recognition or positioning systems. In the recent years, one can 
find several papers [2-5] devoted to application to 
communication systems. In the case of application in baseband 
algorithms of a mobile station receiver, one can find three main 
areas of interest for particle filters, symbol estimation, channel 
estimation and combined, symbol and channel estimation 
(blind symbol estimation). Blind symbol estimation means to 
estimate the transmitted symbols without any available channel 
estimation. This estimation technique, usually applies, when no 
training data are available to estimate the Channel Impulse 
Response (CIR) of the wireless link. In fact, blind symbol 
estimation with particle filters is only suggestive, if no training 
symbols are used in a communication system. Because of the 
existence of a Training Sequence Code (TSC) in GSM, we 
decide not to apply particle filters for blind symbol estimation. 
Channel estimation algorithms are well investigated for 
GSM/EDGE. Commonly Least Mean Square (LMS) 
algorithms are used which obtain good estimation results [6]. 
For this work, those channel estimation algorithms were 
applied to estimate the channel. Then, this channel estimation 
is used as an input parameter for the presented particle filter 
symbol estimation algorithm. 

The rest of the paper is organized as follows. In section 2 we 
present the theory of particle filtering by insisting on the SIR or 
SIS techniques which are fundamental tools in particular 
filtering. We propose then in section 3 to derive a 
stochastically model for our communication system which 
allows to represent the transmitted symbols as the state of a 
stochastic system which can be estimated by particle filters.  In 
section 4, we detail the structure of our particle filter based 
equalizer and we discuss about some implementation 
considerations to improve the performances of the basic 
structure. Section 5 is devoted to the simulation results 
including some interesting comparisons with the performances 
of the EKF structure. Finally, conclusion is given in section 6. 

2. PARTICLE FILTERING THEORY 

The particle filter aims to estimate the sequence of hidden 

parameters kx  for 0,1, 2...,k n= , based only on the observed 

data ky  for 0,1, 2...,k n= . All Bayesian estimates of kx  

follow from the posterior distribution, but rather than the full 

posterior 0 1 0 1( , , ..., , , ..., )k kp x x x y y y , which would be the 

usual MCMC or importance sampling approach, particle 

methods estimate the filtering distribution: 0 1( , , ..., )k kp x y y y . 

Model: Particle methods assume that kx  and the observations 

ky  can be modeled in this form 

� 0 1, , ..., kx x x  is a first order Markov process such that 

1 11
~ ( )k k kx xk k

x x p x x− −−
 and with an initial 

distribution 0( )p x . 

� The observations 0 1, , ..., ky y y are conditionally 

independent provided that 0 1, , ..., kx x x  are known. In 

other words, each ky only depends on kx . 

One example form of this scenario can be written in the 
following way 

1( )

( )

k k k

k k k

x f x v

y h x z

−= +

= +
                              (1) 

where both kv  and kz are mutually independent and identically 

distributed sequences with known probability density functions 
and (.)f  and (.)h  are also known functions. These two 

equations can be viewed as state space equations and look 
similar to the state space equations for the Kalman filter.  If the 

functions (.)f  and (.)h  were linear, and if both, kv  and 

kz were Gaussian, the Kalman filter finds the exact Bayesian 
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filtering distribution. If not, Kalman filter based methods are a 
first-order approximation. Particle filters are also an 
approximation, but with enough particles can be much more 
accurate. 
Monte Carlo approximation: Particle methods, like all 
sampling-based approaches (e.g. MCMC) generate a set of 
samples that approximate the filtering distribution 

0 1( , , ..., )k kp x y y y . So, with P samples, expectations with 

respect to the filtering distribution are approximated by 

( )
0 1

1

1
( ). ( , ,..., ). ( )

P
L

k k k k k
L

f x p x y y y dx f x
P =

≈ ∑∫            (2) 

and (.)f , in the usual way for Monte Carlo, can give all the 

moments of the distribution up to some degree of 
approximation.  Generally, the algorithm is repeated iteratively 
for a specific number of k values (call this N). When done, the 

mean of kx  over all the particles is approximately the actual 

value of kx . 

Sampling Importance Resampling (SIR), is a very commonly 
used particle filtering algorithm, which approximates the 

filtering distribution 0 1( , , ..., )k kp x y y y by a weighted set of 

particles { }( ) ( )(w , ) : 1, ...,L L

k kx L P= . The importance weights 

( )w L

k are approximations to the relative posterior probabilities 

(or densities) of the particles such that ( )

1
1

P
L

k
L

w
=

=∑ . SIR is a 

sequential (i.e. recursive) version of importance sampling.  As 
in importance sampling, the expectation of a function (.)f  can 

be approximated as a weighted average. 

( ) ( )

0 1
1

( ) ( , , ..., ) . w . ( )
P

L L

k k k k k k
L

f x p x y y y dx f x
=

≈ ∑∫          (3) 

The algorithm performance is dependent on the choice of the 

importance distribution, 0: 1 0:( , )k k kx x yπ − . The optimal 

distribution is given as, 0: 1 0: 1( , ) ( , )k k k k k kx x y p x x yπ − −= , and 

is often named importance sampling function.  However, the 
transition prior is often used as importance function, since it is 
easier to calculate, and also simplifies, the subsequent 
importance weight calculations 

0: 1 0: 1( , ) ( )k k k k kx x y p x xπ − −=                  (4) 

SIR filters with transition prior as importance function are 
commonly known as bootstrap filter and condensation 
algorithm. Resampling is used to avoid the problem of 
degeneracy of the algorithm, that is, avoiding the situation that 
all but one importance weights are close to zero.  The 
performance of the algorithm can be also affected by proper 
choice of resampling method. For example the stratified 
resampling proposed by Kitagawa [7] is optimal in terms of 
variance. A single step of sequential importance resampling is 
as follows 
1-For 1,...,L P=  draw sample from the importance 
distributions 

( ) ( )
0: 1 0:( , )L L

k k k kx x x yπ −∼                          (5) 

2-For 1,...,L P=  evaluate the importance weights up to a 
normalizing constant 

( ) ( ) ( )
1

( ) ( )
1 ( )

0: 1 0:

( ). ( )
ŵ w .

( , )

L L L
k k k k

L L
k k L

k k k

p y x p x x

x x yπ

−

−
−

=                (6) 

3-For 1,...,L P=  compute the normalized importance weights 

( ) ( ) ( )

1
ˆ ˆw w w

P
L L J

k k k
j =

= ∑                                (7) 

4-Compute an estimate of the effective number of particles as 
( ) 2

1

ˆ 1 (w )
P

L
eff k

L
N

=
= ∑                             (8) 

5-If the effective number of particles is less than a given 

threshold  ˆeff thrN N< , then perform resampling 

a) Draw P particles from the current particle set with 
probabilities proportional to their weights. Replace the 
current particle set with this new one. 

 b) For 1,...,L P=  set ( )w 1/L
k P= . 

The term Sequential Importance Resampling is also sometimes 
used when referring to SIR filters.  
Sequential Importance Sampling (SIS), is the same as SIR, 
but without the resampling stage.  
A direct version of the particle filtering algorithm may be 
implemented in the following way. 
“Direct version” algorithm-The direct version algorithm is 
rather simple, it uses composition and rejection. To generate a 

single sample x at k from 1:
1:

( )kx yk k
p x y , 

1-Set  p = 1 
2-Uniformly generate L from { }1,...,P  

3-Generate a test x̂  from its distribution ( )
1 1

1
( )L

k kx xk k
p x x − −−

 

4-Generate the probability of ̂y using x̂  from ˆ( )ky x
p y x  

where ky  is the measured value 

5-Generate another uniform u from [0, ]km  

6-Compare u and ŷ  

    a) if u is larger then repeat from step 2 

    b) if u is smaller then save x̂ as ( )p
kx k  and increment p 

7-If p P>  then quit 

The goal is to generate P particles at k, using only the particles 
from k – 1. This requires that a Markov equation can be written 
and computed to generate a kx  based only upon 1kx − . This 

algorithm uses composition of the P particles from k – 1 to 
generate a particle at k and repeats (steps 2→6) until P 
particles are generated at k. This can be more easily visualized, 
if x is viewed as a two-dimensional array. Note that, ( , )x k L  

would be the Lth particle at k and can also be written ( )L
kx  (as 

done above in the algorithm). Step 3 generates a potential kx  

based on a randomly chosen particle ( )
1( )L

kx − at time k – 1 and 
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rejects or accepts it in step 6. In other words, the kx values are 

generated using the previously generated 1kx − . 

3. MATHEMATICAL MODEL FOR THE 
COMMUNICATION SYSTEM 

For many communication systems (e.g. GSM/EDGE) the 
mobile radio channel with the effects of multipath propagation 
and noise, can be described with a Finite Impulse Response 
(FIR) filter and an additional random variablevk  usually 

assumed to be a sample from a Gaussian distribution. 

This model can be represented in the following state space 
form similar to (1). 

1.

v

k k k

T
k k k k

s

y

−= +

= +

x F x b

h x
 (9), where 

1

2 1

1

;

k k

k k
k k

kL k L

h s

h s

h s

−

− +

   
   
   = =
   
   
      

⋮ ⋮
h x  (10) 

and 

0 0 0 0 0 1

1 0 0 0 0 0

;0 1 0 0 0 0

0 0 0 1 0 0

   
   
   
   = =
   
   
   
   

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

⋯

F b                 (11) 

The matrix F is used to perform the shifting operation of the 
input values inside the FIR filter. T

kh  represents a vector 

containing the L filter coefficients of the multipath channel FIR 
model, and kx  represents a vector of the L data symbols 

1 1[ , , ..., ]k k k Ls s s− − + , transmitted through the channel. Generally, 

as pointed out by the index k, the vector of the modelled 
attenuation coefficients Tkh  is time variant.  For the presented 

application we will consider a quasi static fading channel that 
is channel parameters remain constant over the duration of one 
GSM burst but vary from burst to burst. The idea of using 
particle filters for equalization was to employ them to estimate 
this state vector kx . For symbol estimation, the desired symbol 

is then extracted out of the most probable state vector. vk  is a 

complex noise sample from a Gaussian distribution with mean 

zero and variance 2σ . 

4. THE PARTICLE FILTER BASED EQUALIZER 

The desired pdf ( )k kp yx  can be principally computed 

according to Bayes theorem 

1( ). ( )
( )

( )

k k k k

k k

k

p y p
p y

p y

−=
x x x

x                 (12) 

Because only the maximum probability is to be found for 

symbol estimation, ( )kp y  can be omitted 

1( ) ( ). ( )k k k k k kp y p y p −∝x x x x                (13) 

If the probability density  functions of  (13) are known, 

( )k kp yx  could be calculated for every state kx . However, 

for practical systems with a discrete state space the effort to do 
this in real time is too high. For example a typical state space 
of the channel model for 8PSK modulation in an EDGE 
receiver has the size of the order of 107 elements (with a typical 
channel length of 8 with 8 possible values per symbol). 
Additionally, the equalization problem cannot be solved 
analytical. That means for exact calculation of the maximum a 
posteriori probability the required pdf has to be evaluated for 
every state of the state space. Thus, for practical application 

( )k kp yx  is only approximated and this is done by SIR, which 

is implemented as follows. If the desired pdf ( )k kp yx  would 

be known, it could be sampled to obtain a set of N so called 
particles 

{ }( )

1

N
n

k
n=

Ω = x                                 (14) 

For N → ∞  it can be shown that [8] 

( )

1

1
( ) ( )

N
n

k k k k
n

p y
N

δ
=

= −∑x x x                 (15) 

That means that if a large number of random experiments, 

according to the probability function ( )k kp yx  can be done, 

the number of outcomes of kx  during these experiments can be 

used as an approximation of ( )k kp yx . Practically, this pdf is 

to be estimated so it cannot be sampled directly. However, as 
we mentioned in section II, if samples can be generated from a 

different pdf 1( , )k k kyπ −x x , which is called importance 

sampling function, a correct weighting of the particles 

generated from ( )π x  makes an estimation of ( )k kp yx  

possible. This weighting factor is called (as in Section II) 
importance weight w . 

( ) ( )

( ) ( 1)

( ) ( 1)

( )
w .w

( , )

n n

k kn n

k kn n

k k k

p y

yπ
−

−
∝

x

x x
                  (16) 

That means an estimation value 

( ) ( )

1

ˆ ( ) w . ( )
N

n n

k k k k k
n

p y δ
=

= −∑x x x                 (17) 

could be calculated. The estimation ˆ ( )k kp yx  of the posterior 

probability function is equal to ( )k kp yx , if N tends to 

infinity. The choice of a suitable importance sampling function 
is of great importance to obtain good performance results of a 
particle filter. In this paper, we use the prior importance 
function for the distribution 

( )π x : ( ) ( )

1 1( , ) ( )n n

k k k k ky pπ − −=x x x x  which results in 

( ) ( 1) ( )w w . ( )n n n

k k k kp y−∝ x                     (18) 
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By using this importance sampling function, only the two 

probability density function ( ) ( )

1( )n n

k kp −x x  and ( )( )n

k kp y x , 

have to be known to perform state estimation. 

The probability 1( )k kp −x x  can be derived directly from the 

state transition in the first equation of (9). The function 

1( )k kp −x x  consists of a deterministic part 1k−Fx  and the 

stochastic part ksb , because the input ks  is unknown at the 

receiver. It is of great use that the sent symbol belongs to a 
limited known alphabet A . This alphabet consists of two 
symbols for GSM (GMSK) and eight symbols for EDGE 
(8PSK). Since we consider uncoded transmissions, symbols of 
this alphabet are assumed to have the same probability to 
occur, so this leads to 

1

1

1
for . . , 

( )

0 else

k k k k

k k

s s
p

−
−

= + ∈
=





x F x b
x x

A
A       (19) 

Because the noise is assumed to be sampled from a normal 

distribution , ( )k kp y x  can be calculated 

2

2

2.
1

( ) .
.

T
k k

k k

y

p y e σ
π σ

−
−

=

h x

x                  (20) 

Using these probability density functions, a new algorithm 
based on the Direct Version Algorithm, presented in Section II, 
can be formulated as shown just below. 
1-For every time step k do 
2-For every particle index n from 1,…,N do 

3-Draw new particle ( ) ( ) ( )

-1. .n n n

k k ks= +x F x b  with ( )n

ks  uniformly 

sampled out of GMSKA or /8EDGE PSKA  

4-Compute importance weights : 

2( )
.

2( )w

nT
k k

n

k

y

e σ
−

−

=ɶ

h x

 

5-Normalize importance weights : ( ) ( ) ( )

=1

w ww
Nn n m

k kk
m

∑= ɶ ɶ  

6-End For 
7-Resample particles 

8-Select the state kɶx  which occurs most times after resampling 

as most likely state 
9-End For 
In this algorithm new particles are drawn using the state 
transition (9). For creating new particles, only values out of the 

set of valid symbols, GMSKA or /8EDGE PSKA , are used. After that 

the importance weight of the particles is calculated. The steps 2 
to 6 are called SIS. For our particular study an additional 
resampling step was used. In fact, particles in one iteration of 
the particle filtering algorithm are generated from particles of 
the iteration before. The assumption, when using resampling, is 
that particles with a high probability create child particles, with 

also a high probability. For this reason resampling only 
duplicates particles with a high probability, and suppresses 
particles with a low probability. The higher the probability of a 
particle, the more often a particle is resampled. This method 
can dramatically improve the performance of the particle filter 
algorithm. It prevents the algorithm from degeneration [8-9] 
and it has the additional advantage that the importance weight 
of a particle from a prior computation step must not be taken 
into consideration explicitly as in (18). To satisfy the 
assumption that particles with a high probability for 
equalization, a prefilter [10] was applied to the channel 
coefficients to ensure declining coefficients. 
Implementation concerns - The algorithm shown before for 
particle filter synthesis is highly parallelizable. It can be 
implemented in a structure similar as those shown on Fig. 1. 
Most of the operations applied to a particle can be done 
independently of other particles. Only the resampling process 
cannot be implemented that easily in parallel than the other 
operations. This leads to a very flexible structure for realization 
in hardware. The SIS part of the algorithm can be done with 
particle filtering units (PF units) consisting of a particle 
memory and an operational unit of the SIS algorithm. The 
number of these units can be defined as a trade-off between 
area usage and computation speed. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 - Hardware implementation for particle filter equalizer 
 
For hardware realization, additional improvements of the 
algorithm can be implemented. In the SIS part of the algorithm 
the generation of a random symbol sampled from a uniform 
distribution is needed. Mostly, random numbers are generated 
with a linear congruential generator [11]. This number is then 
used as index to select a valid symbol out of a table, which 
contains the valid symbols according to the used modulation. 
By simulation, we find that nearly the same performance of the 
particle filter algorithm can be achieved when using (21), 
instead of a linear congruential generator, to select a pseudo 

random symbol out of the table A  of the valid symbols 

according to the used modulation. 

1( 1) mod( 1)n nm m −= + +A                    (21) 

That means a new table index nm  is simply generated by 

circular counting out of the last table index 1nm − . An other 

improvement comes from the fact that the variance 2σ  has to 
be precisely estimated to calculate the importance weight of the 
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particles. In the case of the GSM/EDGE system 2σ  is 
estimated using the training sequence code (TCS) of a GSM 
burst. Because of its small length of 26 symbols this estimation 
is not accurate. It was found by simulations, especially at high 
SNR’s, that the performance of the algorithm could be slightly 
improved by using already estimated symbols for correction of 
this noise variance. 

5. SIMULATION RESULTS 

This section shows performance evaluations of the proposed 
equalization algorithm. For the tested channel we choose a 
quasi-static frequency selective fading channel with five mean 
equal power taps in its CIR. That means the CIR contains five 
taps with mean power 0.2 since we consider normalized power 
channels. Fig. 2 shows the performance results for GMSK. The 
simulation was done using different number of particles. In this 
figure the bit error rate (BER) without any forward error 
coding (FEC) is shown. The performance was compared to a 
state of the art reduced state Viterbi algorithm [12]. As an 
additional performance comparison, the particle filter equalizer 
was compared to a state of the art estimation algorithm, the 
Kalman filter. Simulation showed that with comparable 
computation efforts, particle filters outperform Kalman filter 
algorithms for symbol estimation as shown in Fig. 3 for 8PSK 
modulation. As shown in Fig. 2 and Fig. 3 the bit error rate of 
the particle filter algorithm is scalable by the number of 
particles used for estimation. For GMSK, satisfying results can 
be achieved with about 50 particles. For 8PSK approximately 
200 particles are needed to obtain good results. So it is 
supportable that the amount of particles needed for good 
estimation results also depends on the constellation alphabet 
size. 

6. CONCLUSION 

This paper deals with the application of particle filtering to 
equalization for wireless communication systems over 
frequency selective fading channels. It was shown that particle 
filters can outperform some existing performing equalization 
structures such as the Viterbi equalizer or the Kalman 
equalizer. However its complexity is much higher than the 
commonly reduced state Viterbi method. One key point is that, 
it seems the computational effort for particle filters depends 
only linearly on the number of channel coefficients of the CIR. 
This entails that this kind of equalizer could be a promising 
solution for broadband communication systems with long 
channel impulse responses. Further works should investigate 
the feasibility to use the particle filter based equalizer to 
interface with a channel decoder to obtain a turbo equalizer 
structure. 
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Figure 2 - Simulation results of the particle filter equalizer for GMSK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 - Performance comparison Particle filter/Kalman filter for 8 

PSK 
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