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ABSTRACT

In this paper we highlight the benefit of automatic modu-
lation classification (AMC) for quadrature amplitude mod-
ulation (QAM) constellations in the context of multicarrier
transmission systems. Increasing computation power of mul-
ticarrier systems transceivers enables runtime adaptation of
transmission parameters to cope with sudden changes of the
noise conditions. AMC is a promising technique to verify that
runtime adaptation was successful, and it can also be used
in novel adaptation techniques. Using AMC, the modula-
tion order for each subcarrier of the multicarrier system can
be blindly detected, which reduces communication overhead
during adaptation. In this work, we give an overview of exist-
ing AMC techniques, develop several novel low-complexity
approaches and evaluate their performance.

1. INTRODUCTION

The target application for our methods is process data com-
munications (e.g. telecontrol and telemetering) using multi-
carrier communication systems. Here, we focus on wireline
systems (discrete multitone (DMT)), since signal to noise ra-
tios (SNR) for wireline systems are usually very good and
channel parameters such as subcarrier gain and noise power
can be easily estimated with great accuracy [1]. In pro-
cess data communications, data rates are usually rather small.
However great robustness and reliability of the systems is re-
quired for potentially very long transmission lines.

To guarantee reliable communication, transmitter and re-
ceiver must use the same transmission parameters (number
of bits and transmit power per subcarrier). To this end, a
training phase takes place before the actual data transmission
starts. During this phase, the channel state is estimated and
transmission parameters are optimized to reach some specific
transmission constraints. The optimized parameters are then
exchanged between receiver and transmitter.

If channel conditions change (usually due to an increase
in noise power), it might be necessary to update transmis-
sion parameters. One way to restore reliable communication
is to close the connection, retrain the system and establish
communication a new connection with adapted transmission
parameters. However, such a retraining is time-consuming
and interrupts the data flow.

Another option is to use dynamic runtime adaptation such
as proposed by ADSL (asymmetric digital subscriber line)
standards. For example, some bits might be removed from
subcarriers with poor SNR and re-assigned to subcarriers
with better SNR. AMC can be used to verify that this re-
distribution took place as intended.

When noise changes render reliable communication im-
possible, runtime adaptation as described above is difficult.
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The transceivers might then autonomously reduce the num-
ber of bits transmitted on some or all subcarriers and AMC
can be used to detect such changes and update transmission
parameters accordingly.

The main problem of using AMC in multicarrier systems
is the possibly large number of subcarriers. Each subcarrier
may use a different constellation and therefore, AMC must
be performed for every subcarrier. Fast and low-complexity
AMC methods are therefore mandatory.

1.1 Previous Work and New Contributions

AMC has been an active research area for many years. Max-
imum likelihood (ML) methods [2] have been shown to
achieve optimum classification results. These methods, how-
ever, are computationally very expensive. Various techniques
have been proposed to reduce the computational complexity
while achieving close-to-optimum performance. Approaches
include the use of higher order statistics (HOS) such as cu-
mulants [3] and moments [4], feature extraction and artificial
neural network (ANN) classification [5], fuzzy logic [6], and
statistical sampling methods (e.g. with Monte Carlo Markov
chain (MCMC) techniques [7] or Gibbs sampling [8]).

It is important to note that many previous publications
only considered signal constellations that are relatively dis-
tinct from each other (either in terms of average power or
constellation shape). Many of the above methods are not ap-
plicable when the signal constellations to be classified are
very similar.

In DMT and OFDM systems, it is common to use square
QAM constellations. In the remainder of this paper, we pro-
pose several low-complexity methods to distinguish between
QAM constellations transmitting 2, 4, and 6 bits, respec-
tively. By combining two methods, results can be further
improved.

2. SYSTEM MODEL AND SIMULATION

The signal alphabet of a QAM constellation is represented
as a set of points in the complex plane. In this paper, we use
square equispaced QAM constellations, such that the number
of bits that are transmitted with a constellation is a multiple
of two and all signal points have the same minimum distance
dmin from each other.

The three possible constellations we want to classify are
4-QAM, 16-QAM, and 64-QAM. We refer to these as the
constellation candidates @y, with k € {1,2,3}. Each candi-
date constellation transmits by bits with by = 2, b, =4, and
b3 = 6, and has Ny, constellation points with Ny =4, N, = 16,
and N3 = 64.
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Without loss of generality we assume that all constella-
tions are normalized to have unit variance (average energy of

one). Then, dfnin can be given by
3
dhin = 1
min 2(N—1) M

Each noise-free sample at instant n of a constellation
point s¥(n) € @y can be given as

ko :gk
— a}’l +.] n

where

o, By € {*\/ﬁﬁlﬁ\/ﬁw&...,\/ﬁk*l}. 3)

Figure 1: The three constellations, 4-QAM (+), 16-QAM
(x), and 64-QAM (-).

Fig. [1 shows the three constellations plotted over each
other.

Since the modulation of the transmit signal by the Fast
Fourier transform (FFT) effectively separates all subcarriers
from each other, we can perform AMC independently for
each subcarrier. Accordingly, for each subcarrier we can
consider a circular complex additive white Gaussian noise
process g(n). Its influence on noisy receive samples r(n) is
given by

r(n) = xn +jyn = 5(n) + (). @)

We assume the variance, 62 of the two-dimensional noise
process to be known. In practice, an estimate for 6 is readily
available, either by inspecting pure noise samples or by using
pilot samples or decision feedback methods [9] during data
transmission. Furthermore, we assume perfect symbol and
carrier synchronization as well as zero phase offset, which is
a reasonable assumption for DMT systems.

The task at hand is to estimate the correct constellation
o from a vector r = (r(1),r(2),...,r(N)) of N received
samples, all from the same constellation. Simulations are
performed using 1000 iterations for each combination of ay,
N, and SNR values.
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3. SIGNAL SPACE CONCEPTS

In this section, we partition the complex signal plane into two
sections. We consider an inner square section, centered at the
origin, with a side length of d; and the rest of the plane, out-
side the square. Depending on the SNR and the constellation
size, we try to identify a value d; that provides the best sep-
aration of the three constellation candidates in terms of the
percentage of received signal points inside the square. We
denote the probability of a signal point being received inside
the square by p;.

Results for the three constellation candidates for SNR of
10, and 20 dB are shown in Figs.2]and 3.
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Figure 2: SNR =10dB.
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Figure 3: SNR =20dB.

For 0dB SNR, a clear distinction is practically impos-
sible. For 10dB SNR, at least 4-QAM is easily identified.
For 20dB SNR, all three constellations can easily be distin-
guished. The best separation is achieved for side lengths of
approximately d; = 0.45 and d; = 0.8. Similarly, optimal
values ds and their corresponding p can be empirically de-
rived for all SNR under consideration. For classification, ac-
tual values of p, for all constellation candidates are compared
with the empirical ones at values d; providing optimal sep-
aration and the constellation candidate that shows the least
deviation from empirical values is chosen.

In the following, we will refer to classification based on
this method as SQUARE classification.

4. HOS METHODS

Higher order statistics (HOS) can be used to extract fea-
tures for classification that are relatively robust to model mis-
matches [10].

EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Table 1: Noisefree HOS for QAM

‘ Constellation H Cy ‘ O ‘ Cy ‘ Cy ‘ Cy2
4-QAM 0 1 -1 0 -1
16-QAM 0 1 | —0.6800 | 0 | —0.6800
64-QAM 0 1 | =0.6190 | 0 | —0.6190

Second order moments for a complex-valued station-
ary random process y(n), where y(n) represent the received
QAM symbols, can be given as

Co=E[P(n)] and Ca =E b, )
where E|[-] denotes expectation.

The value C;; is the average energy of the constellation
(equal to one as explained in the previous section).

Sample estimates of second and fourth-order cumulants

are given by [10]

N
Cy = Zy )and Cyy = Z y(n)?
n:l
and
A 1, A2
Cio =~ Y y'(n)—3C5
N n=1
Cy = Zy 3C20C21
A 1 & 4 M2 42
Cyp = N Z ly(n)|* —|C5|” — 2G5, (6)
n=1

with complex conjugation operator {-}*.

The theoretical noisefree values for our three constella-
tion candidates are given in table/1. For the modulation types
considered in [10] (e.g. phase shift keying (PSK) and pulse
amplitude modulation (PAM)) all values can be used for clas-
sification. The only useful parameters for our classification
problem, though, are C49 and C4;. For noisy samples, reliable
classification by means of these parameters is still difficult,
because 16-QAM and 64-QAM can not be clearly separated.

We can apply a trick, however, and postulate that the
transceivers pick one of the constellations and always ro-
tate it by 45 degrees before transmission. For a constel-
lation rotated in this way, the noisefree values of Cy49 and
C47 have equal absolute value but different sign: Cyq is pos-
itive. By inspecting Fig.[2, we can conclude that it is much
more difficult to distinguish 16-QAM from 64-QAM than it
is to distinguish both of them from 4-QAM. Accordingly, the
largest performance improvement is realized when the 16-
QAM constellation is rotated. The noisefree values for the
rotated 16-QAM are then C49 = 0.6800 and C4p = —0.6800.

For classification with noisy samples, it is sufficient to
compare C4 and Cyy and check for a sign difference without
considering the specific values. With this method, the 16-
QAM can be reliably classified even in poor noise conditions.

Fig. 4 shows the probability of correct classification Pe.
of this method for various SNR values and sample sizes N.
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Figure 4: Performance of 16-QAM classifier.

Perfect recognition of 16-QAM is achieved for SNR val-
ues above 8 dB even with only N =100 samples. Simulations
have shown that when 4-QAM and 64-QAM are transmitted,
16-QAM is never erroneously classified. Thus, the estimator
is very robust.

5. OPTIMAL CLASSIFICATION WITH ML
CRITERION

The optimal classification rule is given by the maximum like-
lihood criterion.

We assume that all constellation points are chosen from
the same constellation which is one of the three candidate
constellations. As suggested in the previous section, we ro-
tate the 16-QAM constellation by 45 degrees.

Each constellation candidate has a characteristic proba-
bility density function (PDF) p(x,y), that can be given for
points r(n) = x, +jy, as

1 %

L Z + (yn*ym)z
Ny = 2no?

(xn - xm)2
exp <— 752
(N

where 62 is the one-dimensional noise variance of the addi-
tive Gaussian noise process g(n) and x,, and y,, are the coor-
dinates of all N noise-free constellation points s* from (2).

Given a vector r = (r(1),...,r(N)) with N received sam-
ples from the same constellation, the ML classifier can be
described as follows [11]:

P(Xn,yn) =

Assign rto o;if I(r|oy) > I(r|w;), Vje {1,2,3} (8

where

(rlw;) Z In(p

Note that generally, the 1mplementat10n of the ML classi-
fier is not practical since it requires extensive computations.
Even if lookup tables are provided, the memory overhead for
storing them is large.

Fig.|5/shows the simulation results for the combined clas-
sification performance over all constellation candidates and
sample sizes of N =100, N =200, and N =500.

Even for N = 100, perfect classification is reached for
SNR above 8 dB.

Fig.[6 shows the result when not rotating the 16-QAM
constellation. It is evident that rotating does indeed greatly
improve the overall classification performance.

&)

xn ) yn
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Figure 5: Averaged performance of ML classifier for various

sample sizes.
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Figure 6: Averaged performance without rotation.

6. ML BASED PARTITIONING OF SIGNAL PLANE

We can make use of the above results for ML classification
and incorporate them into a partitioning of the signal plane
that assigns each point in the plane to the corresponding con-
stellation candidate according to the ML criterion.

Figure 7: Signal plane partitioning for SNR =10 dB.

In Fig.[7, an example is given for the three constellations
and an SNR of 10dB. Each constellation candidate domi-
nates certain parts of the plane. Darker gray indicates a
smaller constellation. Fig. [8] shows the partitioning for an
SNR of 15dB and shows how the partitioning changes with
SNR.

All received points are assigned to the constellation can-
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Figure 8: Signal plane partitioning for SNR =15 dB.

didate in whose region they fall. A majority vote then leads
to the final classification.

Formally, we divide the signal plane into three regions
Ry and observe the number of samples that fall into each of
those regions. The classification rule for the received vector
r is then

Assign rto o;if c(r|w;) > c(r|w;), Vje {1,2,3} (10)

with
c(rlw;) = |{r(n)|r(n) € Rj}| , 11

the number of samples that falls into region R;. In the fol-
lowing, this method is referred to as COUNT classification.

Of course, the proposed signal space partitioning yields
worse results than ML classification since decisions are made
on a point-by-point basis. However, for good SNR (above
13 dB), performance is virtually identical to that of ML clas-
sification at a much lower complexity as shown by the simu-
lation results in Fig.[9!
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Figure 9: Averaged performance of COUNT classifier for
various sample sizes.

To store the signal plane partitionings, which change with
SNR, lookup tables can be used. A two-bit value can be used
for each entry in a lookup table to identify the three possible
constellations. The memory requirements then depend on the
granularity or resolution of the partitioning. For example, we
used a resolution of 0.01 for partitioning and considered val-
ues in the range [—2...2]. Making use of inherent symmetry,
only 15kB of memory are then required to store a complete
lookup table for each particular SNR value.
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7. TWO-STAGE METHODS

In the previous section, we have used the COUNT method to
classify all three constellation candidates. While the perfor-
mance was good for high SNR, we would like to have better
performance for low SNR as well. To this end, we com-
bine the HOS classification method from section [4]with the
COUNT method in a two-stage process. We first try to esti-
mate whether the sample vector belongs to the 16-QAM via
the HOS method. If not, we apply COUNT to differentiate
between 4-QAM and 64-QAM.

The result is shown in Fig. The performance is con-
siderably improved. This two-stage classification method,
denoted HOS-COUNT in the following, achieves results
impressively close to those achieved by the optimum ML
method (see Fig.5) at much lower computational complexity.
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Figure 10: Averaged performance of two-stage classifier
HOS-COUNT.

Finally, one can also combine the SQUARE method with
HOS classification. In this case, 16-QAM is classified by
the HOS classifier and the SQUARE classifier differentiates
between 4-QAM and 64-QAM. Results are shown in Fig.[11.
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Figure 11: Averaged performance of two-stage classifier
HOS-SQUARE.

While HOS-SQUARE has slightly poorer performance

than HOS-COUNT, it has the additional advantage that no
lookup tables are required.
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8. CONCLUSION

We investigated the problem of AMC for three QAM con-
stellation candidates. In the context of multicarrier systems,
it is mandatory to use low-complexity methods for AMC. We
have proposed and evaluated several low-complexity meth-

ods to solve the AMC problem. It could be shown that while
each method has some shortcomings, combining them in a

two-stage classification process achieves very good perfor-
mance for the SNR ranges typically encountered in the con-
sidered transmission environments.
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