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ABSTRACT

Cell migration is a complex process involving adhesion, an-
chorage and de-adhesion. It is also a reliable indicator of the
outcome of cancer. Can a migratory cell behavior be reliably
associated to a cell morphology? In the favourable case, it
could become a visual indicator when coupled with image
analyzis. In this work, microscopy images is much use to
characterize the morphology of cells placed in various envi-
ronments. Features were processed and cells were classified
taking into account the biological expertise. Linking these
results to experimental parameters andin vitro data, we pro-
posed to evaluate the cell migratory potential. The results
give the expert new insights into the most useful features and
show the feasability of an automated inspection system. A
less common aspect is discussed throughout the paper regar-
ding the relevance of the local (cell image) or global (whole
image) information processing.

1. INTRODUCTION

Nowadays, cell migration is a complex process well iden-
tified during development, present during wound healing and
representing an indicator of the cancer outcome. Classically,
when not circulating, cells are “embedded” within a proteic
scaffold. A migrating cell destroys part of this matrix to ac-
quire the necessary space for its translocation : the cell adopts
an ellipsoidal shape and finds its way through the matrix.
These events, in a “grip, stick and slip” repeated sequence,
lead to the movement of the cell. This sequence is consi-
dered as essential in cell migration. The conventional mode
of migration is called “mesenchymal migration”. Yet ano-
ther mode of migration, the “amoeboid type” migration does
not fit into the conventional cell migration model and could
be utilised by metastatic cells [7]. Indeed, for the amoeboid
migration, cells adopt rounded shape, migrate as individual
cells, do not use the same type of adhesion/de-adhesion (via
integrins molecules), develop weaker links between the cell
membrane and the environment. However cell migration is
still poorly understood, because it is a multi-scale pheno-
menon, and also because it puts at work forces, molecules,
interactions for which no global mathematical model exists.
Hence, there is a need for better prognosis factors. A bet-
ter knowledge of this process is essential for proposing more
subtle therapeutic approaches.
Recently attention has focus on the role in cell migration of
the PAI-1 molecule, an inhibitor of proteolysis. Because ofits
presence in high amounts in the immediate vicinity of very
invasive tumors, it is considered as an independent marker of
bad prognosis (metastasis). PAI-1 has already been shown to

influence cellmorphology [2, 4, 9] and could be implicated in
the induction of the observed amoeboid movement of cancer
cells.
The pro-migratory role of this molecule can be evaluated es-
pecially in terms of cell morphology. This role could lead
to some (quantitative and reproducible) information of pro-
gnostic value. This is the main objective of the present
work. Extraction of morphological “profiles” were applied
at first to cells resulting from established and well known
cell lines. The morphological approach consists in a binari-
zation of the image followed by a morphological analysis of
the cells shapes in order to distinguish between roundish and
spread out cells. This approach is effective on well contrasted
images. However, in a future work, features extraction based
on wavelets decomposition should make it possible to obtain
better results even on more noisy images.
Starting from a knowledge-acquisition process with a human
operator (see section 3), we developped an image analysis
and a feature extraction algorithm described in section 4. We
present our results on image analysis, feature extraction and
classification in section 6 : bayesiean classification on inde-
pendent training and test sets has been performed. We esti-
mated the parameters by utilizing 50% of the cells of each
image in the training data and then tested the classification
rule on the remaining 50% of the cells from the same image.

2. MATERIAL

The same colorectal line of cells (SW20) have been studied
in two situations : a promigratory environment (PAI-1) and
a nonpermissive environment. In this line, cells are fixed
and colored with Crystal violet. The material included 24
256 gray-levels images of 1300×1030 pixels, inTIF format.
They have been acquired though a CCD camera adapted to
an optical microscope in conditions very far from optimal.
Only SW20 metastatic colorectal cell line was included in
this study.
The cells were studied with aZeiss AXIOVERT 200 in-
verted microscope. coupled with a Siemens CCD camera and
digitized on a image processing unit at a final magnification
of 5000× and 0.05µm per pixel. Each image contain about
300 cells. We will try to establish their morphology in PAI-
1 (20µg/cm2) (Fig. 1.a) and collagen (20µg/cm2) enriched
environments (Fig. 1.b). On these test images, the cells arein
dark colour because the colouring felt-tip is dark itself.

3. KNOWLEDGE ACQUISITION

The activation of the "moving cell machinery" leads to par-
ticular morphologies,e.g. “blebbing” cells [1, 7] (this cell
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TAB . 1 –Human experts classification results. The percent of cells on which the experts are in accordance is given.

non-specialists specialists Togethera

(%)Class A (%) B (%) C (%) A∩B∩Cb D (%) E (%) F (%) D∩E∩Fa

C1 68,9 36,52 15,61 13,7 46,66 34,44 50,27 29,45 11,74
C2 28,94 59,34 84,0 27,6 46,50 61,07 49,37 38,06 24,82

B
in

a
ry

C3 2,12 4,14 0,39 0 6,84 4,49 0,36 0 0
C1 67,28 36,84 22,11 20,38 52,90 35,15 52,35 33,18 18,49
C2 30,6 58,91 77,69 29,49 47,06 60,42 36,99 30,83 19,44

G
ra

y

C3 2,12 4,25 0,20 0 0,04 4,43 10,66 0 0

a≈ A∩B∩C∩D∩E∩F
b≈ percent of accordance.

a. b.

FIG. 1 –Cell samples (a) in PA1-1 environment, (b) on collagen.

morphology was recently described as “the” morphology of
metastatic escaping cells1). In a knowledge-acquisition pro-
cess with a human operator, using an interview technique,
we acquired the knowledge of this operator, while classifying
the different cell types. Some of this knowledge is shown in
Table 2. The operator uses the cell’s morphology as well as
some texture information.

Class Class name Description
mesenchymal C1 round
amoeboid C2 streched out
undecided C3 –

TAB . 2 – Some knowledge about the class description given by a
human operator.

In addition, the appearance of the cell parts within the cells
is of importance, like “blebbing edge”, which also requires
spatial information. We started out to develop the image ana-
lysis procedure and construct a feature set, which seems to
be powerful enough to describe this symbolic knowledge. It
is left to the data mining experiment to find out the relevant
features for classification and to show us gaps in our descrip-
tion of the domain. Prior to feature extraction from imagery,
round/streched cells have to be visually differentiate from
their appearances and counted. The result of a human ope-
rator account is given for instance in the table 3.

1On this sitehttp ://www.lami.univ-evry.fr/ ˜gbm/ a film
on in vitro amoeboid migration of cancer cells on PAI-1 (SW620
PAI-1 titre.avi) and the control on collagen (SW620 collagen
titre.mpg), can be seen.

Cells round streched
PAI-1 env. 99,7% 0,93%

collagen env. 43,17% 56,9%

TAB . 3 – Expert account of cells in PAI-1 and collagen environ-
ments.

Similar results were collected from images presenting the
whole field seen by the microscope. Six experts (3 biolo-
gists and 3 non experienced biologists) inspect the images
and classify the cells manually as “round, streched or undeci-
ded”, or equivalently{C1,C2,C3}. The well-known problem
in image interpretation “the difference between showing and
naming” makes this methodology hard to follow by novices.
The operator uses the gray-level intensity as well as some
texture information.
Even for an experienced biologist it is often hard to decide
the right class. From Fig. 1, we note that in the collagen
environment, the cells are spaced, there is a not very signi-
ficant number of round cells and the spread out cells have
a form very characteristic. On the contrary, the number of
round cells is very important in PAI-1 environment. Never-
theless, it is difficult to distinguish between a cluster of round
cells and lengthened cells.
2,546 vignettes supposedly containing each a single cell ste-
ming from one of the 24 images have been analyzed. Tab. 1
illustrates the “gap” between experts and non experts judge-
ments. Further analysis shows that the experienced biologists
agree only on 36,56% of the whole set of binary vignettes,
but this number raises to 37,9% in the case of gray-levels
vignettes.

4. GLOBAL PROCESSING BY IMAGE ANALYSIS

4.1 Image processing

It is typical to divide the operations required into different
stages (see Fig. 2). Clutter reduction refers to removing non-
object data, this operation alters generally object data and
thus it is not necessarily a separate stage. Automatic thre-
sholding has been performed by the algorithm of Otsu [10].
The algorithm can localize the cells with their cytoplasmic
structure, but not the nucleus itself. We then appliedmorpho-
logical filters like dilation and erosion to the image in order
to get a binary mask for cutting out the cells from the image
[5] (Fig. 3).
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FIG. 2 –Hierarchical levels for cell images processing.

Then the number of objects in the class image is calculated.
From the objects the area, some shape factors, the length of
the contour, the eccentricity are calculated and these are fed
to a classifier that determines the class (which type of object).

a. b.

c. d.

FIG. 3 –a) Initial image, b) binarisation, c) contours extraction,d)
connected components extraction.

Characterization depends upon recognizing a cell as a mem-
ber of some well-known class [6]. Note that the images
f (x,y) considered from now for further calculations are sup-
posed to contain only one cell or possibly a cluster of cells.
It is left to the data-mining experiment to find out the most
relevant features for classification. We use asequential fea-
ture selectionalgorithm (SFS) for feature selection before
presenting them to the classifiers. Features were ranked in
decreasing order by their discriminative power (their ability
to distinguish classes). The most discriminating is the “cor-
relation” character.

4.2 Radii histogram and correlation

The correlation feature can be obtained on the basis of the
binarized image. We used the fact that the required cells are
supposed to be (almost) round and we compute the corre-
lation between the related components extracted from the
image and a circle. The radius of this circle was obtained
after determination of an average radius using a histogram
of the radii (Fig. 4). From the binary image of the related
components present in the image, we work starting from
the germs obtained following the operation of erosion. Each

germ is supposed to be at the origin of a cell. The histogram
of the radii is then built by calculating the distance separating
the contour points of the related component of the center to
the barycentres of the germs. Indeed, the same related com-
ponent can lead to several germs at the end of erosion (Fig.
4).

FIG. 4 –Calculus of the cell mean radius from a radius histogram.

Once all the related components are analyzed, the average
radius is obtained in the class corresponding to the mode of
this histogram. One thus builds a small image, containing a
circle of this radius. Thecorrelation valuefor one cell is the
number of pixels belonging to the intersection cell/circleof
average radius (Fig. 5).

+ =

FIG. 5 – Principle of the correlation calculus : the cell to analyze
(left) is correlated with the mean radius cell (middle) providing an
geometric intersection (right).

Any connected components which lead to a correlation va-
lue greater than a given threshold is supposed to satisfy the
roundness criteria. The table below gives the results obtained
for some values od the correlation threshold.

Corr. threshold 0,65 0,75 0,83 0,90
PAI-1 env. 98,17% 92,12% 71,90% 35,61%
collagen env. 84,76% 67,67% 44,63% 23,74%

TAB . 4 –Correlation results in terms of percent of round cells.

We test the hypothesisH0 of no difference in environment.
H0 is rejected if|T| ≥ tnx+ny−2(1− α

2 ). Hereȳ− x̄ = 0.1924,
s2 = 0.0376 andT = ȳ−x̄

s = 5.117. Becauset6(0.975) =
2.7763, we conclude at the 5% level of significance that there
is a significant difference between the environment (see for
instance more details on testing and confidence regions in
[13, Chapters 20-22]. The level 0.95 confidence interval for
thedifference in meanround cells percent is

19.42%±3,8%.

On the basis of the results of these experiments, we would
conclude that environment induce significant change in the
morphology of the cells. These results depend strongly of
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Description Name Formula

1 Hough parameter H –

2 Deviation between the lengthL and the widthℓ DL |L−ℓ|
min(ℓ,L)

3 Ratio surface of the picture to surface of the cell RS S
L×ℓ −

π
4

4 Sides equilibrium LRE |∑y p1 j −∑y pL j |− |∑k pk1−∑k pkℓ|

5 Distance between middle of the picture and cell (geome-
tric) center DOG

√

(xG−xO)2 +(yG−yO)2

6 Square of the perimeter to the area SP2 {∑x ∑y g(x,y)}
2
|(x,y)∈edge

∑x ∑y g(x,y)|(x,y)∈ins

7 Diagonal moment of the cell SYM ∑x(∑yg(x,y)left −∑y g(x,y)right)2

+∑y(∑x g(x,y)left −∑x g(x,y)right)2

8 Measure of convexity CNV mean
(

∑x ∑y g(x,y)|(x,y)∈out
∑x ∑y g(x,y)|(x,y)∈chord

)

9 Mean deviation between the observed number of pixels
of the cell and the expected number DST ∑x(g(x,y)obs−g(x,y)exp)2

L +
∑y(g(x,y)obs−g(x,y)exp)2

ℓ

TAB . 5 – List of features in a picture and their calculation.

the chosen threshold value. However, the algorithm find more
round cells in collagen than with PAI-1.
Remember that Class 1 corresponds to the PAI-1 environ-
ment and the Class 2 to “collagenous” environment. The first
conclusion to be drawn is that the result is very sensitive to
the correlation threshold value. Nevertheless, whatever can
be the tested threshold value, one finds always much less
cells “labelled” as round in the collagenous environments
than in the PAI-1, and this with a variation between 12 and
25%. The assumption according to which the environments
induce different cell behaviors appears rather plausible.This
operator of correlation could thus allow a firstdifferentiation
of the PAI-1 and collagenous environments. More interesting
is the connection between these results and those presented
in the table 3 which exposes the account of cells in the whole
image (section 3).
First, there is a gap between the results obtained by this
correlation methodand those proposed by the human ex-
pert : this can be explained by the nondependence bet-
ween the environmental context and the (automatic) method,
which is by evidence not the case for the human expert. More
precisely, the expert found a rate of round cells in PAI-1 com-
parable to the correlation threshold of 0,65 (see Tab. 4). With
the collagenous environment, the expert corresponds to the
correlation threshold of 0,83. This illustrates the fact that the
expert analyzis is based on the whole image to decide if a
cell is round or not. In the collagenous environment, cells are
spaced, then it is easier to distinguish between a streched and
a round cell. Do only well insulated cells with cleared round-
ness be “good” candidates for the “round” label2 ? A compa-
rison with the result of Class 2 for threshold 0,83 should be
made at this stage to answer the question. On the other hand,
cells population in PAI-1 environment is much denser. One
easily distinguishes spread out cells, including cells being not
perfectly round. See for instance similar results for threshold
0,65 of the Class 1.
Second, when the cells are extracted from the complete
image and presented in small (square/rectangular) images to
the expert, the decision to classify a cell as round/streched
requires a mental process that one can probably put together

2The doubt about the clusters benefitting the long cells.

with a high threshold correlation value. To decide that a circle
is inside a square supposes that this circle is “perfect”.
These remarks could explain the difference between the ob-
tained results when the cells labelling is made in a local or
a global context. More interesting, this correlation operator
could be retained as a possible way to reach a compromise
for stating on the roundness of the cell by using an interme-
diate correlation threshold. In our experiments, a threshold of
0,75 guarantees a good differentiation between collagenous
and PAI-1 environments.

5. NEURAL NETWORK CLASSIFIERS

We started out to develop the image analysis procedure and
construct a feature set, which seems to be powerful enough
to describe this symbolic knowledge. The features to be used
for classification are classical morphological measures des-
cribing the cell geometry such as those described in [3]. The
list of features included in the feature vectorx= (x1, . . . ,x9)

T

and their calculation is shown in Table 5. The whole data set
has 2,546 samples. Based on that data set, we acquired the
knowledge for classification. The training set is subdivided
into two sets : the calibration set and the validation set. We
consider two classifier architectures : so-calledmulti-layer
perceptron(MLP) andbelief network(BN) as shown resp. in
Fig. 6 and 7.
Both networks are designed forsupervisedlearning of the
diagnostic task and calculates theposterior probabilities
{P(ei |x), i = 1, . . . ,6} for a particularx. A set of “input”
units is used to encode the feature vector. Classification pro-
blems require that each input vectorx be assigned to one of
3 classesCi , i = 1, . . . ,3, in which the target variablest re-
present class labels.
In Fig. 6, a layer of hidden units performs a weighted sum
of teh inputs followed by a nonlinear sigmoid transforma-
tion. It is assumed there are no connection among the units
within each layer. Theith hidden unit has the outputsi =

σ
(

∑nh
j=1(wi j x j −bi)

)

. The sums extends over the input units.

wi j is the weight of the connection from input unitj to the
hidden uniti, andbi is the bias,σ(·) is the sigmoid orlogistic
functionσ(y) = 1

1+e−y . The output units are receiving inputs
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e1 e2 e3 e4 e5 e6

no

nh

x

FIG. 6 –Deterministic two-layers feedforward neural network : the
outputs – one output representing one expert – are probability dis-
tributions over the 3 possible classes.

from the hidden units.
The type of networks examined are feedforward, fully
connected back-propagation networks as described in [12].
The back-propagation paradigm uses thegeneralized delta
rule to determine the weights that will minimize the root
mean square error (RMS) between desired and network out-
puts. The total RMS error is defined as :

E =

√

∑K
p=1(tp−ep)2

K
(1)

wheretp is the target pattern,K is the number of examples in
the training set and(tp−ep) is the difference between the tar-
get and the network outputs. The network is initialized with
random weights and trained. The training is stopped before
the error on the evaluation set starts to increase.
For classification purpose the output units are performing a
sigmoid transformation which is a useful representation of
the posterior probability over two classes [8].
The network in Fig. 6 is forced to produce theposteriorpro-
bability of theith expertei = P(C j |x) by encoding the output
values with 0/1-values units : 0 for a streched cell, 1 for a
round cell. Hence, values in the “vicinity” of the value 0,5 in-
dicateundecision. Such classifiers have numerous problems
and issues. One is the training set size required with respect
to the number of adaptive weights. Another concern is ge-
neralization (test performance vs training set performance).
Note that this network encodes the experts know-how : such
network provides better generalization (especially when the
training data set is small) : the final assignment of a cell to a
class will result from some combination of the outputs of the
netwok, but the combination rule is not given here : it can be
a majority vote, a maximum vote, etc.

e1 e2 e3 e4 e5 e6 x

FIG. 7 –Bayesian network.

Thebayesian network(BN) or belief network[11] represen-
ted Fig. 7 is designed for modeling the data without any par-

ticular task in mind. The input units are fed withboth pat-
tern setx and the desired predictions values{e1, . . . ,e6} with
ei = P(C j |x). As a result of training, these units may come
to model correlations among features, among classes or bet-
ween features and classes. If the network succeeds in mode-
ling the total distribution{P(ei |x), i = 1, . . . ,6} perfectly, it
will be capable of performing any sort of pattern completion
task. For example, one could clamp the attributex and then
observe the most likely class as the Gibbs sampling proce-
dure is running, or conversely one could clamp a set of pro-
babilities{P(ei|x), i = 1, . . . ,6} (or even a part of them3) and
observe the most likely featurex. However, if the number
of hidden units isunsufficientto model the total distribution,
the network will end up modeling whichever correlations are
strongest and these might not be the ones that are the most
important for prognosis. The arrows in a belief network are a
device for expressing probabilities, and need not correspond
to real influences.
At the end, this involves a decision about the class to be obtai-
ned for a cell from the set probabilities{P(ei |x), i = 1, . . . ,6}.
Note that in general the true class isunknown. One has not
only to make decision about the final class, but also about the
result obtained. Decision making has essentially to do with
uncertainty.
Empirical data, while valuable, may be of limited extent.
The need in such applications to integrate knowledge deri-
ved from experts with that derived from empirical data has
been recognized by workers in the area. A group of tools are
those that enable sets of data to be condensed and sumarized
in ways that are clear and helpful – so-calledsummary sta-
tistics. For instance, the commonest measure appropriate for
data of the form of a set of scalarsz1, . . . ,zn is the average
defined by ¯z= ∑n

i zi/n, but it is inefficient in our case. This
work being considered as non-crucial is left for future work.

6. RESULTS

To understand where our classifiers are good or failing, we
give theclass-conditional error rates, that is the error rate
amongst examples of a classi. Further, we may want to know
which classes are being confused, and so we may wish to
know the set of probabilities

pi j = P(decisionj|classi),∀1≤ i, j ≤ 3 (2)

whose collection forms theconfusion matrix.

MLP classifier (type 6)
Class 1 Class 2 Class 3

numbers 1616 834 96
round 67,4 % 0 % 0 %

streched 32,5 % 77,1 % 100 %
undecided 0.1 % 23,9 % 0 %

Baysian network (type 7)
Class 1 Class 2 Class 3

numbers 1616 834 96
round 78,4 % 0 % 10,4 %

streched 12,1 % 80,6 % 37,6 %
undecided 3,9 % 19,4 % 52,0 %

TAB . 6 –Confusion matrices.

3Missing data problem.
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To assess the accuracy of the classifier, we applied the classi-
fier to the training dataset. Experiences have been performed
on the 2,546 vignettes splitted into a training and a test sets.
Results are given in Tab. 6. The confusion matrices show the
frequencies and conditional fractions of correct and incorrect
classifications. Although the classifier has reasonnable high
rates of correct classification for each population, the mis-
classification rates are not negligible. Fig. 8 visualizes some
classification results (performed by the bayesian network).

Class 1 Class 2 Class 3

FIG. 8 –Binary images of cells picked up in predicted classes.

7. CONCLUSION

In this paper we put forward the difficulty of obtaining a truth
reliable ground : experts opinions can diverged and can be
influenced by the global/local view of the image. It is thus
necessary to privilege methods whose results confirm the dif-
ferentiation of the environments without inevitably obtaining
the same results as the experts. The two methods suggested,–
the method of global analysis based on the correlation and
the total method based on the characterization of each rela-
ted component by a set of parameters which are used as entry
with a network of neurons – make it possible to obtain first
promising results. The combination of these two approaches
is certainly the way which will make it possible to obtain a
reliable evaluation of the proportion of cells of each nature in
the image.
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