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ABSTRACT
In this paper, a novel unsupervised method to segment retinal
blood vessels from colour fundus images is proposed. A new
vesselness measure is introduced which is based on detect-
ing vessel centerlines and orientation in scale space. Based
on this vesselness measure a generated ground truth (GGT)
image is obtained by thresholding and removing segments of
small sizes. The segmentation is obtained by using this GGT
image in conjunction with a RAdius-based Clustering Algo-
rithm (RACAL). A dataset of 20 images publicly available is
used to evaluate the performance of our proposed method.
Experimental results show that a true positive rate (TPR) of
81% at false positive rate (FPR) of 4.5% is achieved com-
pared with TPR of 76% at the same FPR from the piecewise
threshold probing method [1].

1. INTRODUCTION

Automated analysis of retinal images is a challenging re-
search area that aims to provide automated methods to help in
the early detection and diagnosis of many eye diseases such
as diabetic retinopathy and age-related macular degeneration
(AMD).

Automated segmentation of retinal blood vessels is an
important step in screening programs for diabetic retinopathy
[2], evaluation of the retinopathy of prematurity [3], registra-
tion of retinal images for treatment evaluation [4], generating
retinal map for the diagnosis and treatment of AMD [5], or
locating the optic disc [6] and the fovea.

Retinal blood vessels segmentation methods, accord-
ing to the classification method, can be divided into two
groups - supervised and unsupervised methods [7]. Unsu-
pervised methods in the literature comprise the matched
filter response [1], grouping of edge pixels [5], adaptive
thresholding [8, 9], vessel tracking [9, 10], topology adap-
tive snakes [11], and morphology-based techniques [12].
Supervised methods are the most recent approaches in vessel
segmentation and use the neural networks [2], theK-nearest
neighbour classifier [7], or the Bayesian classifier [13] for
classifying image pixels as blood vessel or non-blood vessel
pixels. These methods depend on generating a feature vector
for every pixel in the image and then using training samples
(with known classes) to design a classifier to classify these
training samples into their corresponding classes.

In this paper, we introduce an unsupervised method for
segmentation of retinal blood vessels from colour fundus
images. Blood vessels centerlines and orientation are used
to measure the vesselness, then by removing segments of
small sizes an image that represent blood vessels is obtained,

which we call generated ground truth (GGT) image. Next,
a feature vector of three features is used in conjunction with
RACAL algorithm [14] to cluster image pixels into clusters.
Finally, these clusters are classified as vessels or non-vessels
using the GGT image. The main advantage of our proposed
method is that it is completely unsupervised, so there is no
need for manually labeled images which is time consuming
and require an expert.

2. PROPOSED SEGMENTATION METHOD

2.1 Preprocessing of Retinal Images

Unsupervised methods for segmenting blood vessels in
colour fundus images use the green channel [1, 7, 8, 15] be-
cause generally it has the highest contrast between blood ves-
sels and the retinal background while the red channel is rather
saturated and the blue channel is rather dark.

For efficient segmentation of retinal blood vessels, it is
desirable to have high contrast between the retinal blood ves-
sels and retinal background whilst there should be low con-
trast between retinal background and retinal abnormalities.
Combining the advantages of both channels, brightness in
red channel and high contrast in green channel, results in de-
creasing the contrast between the abnormalities and the reti-
nal background. This helps to reduce some responses, which
do not resemble to any blood vessels and that would other-
wise decrease the performance of blood vessels segmentation
methods.

Histogram matching is an approach that is used to gener-
ate a processed image that has a specified histogram, it has
the advantage of producing more realistic looking images
than those generating by equalisation. We use the concept
of histogram matching to modify the histogram of the green
channel image using that of the red channel image in order to
combine the distributions of gray-levels of both images [16].
Figure 1 shows the effect of this preprocessing step using two
test images.

2.2 Vesselness Measure

Blood vessels can be considered as dark elongated or line
structures - of different diameters and orientations - on a
brighter background. Our proposed vesselness measure is
based on detecting vessel centerlines and orientation over
scales. The large eigenvalue of the Hessian matrix is used
as an indicator of the vessel centerline. As vessels are of dif-
ferent diameters, then different scales are used to calculate
the eigenvalues and then keeping the maximum response at
each image pixel over scales.
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(a) (b) (c) (d)

Figure 1: Preprocessing step for normal (top) and abnormal (bottom) images. (a) colour image, (b) red channel, (c) green
channel, and (d) histogram matched images.

The appropriate local coordinate system in case of line
structures is defined by the eigenvectors of the Hessian ma-
trix, matrix of the second order derivatives of the intensity
imageL(x, y). Image derivatives can be taken by convolving
the image with derivatives of Gaussian using the Gaussian
scale-space techniques [17].

Lx j =
∂L(x,σ)

∂x j
=

1
2πσ2

∫
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′‖
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∂x j
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(1)
wherex j is the image coordinate with respect to which the
derivative is taken. Mixed and higher order derivatives are
computed by taking mixed and higher order derivatives of
the Gaussian kernel.

Eigenvalues (the large eigenvalue,λ+, and the small
eigenvalue,λ−, whereλ+ > λ−) of the Hessian matrix of
the intensity imageL(x,y) are calculated as [18]:

λ+ =
Lxx + Lyy + α

2
(2)

λ− =
Lxx + Lyy −α

2
(3)

whereLxx, Lyy are the second derivatives of the intensity im-

age inx− andy− directions, andα =
√

(Lxx −Lyy)2 +4L2
xy.

Then, the local maximum of the large eigenvalueλmax is cal-
culated as :

λmax = max
s

[λ+(s)] (4)

Figure 2 shows eigenvectors corresponding to large and
small eigenvalues at different scales. Orientation from the
eigenvector that corresponds to the small eigenvalue shows
the direction of the vessels, while the orientation from the
eigenvector that corresponds to the large eigenvalue shows
the direction of the large changes in the intensity values
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Figure 2: Eigenvectors (blood vessel orientation) corre-
sponding to (a) large eigenvalues, and (b) small eigenvalues
at different scales .

which represents the perpendicular direction to the vessel.

Vessel orientation in angles,θ , are calculated from the
eigenvectors of the Hessian matrix as:
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θ+ = tan−1
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θ− = tan−1
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where ˆe+,θ+, ê− andθ− are the eigenvectors andθ corre-

sponding toλ+, λ− andN =
√

(Lyy −Lxx + α)2 +4L2
xy.

What has been observed from our experiments is that as
the scale parameter value increases so does the apparent di-
ameter of the detected blood vessel. This can be clearly ap-
preciated from Fig. 3 which displays a sub-image and the
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corresponding sub-images containing the large eigenvalueat
every pixel at six different scales.

sub image s = 1 s = 2 s = 3

s = 4 s = 5 s = 6 maximum over scales

Figure 3: The large eigenvalue for a retinal blood vessel at
different scales.

s = 1 s = 2 s = 3

s = 4 s = 5 s = 6

Figure 4: Eigenvectors at different scales

Directions of eigenvectors corresponding to the small
eigenvalue at each pixel are depicted in the sub-image for six
different scales in Fig. 4. It has also been observed that the
variation of the directions of the eigenvectors in a pixel over
six different scales is smaller for blood vessel pixels com-
pared with non-blood vessel pixels.

We use the standard deviation of orientation values over
scales as a measure of vessel orientation variation over
scales. At vessel centers, the standard deviation ofθ−, an-
gle with respect tox− axis calculated from the eigenvector
that corresponds to small eigenvalueλ−, over scales tends
towards zero, or a very small value, compared with higher
values outside blood vessels. Figure 5 shows the probability
density function of the standard deviation values ofθ− over
scales calculated for vessel and non-vessel pixels in a sub
image.
The standard deviation ofθ−over scales is calculated as:
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Figure 5: Probability density function of the standard devia-
tion values ofθ− over scales for vessel and non-vessel pixels.

(a) (b) (c)

Figure 6: (a) Vesselness measure, (b) GGT image, and (c)
ground truth (manually labeled) for a normal(top) and abnor-
mal (bottom) images.

θstd = std
s

[θ−(s)] (9)

The proposed vesselness measureV is calculated as :

V =
λmax

θstd + ε
(10)

whereλmax is the local maximum of the large eigenvalue over
scales,θstd is the standard deviation of theθ− over scales,
andε is a small value to avoid singularities. The GGT image
is obtained from the vesselness measure after thresholding
and removing segment of sizes smaller than 30 pixels, these
images are shown in Fig. 6 with the manually labeled image
(ground truth) by the human observer.

2.3 Clustering Procedure

A feature vector for each image pixel is generated, then these
features are used to cluster image pixels to a number of non-
overlapped clusters. GGT image is used as known labels for
clustered pixels in order to classify each cluster to its corre-
sponding class (vessel or non-vessel).
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In the clustering step we use the RACAL algorithm [14],
which is a RAdius-based Clustering ALgorithm (RACAL),
that uses a distance based principle to map the distribu-
tions of the pixels in feature space by utilising the premise
that clusters are determined by a distance parameter (with-
out having to specify the number of clusters). Simply ex-
pressed, RACAL defines a normalised distance parameter,
δo (0 ≤ δo ≤ 1), which acts as the determinant of the clus-
ter. From a given object (pixel) which is characterised byp
features, any other objects that fall withinδo are regarded as
belonging to the same cluster. The control of the cluster size
is achieved through the manipulation ofδo parameter. Small
values will lead to a high number of small, tight clusters, and
large values ofδo will create a smaller number of larger clus-
ters, while extremely large values will cause only one cluster
to be formed.

The feature vector used with RACAL consists of colour
and scale-space features. Based on the property that a blood
vessel can be seen in the colour retinal image as a dark ob-
ject on a brighter background, from the three colour channels
(red, green and blue) the green channel is chosen to represent
this characteristic as it has the highest contrast between blood
vessels and the retinal background. The two characterising
attributes of any vessel, i.e. piecewise linearity and parallel
edges [19], are considered when choosing the set of features
for every pixel in retinal images. The piecewise linear prop-
erty of a blood vessel can be recognised by extracting center-
lines of blood vessels, simply by extracting the image ridges.
The parallel edges property is well recognised by calculating
the gradient magnitude of the image intensity. Because the
vessels are of different diameters, so these features are ex-
tracted at different scales and then the local maximum over
scales is calculated for both features as in Eqs. 12 and 13.

Feat1= Greenchannel image (11)

Feat2 = max
s

[

|▽L(s)|
s

]

(12)

where|▽L| =
√

L2
x + L2

y

Feat3 = max
s

[

λ+(s)
s

]

(13)

These three features were normalised to zero mean and
unit standard deviation.

3. DATASET

For performance evaluation, a publicly available dataset [20]
consists of 20 images which are digitized slides captured by
a TopCon TRV-50 fundus camera at 35◦ FOV. Each slide was
digitized to produce a 605×700 pixels image, standard RGB,
8 bits per colour channel. Every image has been manually
segmented by two observers to produce ground truth vessels
segmentation. Ten of these images contain pathology and
the other ten are normal, giving a good opportunity to test
the proposed method in both normal and abnormal retinas.

Figure 7: Segmentation results using RACAL algorithm.

Table 1: Clustering results (average for 20 images)
Image FPR TPR
Type % %

Normal 3.36 84.22
Abnormal 5.64 77.56
All images 4.5 80.89

4. RESULTS AND DISCUSSION

In our experiments, each image is preprocessed using the
histogram matching to reduce the contrast between abnor-
malities and the retinal background. Then the vesselness
measure is used for vessel segmentation by finding the local
maximum of the large eigenvalue and the standard deviation
of vessel orientations at different scale values, as in Eq.10.
The GGT image is obtained by thresholding and removing
segments of size less than 30 pixels. In the clustering step;
the RACAL is used with a feature vector, of three features,
to cluster image pixels to a number of non-overlapped
clusters. The final segmentation is achieved by finding the
corresponding class of each of the obtained clusters based
on labeled pixels from the GGT image, as shown in Fig. 7.

The performance is measured with Receiver Operating
Characteristic (ROC) curves. An ROC curve plots the false
positive rates against the true positive rates, and these rates
are defined in the same way as in [1].

Results after the clustering step are summarised in Table
1, while Table 2 shows segmentation results for other meth-
ods [1, 8, 9]. On average, for the 20 images in the dataset,
a TPR of 81% is achieved at FPR of 4.5% by our proposed
method compared with TPR of 76% by the piecewise thresh-
old probing method [1] at the same FPR.

It is important to note that in [1, 8], there are five pa-
rameters required for these two algorithms, and the reported
results are for processing all the 20 images in the STARE
dataset using ten and eight sets of values for these param-
eters respectively. While in [9], as it uses a vessel trac-
ing technique so it is affected by incorrectly identified ini-
tial tracing points also it requires manually labeled images
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Table 2: Performance of vessel segmentation methods using
STARE images

Method FPR TPR
2nd Human observer 4.4 89.5

Wu [9] 3.9 84.3
Jiang [8] 4.4 83.5

Hoover [1] 4.5 75.8
proposed method 4.5 80.9

for training the parameters, (one for normal and one for ab-
normal images). Significantly, for our proposed algorithm,
we need to set one parameter only, which is theδ0 for the
RACAL, δ0 = 0.04 is chosen after some exploratory experi-
ments. To generate the GGT images we threshold the image
results from the proposed vesselness measure at threshold =
0.5.

One of the main advantages of the proposed method, it is
completely unsupervised, so there is no need for manually la-
beled images, segmented by a human observer, which is time
consuming and subject to the observer. Results can be en-
hanced by introducing a post processing step to reduce num-
ber of false positives depending on a set of features such as:
pixel’s intensity information, segment’s (region) size, prob-
ability of belonging to a blood vessel, and segment’s mean
intensity. Further investigations are under way in the post-
processing step.

5. CONCLUSIONS

A novel unsupervised method for retinal blood vessels seg-
mentation is proposed. This method is based on a vessel-
ness measure, which depends on vessel centerlines and ori-
entation, in conjunction with RACAL algorithm. As demon-
strated, at 4.5% FPR, retinal blood vessels have been seg-
mented using the proposed unsupervised method with TPR
of 81%, our results can be improved when introducing a post
processing step to reduce false positives.
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