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ABSTRACT

The problem of source separation in two dimensions is
studied in this paper. The problem is formulated in the
Bayesian framework. The sources are modelled as MRFs
to accommodate for the spatially correlated structure of the
sources, which we exploit for separation in 2D. The difficulty
of working analytically with general Gibbs distributions is
overcome by using an approximate density. In this work,
the Gibbs distribution is modelled by the product of direc-
tional Gaussians. The sources are estimated by Maximum-
a-Posteriori estimation using the approximate density as the
prior. At each iteration of the MAP estimation, an anneal-
ing schedule is used for approximate density. This annealing
schedule aids the algorithm to converge the global extremum.
The mixing matrix is found by Maximum Likelihood estima-
tion.

1. INTRODUCTION

The aim of Blind Source Separation (BSS) is to reconstruct
L independent sources fromK observations which are mixed
by different proportions. Some classical applications of
source separation include audio separation and biomedical
signal separation (e.g fMRI). In this study, we consider im-
age separation problem. An example of image separation
problem is found in astrophysics [3].

One of the two main approaches for source separation is
learning the mixing matrixA which maximizes the mutual
information between the sources. The second approach is
maximization of the likelihood ofA. These two methods are
equivalent [1]. In this study, we follow the second approach
to find the mixing matrixA and cast the source estimation
problem in a Bayesian framework.

Since the observation noise, the mixing matrix and the
model parameters of sources are unknown, BSS problem can
be separated into two parts 1) Learning the parameters of ob-
servations and sources from observations, 2) Estimation of
the sources. The parameters of observations are the mixing
matrixA and the covariance matrixΣ of normally distributed
zero mean noise. These parameters can be estimated by max-
imizing the likelihoodp(y|A,Σ).

†THIS WORK WAS SUPPORTED BY CNR-TUBITAK. PROJECT
NUMBER: 104E101.

Before the identification of sources parameters, it is re-
quired to choose source models. In BSS, the separability
of the mixed sources depends on the probability distribu-
tion of sources which are required to being non-Gaussian.
An important generic model for probability density function
is Gaussian mixtures which have been used with success in
various applications. The parameters of mixture of Gaus-
sians densities are obtained using Expectation-Maximization
(EM) method by Attias [2]. Variational EM was used by
Miskin [1] for the same purpose.

Most of the studies in source separation literature have
not made use of the time (or space) structure in signals and
have instead considered them only as data sets. Kuruoglu
et al. [3], to be able to exploit the rich information content
of the images, have proposed a MRF formulation and have
used edge preserving regularizers to model pixel by pixel in-
teractions. The ML estimation is used for parameters of the
mixing matrix. Sources and parameters of the mixing ma-
trix are optimized by cycling through the variables. Tonazz-
ini et al. [4] applied mean field approximation to MRF and
used EM algorithm to estimate the parameters of the mixing
matrix. MRF models generally make use of the Gibbs for-
mulation, i.e. the probability density function expressed in
an ”energy potential” form. The edge preserving property of
the Gibbs distribution arises from the non-convex energy po-
tentials. The resulting non-convexity makes the deterministic
optimization difficult and the convergence is not guarantied.
In this study, this difficulty is bypassed by approximating the
Gibbs distribution by the product of Gaussians. The first
order clique potentials at each direction are modeled by a
Gaussian. At each pixel location, the product of these direc-
tional Gaussians forms its independent pixel density. Con-
sequently, since each pixel is independent, the source image
density is obtained by multiplying all these independent den-
sities. This approximation with Gaussians forms a variance
field. As the variance field is locally adaptive to edges, the
edge preserving property of the Gibbs priors are inherited by
the approximate priors. We also use an annealing schedule
to ensure to convergence of the algorithm to global or a near
global solution. At each step, the approximate Gaussians are
shrunk by reducing the temperature. The details of this type
of annealing can be found in [11, 12].
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2. PROBLEM DEFINITION IN THE BAYESIAN
FRAMEWORK

The j ’th observed image is defined asy j(m,n), where
(m,n) ∈ {1,2, . . . ,M}×{1,2, . . . ,N} are spatial coordinates.
It is assumed that this image is formed by the superposition
of L independent sources,si(m,n), i = 1, . . . ,L. The image
separation problem is to findL independent sources fromK
different observation. So the observation model is given as




y1(m,n)
y2(m,n)

...
yK(m,n)


 = A




s1(m,n)
s2(m,n)

...
sL(m,n)


+V (1)

whereA is aK×L mixing matrix with elementsa j,i . V is
zero mean noise which is independently occur at every pixel
and hasΣ covariance matrix.

Thesi andy j areMN×1 vector representation of source
and observation images respectively. In this case, the obser-
vation model can be written asY = AS+V




yT
1

yT
2
...

yT
K


 = A




sT
1

sT
2
...

sT
L


+V (2)

Since the sources are assumed to be independent and the
joint probability density is factorized as

p(S) =
L

∏
l=1

p(sl ) (3)

The images provide us with significant structural infor-
mation, which we would like to include in the separation pro-
cess in this work using statistical priors. The BSS problem
can be modelled in the Bayesian framework ands, A andΣ
can be found by maximizing the posterior density. The MAP
estimate in this case become such that

max
s,A,Σ

p(s,A,Σ|y) = max
s,A,Σ

p(y|s,A,Σ)p(s)p(A)p(Σ)

(4)
The MAP estimate given in (4) is separated into two

consecutive maximization steps. First of them is Maximum
Likelihood (ML) estimation for mixing matrix parameters
and noise covariance, and the second one is the MAP esti-
mation for the sources. The prior densities of parameters are
assumed to be uniform.

sk+1 = max
s
{p(y|s,Ak,Σk)p(s)} (5)

Ak+1,Σk+1 = max
A,Σ

{p(y|sk,A,Σ)} (6)

One of the difficulties in MAP estimation arises from
non-Gaussian prior densities. Maximization task is diffi-
cult because the non-Gaussian priors disturb the convexity.
In this case , simulated annealing or MCMC based numeri-
cal Bayesian methods such as Gibbs sampling can be used.
These are relaxation type methods, hence they take a long
time.

In this study, the difficult priors are approximated using
variational approach by tractable densities. In variational ap-
proach, intractable densities are approximated to tractable
ones. The chosen tractable priors should be easy to work with
analytically and their log should be convex. Let’s denote the
tractable prior density asq(s|τ) whereτ is its parameter set.
In this case, the steps given in (5) and (6) become

τk+1 = min
τ

DKL(q(sk|τ)||p(sk)) (7)

sk+1 = max
s
{p(y|s,Ak,Σk)q(s|τk)} (8)

Ak+1,Σk+1 = max
A,Σ

{p(y|sk,A,Σ)} (9)

whereDKL(q(sk|τ)||p(sk)) is the Kullback-Leibler (KL)
divergence betweenp(sk) andq(sk|τ) and defined as

DKL(q(sk|τ)||p(sk)) =
∫

q(sk|τ) log

(
q(sk|τ)
p(sk)

)
ds (10)

The densityq is determined by learning the parameterτ
such that KL divergence is minimum. In the following MAP
estimate of the sources, we use this tractable density.

3. LEARNING THE PARAMETERS

The likelihood of mixing matrixA and observation noiseΣ
can be written over the unobserved variables as

p(y|A,Σ) =
∫

p(y|s,A,Σ)p(s)ds (11)

To find the parametersA andΣ which maximize the (11)
with θ = {A,Σ}, logarithm of (11) can be written as

log{p(y|θ)} =
∫

log{p(y|θ)} p(s|y,θ)ds (12)

= Es[log

{
p(y|s,θ)p(s)

p(s|y,θ)

}
|y,θ ]

At first step, using the parameters,θ ′, obtained from the
previous step, a cost functionC(θ) = Es[− logp(y|θ)] is
constituted by taking expectation. At second step the param-
eters are found by minimizing this cost function. At each
step, EM algorithm converges to minimum of the cost func-
tion. According to Jensen’s inequality the upper bound is

C(θ)≤
∫
− log

{
p(y|s,θ)p(s)

p(s|y,θ ′)

}
p(s|y,θ ′)ds (13)

Analytic calculation of expectation is not possible except
the case when the densities are Gaussian. If the densities are
modelled as mixture of Gaussians, computational complexity
increases as the number of mixtures. A solution to this prob-
lem is to use variational approximation methods. The pur-
pose of variational methods is to approximate the intractable
densities with tractable ones.

In the casep(s|y,θ) an intractable density, its tractable
versionq(s|y,θ ,τ) is used instead ofp(s|y,θ).
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C(θ) ≤
∫
− log

{
p(y|s,θ)p(s)
q(s|y,θ ,τ)

}
q(s|y,θ ,τ)ds(14)

= −IO(p(y|s,θ)q(s|y,θ ,τ);q(s|y,θ ,τ))
+DKL(p(s)||q(s|y,θ ,τ))
−IH(q(s|y,θ ,τ);q(s|y,θ ,τ))

whereIO is cross entropy betweenp(y|s,θ)q(s|y,θ ,τ)
andq(s|y,θ ,τ) andIH is entropy ofq(s|y,θ ,τ).

This cost function can be solved by using EM algo-
rithm. We divide the EM process into two separate processes.
Firstly, DKL term is minimized respect toτ which is given in
(7). Secondly using the parameterτ obtained from previous
step,IO is minimized with respect toA andΣ. In the expec-
tation step MAP estimate ofs is used instead ofEq[s]. So the
algorithm reduces to three steps given in (7-9). Entropy term
IH is not used in optimization process as in the EM algorithm.

4. OBSERVATION MODEL

Since the expectationEq[s] and MAP estimate coincide,
maximization of cross entropy termIO = Eq[logp(y|s,θ)q]
in equation (14) with respect toA becomes equal to the ML
estimate ofA given previous MAP estimate ofs, which is
found by maximizing the following density

p(y|s,θ) ∝ exp

{
−

K

∑
j=1

(y j −∑N
i=1a j,isi)T(y j −∑N

i=1a j,isi)
2σ2

}

(15)
The element-wise update equation is found as

ak,l =
1

sT
l Σ−1

N sl

[
sT

l Σ−1
N (yk−

L

∑
i=1,i 6=l

ak,isi)

]
(16)

This Iterative Coordinate Decent type update is more sta-
ble in convergence than one step update of entire matrix.

5. SOURCES MODELS

The KL divergence between the density of sourcespS and
its approximationqS is minimized to findqS. If this den-
sity is chosen to be a parametric density, the optimization
is reduced to the determination of its parameter. Sources are
modelled to be MRF and the densitypS is chosen to be Gibbs
distribution with non-convex energy potential functions. The
approximate densityqS is selected to be factor of Gaussians.

MRF is a local statistical image model. It is noted that
cliques are formed by only the first order neighbor pixel
pairs. The(m,n) and(k, l) represent the coordinates of two
adjacent pixels, andN1((k, l)) represents the set of first or-
der neighbors of(k, l). The entire cliques set can be defined
asC = {{(m,n),(k, l)}|(m,n) ∈N1((k, l))}.

The potential energy function is expressed as summation
of all cliques potentials.

U(s) =
β
2 ∑
{(m,n),(k,l)}∈C

ρ(s(m,n)−s(k, l)) (17)

whereρ(.) is regularization function which is selected in
image restoration to preserve edges. The detailed explana-
tions can be found in [6, 7, 8]. Theβ is the parameter of the
random field.

The probability of event(S= s) is expressed in a Gibbs
formulation as

ps(S= s) =
1

Z(β )
e−U(s) (18)

whereZ(β ) is the partition function to ensure that the
total probability equals 1. The density given in (18) can be
written in the vector form using the cliques at eight directions
as

pS(s) =
1

Z(β )
exp{−

8

∑
d=1

βdρ(s−Gds)} (19)

If the clique differences at each direction is defined as
s(d) = s−Gds, whereGd is the one pixel shift operator at
directiond. The pdf of the images is formed by product of
pdfs of the edge imagess(d)’s.

pS(s) =
1

Z(β )

8

∏
d=1

exp{−βdρ(s(d))} (20)

If the same image is modelled as Gaussian at each direc-
tion, pdf of the image is expressed as factor of eight Gaussian
as

qS(s) =
8

∏
d=1

q(s(d)) (21)

The pdf of a edge image at a particular direction becomes

q(s(d)) =
1

(2π)MN/2 ∏MN
i=1

√
σ2

d,i

exp{−1
2
(s(d))TWds(d)}

(22)

whereWd = diag
{

1/σ2
d,i

}MN

i=1
is the covariance matrix.

This covariance matrix is interpreted as all the pixel in the
edge image is independent but has spatially variant variances.
This representation is used by Elad in [9] to approximate
Gibbs type densities by product of Gaussians. The approx-
imation is done by using first order derivatives as in robust
anisotropic diffusion [10]. We use KL divergence measure
to approximate to densities.

5.1 Determination of Gaussians Parameters at each Di-
rection

The parameters of directional factor of Gaussians density
qS(s|τ) are defined asτ = {σ2

d,i} according to (22). The KL

divergence is minimized with respect to eachσ2
d,i

DKL(qS(s)||pS(s)) =
∫

qS(s) log

(
qS(s)
pS(s)

)
ds (23)

= Eq

[
−1

2

8

∑
d=1

MN

∑
i=1

log{σ2
d,i}
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−1
2

8

∑
d=1

MN

∑
i=1

(s(d)
i )2

σ2
d,i

+
8

∑
d=1

MN

∑
i=1

βdρ(s(d)
i )+C

]

whereEq

[
(s(d)

i )2
]

= σ2
d,i , butEq

[
ρ(s(d)

i )
]

is hard to cal-

culate because of the nonlinearityρ(.). If the ρ(s(d)
i ) is ex-

panded into Taylor series around thes̃(d)
i and ignoring the

higher order terms, one can write

ρ(s(d)
i )≈ ρ(s̃(d)

i )+(s(d)
i − s̃(d)

i )ρ ′(s̃(d)
i )+(s(d)

i − s̃(d)
i )2ρ ′′(s̃(d)

i )
(24)

is obtained. The expectation ofρ(s(d)
i ) is then found as

Eq

[
ρ(s(d)

i )
]
≈ ρ(s̃(d)

i )− s̃(d)
i ρ ′(s̃(d)

i )+(σ2
d,i +(s̃(d)

i )2)ρ ′′(s̃(d)
i )

(25)
If the approximate expectation is substituted in (23), the

variance which maximizes the (23) is obtained as

σ2
d,i =

1

βdρ ′′(s̃(d)
i )

(26)

The sharp discontinuity preserving nonlinear functionρ
is chosen as

ρ(s(d)
i ) = ln

[
1+

(s(d)
i )2

δ

]
. (27)

whereδ is the threshold parameter.

6. MAP ESTIMATE OF SOURCES

Factor of pdfs of edge imagess(d) = s−Gds gives the prior
of sources.

q(s) ∝ exp{−
8

∑
d=1

(s−Gds)
T
Wd(s−Gds)} (28)

Multiplication of the likelihoods in (15) and priors in (28)
produce the posterior. The MAP estimate of sources is found
using Newton-Raphson iterations.

7. SIMULATION RESULTS

The variational Bayesian image separation with annealed
directionally approximated Gaussians algorithm is summa-
rized in Table1. We observed that updating sources more
frequently than the mixing matrix in a cycle improves the
outcomes of the algorithm.

We have worked out two sample problems in order to il-
lustrate the performance of the algorithm. The first example
is a mixture of texture images and the second is a mixture of
natural image with text images. We compare our algorithm
against the background of several other algorithms as listed
in the ICALAB Toolbox [5]. Among these we opted for the
following popular ones: Fixed Point ICA, JADE, EVD24,

Table 1:The algorithm

1. Initializes andA, T = 1
2. Updateσ2

d,i andsi for M times
3. UpdateA for one time
4. T ←− 0.96T
5. Goto 2nd step.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

P
S

IR
 (

dB
)

number of effected pixels (%)

EVD24
JADE
FPICA
SOBI−RO
Proposed

Figure 1:Comparison results for 5 dB noise case. Horizontal
axis represents percent of pixel which effected by noise.

and SOBI-RO. The source separation capability of the al-
gorithm is measured with the residual interference in the
images, that is, with the Peak Signal to Interference Ratio
(PSIR):

PSIR= 10log

(
255

||sl − ŝl ||2
)

(29)

and averaged over all the sources.
We first show the performance of the proposed algorithm

for a range of signal-to-noise ratios (SNR) ranging from 20
to 50 dB. The SNR is calculated as

SNR=
1
K

K

∑
j=1

20log
∑L

i=1a( j, i)255
σ

(30)

Each algorithm starts with the same initial values. The re-
sults are detailed in Table2. Table2 also includes the PSIR
results of the nearest competitor algorithm in [3]. We can
observe that the proposed algorithm is more of a heavy-duty
type, that is, it can separate sources under very noisy con-
ditions, while at higher observed image qualities it fares as
well as the algorithm in [3]. Second, we compare the cho-
sen algorithms under 5 dB noise contamination. Results are
given in Fig. 1. However, we vary the percentage of con-
taminated pixels from0% to 100%. We observe that our
algorithm outperforms all other algorithms under noise con-
tamination conditions. In the noiseless case, only SOBI-RO
algorithm is better, and this by a large margin. These results
are illustrated in Figs.2 and3. Fig. 2 shows the de-mixing of
three texture sources while Fig.3 is related to the separation
of a text source from an image source.
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Table 2:Comparison with [3].
σ SNR [3] proposed

90.98 15 not converged 14.30
53.34 20 not converged 15.66
30.02 25 not converged 17.54
16.88 30 19.25 19.79
5.33 40 22.94 23.43
1.68 50 24.95 25.81

0 ∞ 25.69 26.80

Original Mix Estimated

Figure 2:Simulation results 1.
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Figure 3:Simulation results 2.

8. CONCLUSIONS

In this study, Gibbs distribution with non-convex potentials is
approximated by directional factor of Gaussians. The aim of
the approximation is to obtain a tractable prior which should
be easy to work analytically and their log should be convex.
The approximate density also models the local spatial struc-
ture of the image, using second order statistics, in contrast
to constant covariance mean field approximation. The pro-
posed method has outperformed all of its competitors under
additive noise conditions. Annealing schedule is more ap-
propriate for high SNR values. For low SNR values, slow or
no annealing is applied.
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