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ABSTRACT
Speech acquisition in rooms with microphones positioned

at a distance from the talker suffers degradation in quality
due to reverberation caused by multiple reflections of the
sound from surrounding walls and objects. Speech rever-
beration is therefore an important problem in, for example,
hands-free telecommunication applications. One approach
to this problem is to perform dereverberation using blind
multichannel system identification and inversion. However,
most such methods rely on the assumption that the room
transfer functions (RTFs) do not share common zeros. In this
paper, a two-stage approach is proposed which separately
identifies and equalizes the common and the non-common
zeros components of the RTFs. Experimental results indicate
a considerable improvement using the new method compared
to other existing methods.

1. INTRODUCTION

Reverberation arises when acoustic signals are emitted in
non-anechoic environments. Reverberation may reduce con-
siderably the intelligibility and speech recognizer perfor-
mance in hands-free telecommunication systems. The per-
ceptual effects of room acoustics are often considered to
comprise two distinct properties: the coloration caused by
the early reflections and the reverberation caused by the re-
verberant tail of the room impulse response.

The aim of blind speech dereverberation is to recover
the clean speech using only the observed microphone sig-
nals. It is a blind problem since neither the acoustic system
nor the source signal are available. Also, typical room im-
pulse responses may contain several thousands of taps, mak-
ing the recovery more challenging. Existing speech derever-
beration algorithms can be generally divided into three cate-
gories: (i) Blind System Identification and Inversion (BSII)
algorithms [1, 2] which blindly estimate and equalize the
room impulse responses to recover the source signal, (ii) al-
gorithms based on the speech enhancement [3] using, for
example, LPC method to modify the characteristics of re-
verberant speech signal without estimating the room impulse
responses, and (iii) beamforming [4]. The method proposed
in this paper belongs to category (i).

Most multichannel BSII-based dereverberation algo-
rithms rely on the assumption that there are no zeros com-
mon to all RTFs [1, 2, 3]. However, it was demonstrated
in [5] that it is very likely for multichannel acoustic systems
with impulse responses of thousands of taps to have com-
mon zeros. Such systems are thus vulnerable to zeros that
are close enough to degrade the performance of Blind Sys-
tem Identification (BSI) algorithms.

In [5], a two-stage method for blind identification of
SIMO systems with common zeros was proposed based on

the concept of channel decomposition, where the common
zeros and non-common zeros were identified separately. In
this paper, we apply this concept to blind speech dereverber-
ation. We demonstrate the importance of correct estimation
of the order of characteristic zeros and show that this can
be found through the eigenvalues of the data correlation ma-
trix. Furthermore, we employ an efficient way to implement
the common zeros identification for real speech signals and
measured room impulse responses.

The remainder of this paper is organized as follows. In
Section 2, the problem of blind acoustic system identifica-
tion is formulated. In Section 3, it is demonstrated that cor-
rect estimation of the number of characteristic zeros is es-
sential to the overall system identification performance. The
proposed two-stage algorithm is described in Section 4. Sec-
tion 5 demonstrates the performance of the new algorithm
with several illustrative simulation results and conclusions
are drawn in Section 6.

2. PROBLEM FORMULATION

A typical acoustic environment containing one talker and
multiple microphones can be considered a linear SIMO sys-
tem where the relationship between the speech signal s(n)
and mth output xm(n) is given by

xm(n) =
L−1

∑
i=0

hm,i(n)s(n− i)+bm(n), m = 1,2, . . . ,M

(1)
where hm,i(n), i = 0, . . . ,L − 1 are the coefficients for the

mth channel with L taps and bm(n) is additive noise. As we
are concentrating on the dereverberation problem, henceforth
we consider the noise-free case in this paper, i.e., bm(n) =
0, m = 1,2, . . . ,M. Equation (1) can now be written in vec-
tor form,

xm(n) = Hm(n)s(n), m = 1,2, . . . ,M (2)

where

Hm(n) =

⎡
⎢⎢⎢⎣

hT
m(n) 0 · · · 0
0 hT

m(n) · · · 0
...

. . .
. . .

...
0 · · · · · · hT

m(n)

⎤
⎥⎥⎥⎦

L×(2L−1)

,

hm(n) = [hm,0(n), hm,1(n), . . . , hm,L−1(n)]T ,

xm(n) = [xm(n), xm(n−1), . . . , xm(n−L+1)]T ,

s(n) = [s(n), s(n−1), . . . , s(n−2L+2)]T ,
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Figure 1: Channel decomposition.
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Figure 2: NPM vs. Estimated number of common zeros.

and [·]T is the matrix transpose operator.
Thus, the problem is to find an estimate

ĥm(n) = [ĥm,0(n), ĥm,1(n), . . . , ĥm,L−1(n)]T given
only xm(n) such that an estimate ŝ(n) of s(n) can be formed.

3. EFFECTS OF COMMON ZEROS

It was shown in [6] that a multichannel system is identifi-
able if the following conditions are satisfied: (i) the auto-
correlation matrix of input signal is full-rank and (ii) the
multiple channels do not share common zeros. It was also
shown in [5, 7] that zeros which are very close but not ex-
actly common (i.e., near common zeros) degrade the perfor-
mance of BSI algorithms. A SIMO system with common
zeros can be considered to contain two parts: one with com-
mon zeros, hC(n) = [hC,0(n), hC,1(n), . . . , hC,LC−1(n)]T ,
and one with characteristic (non-common) zeros, h′

m(n) =
[h′m,0(n), h′m,1(n), . . . , h′m,L′−1(n)]T , i.e.,

hm,i(n) =
L′−1

∑
k=0

h′m,k(n)hC,i−k(n), m = 1, 2, . . . , M (3)

where hC,i(n), i = 0, . . . ,LC −1 are the coefficients of hC(n)
and h′m,k(n), k = 0, . . . ,L′ − 1 are the coefficients of h′

m(n),
respectively. Therefore, the number of common zeros is
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Figure 3: Two-stage speech dereverberation.

equal to LC − 1. This is illustrated in Fig. 1, where xC(n)
is the output of the common zeros component, i.e., xC(n) =
∑LC−1

i=0 hC,i(n)s(n − i). An experiment was performed to
demonstrate that only when the number of common zeros
is correctly estimated can we blindly identify the system part
with non-common zeros. As an example, the subspace al-
gorithm [2] was employed with a randomly generated SIMO
system containing two FIR channels of length L = 32 that
share LC = 8 common zeros. The identification performance
was measured using the Normalized Projection Misalign-
ment (NPM) defined as [8]

NPM(n) = 20log10

(
1

‖h(n)‖
∥∥∥∥h(n)−κ(n)ĥ(n)

∥∥∥∥
)

dB,

(4)
where

κ(n) =
hT (n)ĥ(n)
ĥT (n)ĥ(n)

,

and h(n) = [hT
1 (n), hT

2 (n), . . . , hT
M(n)]T is the true channel

vector and ĥ(n) = [ĥT
1 (n), ĥT

2 (n), . . . , ĥT
M(n)]T is the vector

of channel estimates. In Fig. 2, the NPM is plotted against
the estimated number of common zeros. As we can see, when
the number of common zeros is not correctly estimated, the
identification fails. This is because the subspace algorithm,
in its simplest form, fails when the channel order is not cor-
rectly estimated, although it can be extended to work in the
case of overestimation. The common zeros have an effect of
overestimation as will be discussed further in Section 4.

4. TWO-STAGE SPEECH DEREVERBERATION

A new speech dereverberation approach robust to common
zeros is proposed based on the BSII scheme. First, the order
of characteristic channel components is blindly estimated.
Then, using only the multichannel observation of the rever-
berant speech signals, h′

m(n) is identified and inverted to
form xC(n). Secondly, the component associated with the
common zeros is estimated using a single channel approach.
Finally, the dereverberated speech signal is obtained by using
single channel inverse filtering. A system diagram is shown
in Fig. 3.

4.1 Stage 1: Characteristic zeros component identifica-
tion and inversion
Since h′

m(n) do not share any common zeros, we can identify
them blindly using, for example, the subspace method [9],
which is based on eigenvalue decomposition. Like most cur-
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Figure 4: Channel order estimation.

rent second-order-statistics-based BSI algorithms, the overall
system order is assumed to be known or over-estimated. As
shown in Section 2, for the case where there are common ze-
ros across the RTFs, knowledge of L′ is required for h′

m(n)
to be identified. We apply the eigenvalue-based method pro-
posed in [10] to estimate the order of the characteristic com-
ponent without having to factorize the polynomials arising
from the RTFs.

Using the expression in (2), a system equation can be
obtained by concatenating all M outputs of (2) as follows:

x(n) = H(n)s(n), (5)

where x(n) = [xT
1 (n), xT

2 (n), . . . , xT
M(n)]T and H(n) =

[HT
1 (n), HT

2 (n), . . . , HT
M(n)]T . From (5), the autocorre-

lation matrix of the observed data x(n) can be written

Rx = E{x(n)xT (n)} = H(n)RsHT (n), (6)

where Rs = E{s(n)sT (n)} is the autocorrelation matrix of
the input signal.

Consider the two-channel SIMO system from Section 3
as an example. The overall system size is known to be
L = 32, based on which Rx is constructed according to (6)
and the 64 eigenvalues are computed for this two-channel
case. The resulting eigenvalues, sorted in an ascending or-
der are plotted in Fig. 4. From the figure, it is observed that
the first 9 eigenvalues are distinctly smaller than the remain-
ing ones. Thus the order of the characteristic component is
L′ = L− LC + 1 = 24. This principle has been used in [2]
for order estimation of over-estimated channels. In the case
where there are common zeros present, the common zeros
component is essentially the channel with over-estimated or-
der when it comes to eigenvalue decomposition.

Using the subspace method, the channel estimates ĥ′
m(n)

are the eigenvectors corresponding to the smallest eigenvalue
of Rx and are determined up to an arbitrary scale factor. The
signal xC(n) can then be obtained by

xC(n) =
M

∑
m=1

L′inv−1

∑
i=0

ĝ′m,i(n)xm(n− i), (7)
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Figure 5: Measured room impulse responses from the

MARDY database for a) channel 1, b) channel 2.

where ĝ′m,i(n), i = 0, . . . ,L′
inv − 1 are coefficients

of the estimated inverse filters of ĥ′
m(n) ob-

tained from MINT [11] by minimizing the error

ĝ′
m,i(n) = argming′

m
‖∑M

m=1 ∑
L′inv−1

k=0 g′m,k(n)ĥ′m,i−k(n) − 1‖2

with ĝ′m(n) = [ĝ′m,0(n), ĝ′m,1(n), . . . , ĝ′m,L′inv−1
(n)]T .

4.2 Stage 2: Common zeros component identification
and inversion

Using the results obtained from Section 4.1, the single chan-
nel associated with common zeros is to be identified and
equalized. If the enclosure of the room and the position of
the loudspeaker is fixed, we can assume that the coefficients
of acoustic impulse responses do not change with time or at
least they change very slowly. This enables us to employ a
single channel identification approach which is based on the
stationarity of channel zeros.

As can be seen from Fig. 1, the zeros associated with
hC(n) are contained within xC(n). Since s(n) is not known,
the zeros of the common zeros component hC(n) can be iden-
tified by exploiting the fixed pattern of their position over
duration for which the channel is considered static.

This technique was employed in [12] for single chan-
nel dereverberation, where xC(n) is partitioned into several
time-segments that are then factorized. The channel zeros
are those which fall into the same position of z-plane for each
segment. However, due to the linear convolution between the
original speech signal and multiple room impulse responses,
the channel zeros spread among the output signal, which can
be very long. Thus the length of each segment has to be
correspondingly long in order to capture every channel zero.
Long factorization not only results in significant delay but
also potentially introduces numerical approximation errors
which can degrade the performance of zero identification and
that of time domain coefficients reconstruction. Instead, mul-
tiple short frames of xC(n) can be used. The channel zeros are
then identified sequentially as frames of xC(n) are acquired.
Although it may not be possible to identify all the channel
zeros within one frame, several frames are sufficient for the
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Figure 6: Performance of speech dereverberation: a)

original speech, b) reverberant speech, c) dereverberation

using standard subspace algorithm, d) dereverberation using

proposed approach.

complete identification. In practice, the frame length and the
number of frames can be determined based on the knowledge
of LC, as shown in Section 4.1, LC = L−L′ +1. This imple-
mentation makes sure the performance of zero identification
is maintained well while introducing only a small processing
delay.

After identifying the common channel zeros, ĥC(n) is re-
constructed and the original speech signal is estimated as

ŝ(n) =
LCinv−1

∑
i=0

ĝC,i(n)xC(n− i), (8)

where ĝC,i(n), i = 0, . . . ,LCinv − 1 are the coeffi-

cients of the estimated inverse filter of ĥC(n) ob-
tained using the least squares method [13], i.e.,

ĝC,i(n) = argmingC ‖∑LCinv−1
k=0 gC,k(n)ĥC,i−k(n)− δ (n − τ)‖2

where δ (n) denotes an impulse and τ is chosen to be LC/2.

5. SIMULATIONS

Simulation results are next presented to demonstrate the per-
formance of the proposed method. A speech sample com-
prising an utterance by a female talker sampled at 8 KHz
is used as an example. Two measured acoustic impulse re-
sponses are obtained from the MARDY database [14]. These
are then resampled at 8 KHz and truncated to L = 512 taps.
The distance between each microphone is 0.05 m and the
talker is positioned 3 m away from the microphones. Fig. 5
shows the resulting room impulse responses. To illustrate
the effectiveness of our proposed scheme under condition
containing common zeros, we super-imposed LC = 9 ran-
domly generated common zeros onto the measured responses
from MARDY database. Note that xC(n) was segmented into
frames of length 256 for stage 2, i.e., the single channel iden-
tification.

The dereverberation performance was measured using
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speech, c) dereverberated speech using subspace method, d)
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the Bark spectral distortion (BSD) [15], defined as,

BSD =
∑K−1

k=0 ∑kN+N−1
n=kN |Bs(k,n)−Bŝ(k,n)|2

∑K−1
k=0 ∑kN+N−1

n=kN |Bs(k,n)|2 , (9)

where Bs(k,n) is the Bark spectrum of s(n) and N is the
frame length in samples. The simulation result is plotted
in Fig. 6, which shows a) the original speech signal, b) the
reverberant speech signal, the recovered speech signal us-
ing c) the standard subspace algorithm and d) the proposed
approach. It is seen that the proposed approach produces a
better estimate of the original speech signal compared to the
subspace method, with the presence of common zeros. The
corresponding spectrogram is shown in Fig. 7, which con-
firms the improvement of the proposed method over subspace
method. In terms of BSD performance for this simulation,
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the standard subspace method gave a score of 0.4309, while
the proposed method gave 0.0016.

A further simulation was performed in which different
numbers of randomly generated common zeros were super-
imposed onto the room impulse responses. The BSD per-
formance for the subspace method and the proposed method
was compared to demonstrate robustness to the number of
common zeros. The simulation was run for 100 Monte Carlo
runs and the result is shown in Fig. 8. It can be seen that
the proposed algorithm provides a consistent improvement
of BSD over subspace algorithm. Note that the proposed al-
gorithm reduces to the subspace algorithm when there are no
exactly common zeros, as indicated in Fig. 8.

6. CONCLUSIONS

We have investigated the problem of multichannel speech
dereverberation in the presence of common zeros. It has been
shown that algorithms based on BSII techniques suffer per-
formance degradation due to common zeros. Consequently,
we proposed a two-stage approach, where the characteristic
zeros and the common zeros of the room transfer functions
are identified and equalized separately. Simulation results
based on real room acoustic impulse responses confirmed the
improvement obtained with our approach.

REFERENCES

[1] Y. Huang, J. Benesty, and J. Chen, “A blind channel
identification-based two-stage approach to separation
and dereverberation of speech signals in a reverberant
environment,” IEEE Trans. Speech and Audio Process.,
vol. 13, no. 5, pp. 882–895, Sept. 2005.

[2] S. Gannot and M. Moonen, “Subspace methods for
multi-microphone speech dereverberation,” EURASIP
J. Applied Signal Process., vol. 2003, no. 11, pp. 1074–
1090, Oct. 2003.

[3] M. Delcroix, T. Hikichi, and M. Miyoshi, “Precise
dereverberation using multichannel linear prediction,”
IEEE Trans. Audio, Speech and Language Process.,
vol. 15, no. 2, pp. 430–440, Feb. 2007.

[4] M. S. Brandstein and D. B. Ward, Eds., Microphone Ar-
rays: Signal Processing Techniques and Applications,
1st ed. Springer-Verlag, Berlin, 2001.

[5] X. S. Lin, N. D. Gaubitch, and P. A. Naylor, “Two-
stage blind identification of SIMO systems with com-
mon zeros,” in Proc. European Signal Process. Conf.
(EUSIPCO), Sept. 2006.

[6] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares
approach to blind channel identification,” IEEE Trans.
Signal Process., vol. 43, no. 12, pp. 2982–2993, Dec.
1995.

[7] N. D. Gaubitch, J. Benesty, and P. A. Naylor, “Adaptive
common root estimation and the common zeros prob-
lem in blind channel identification,” in Proc. European
Signal Process. Conf. (EUSIPCO), Sept. 2005.

[8] D. Morgan, J. Benesty, and M. Sondhi, “On the eval-
uation of estimated impulse responses,” IEEE Signal
Process. Letters, vol. 5, no. 7, pp. 174–176, July 1998.

[9] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrar-
gue, “Subspace methods for the blind identification of
multichannel FIR filters,” IEEE Trans. Signal Process.,
vol. 43, no. 3, pp. 516–525, Feb. 1995.
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