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ABSTRACT 
This paper presents a statistical analysis of the Affine Pro-
jection (AP) adaptive algorithm for the insufficient order 
case. Deterministic recursive equations are derived for the 
mean weight and mean-square error behavior. The analysis 
assumes a large number of adaptive coefficients when com-
pared to the algorithm’s order, autoregressive input signals 
and unity step-size. Monte Carlo simulations show excellent 
agreement with the theoretically predicted behavior. It is 
shown that the AP coefficients converge in the mean to the 
initial plant coefficients, producing an unbiased solution 
even for the correlated input signal case. It is also shown 
that the steady-state mean square error has a term that is 
proportional to the power of the unpredictable part of the 
input signal filtered by the un-modeled part of the unknown 
impulse response. 

1. INTRODUCTION 

The least mean square (LMS) is probably the most widely 
used algorithm in adaptive signal processing applications 
due to its low computational cost, robustness and tracking 
capability [1]-[2]. Several authors have studied the behavior 
of the LMS algorithm. Basically, for a given step-size value, 
the algorithm’s performance is determined by two factors 
[1]-[3]: (a) the number of adaptive coefficients; and (b) the 
input signal statistics. 

Most theoretical studies on adaptive filter performance 
consider the sufficient order case, in which it is assumed that 
the number of adaptive filter coefficients is sufficient to ex-
actly represent the signal to be estimated (the desired signal) 
except for an additive noise that is uncorrelated with the in-
put signal [1]-[2]. The results of such studies do not necessar-
ily apply to the deficient order case, which is very common 
in practice [4]. If the sufficient order is overestimated, con-
vergence slows down due to the added extra stochastic gradi-
ent noise. On the order hand, adaptive filters of insufficient 
orders may not reach acceptable estimation performance [5]-
[6]. 

Designers of adaptive systems often have to deal with 
computational limitations, or lack the necessary information 
to accurately determine the sufficient order. For instance, 
most of the energy of voice band telephone channel impulse 
responses is concentrated in a relatively short period of time 

[7]. In network echo cancellation, the impulse responses to 
be identified usually have long and exponentially decaying 
tails [5]. In brainstem auditory evoked potential studies, the 
clinical interest is concentrated only on the first 10ms of an 
impulse response that may last more than 100ms [8]-[9]. 

A recent work [10] studied the properties of the defi-
cient length LMS algorithm for correlated stationary Gaus-
sian input signals. The results in [10] show that a deficient 
LMS algorithm leads to a biased solution for the adaptive 
weights for correlated input signals. As a consequence, the 
excess mean-square error (EMSE) is increased. Thus, it may 
render LMS performance insufficient for important practical 
applications. The reason for the increased LMS EMSE is that 
the un-modeled coefficients lead to an additive noise which 
is correlated with the input signal whenever this input signal 
is correlated in time. Thus, it is of interest to study the per-
formance of other adaptive algorithms that have implicit 
mechanisms to reduce this effect in their optimum solution. 
Such algorithms are natural candidates to replace LMS in 
applications where the use of a deficient length adaptive filter 
is unavoidable or simply convenient. 

The Affine Projection (AP) algorithm [11] is known to 
implicitly decorrelate the input signal during weight vector 
updating. This property has been demonstrated in [12] for the 
important case of unity step size and autoregressive (AR) 
inputs. Because of this property, it is expected that the AP 
algorithm can lead to unbiased adaptive coefficient solutions 
in the deficient order case even for correlated input signals. 
However, this AP characteristic was not theoretically demon-
strated until now. 

The AP algorithm behavior has been analyzed in [13] 
for AR inputs and unity step size. The analysis in [13] as-
sumed a sufficient order adaptive filter. It was shown that the 
behavior of the AP algorithm for AR inputs is similar to the 
behavior of a normalized LMS algorithm with white inputs. 

This work extends the analysis in [13] to the deficient 
length AP adaptive algorithm. For an adaptive filter with M 
coefficients in a system identification setup, it is shown that 
the mean weight vector converges to the first M samples of 
the unknown impulse response. Moreover, it is shown that 
under-modeling leads to an additional steady-state mean-
square error (MSE) which is proportional to the power of the 
unpredictable part of the input signal filtered by the un-
modeled part of the unknown impulse response. 
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This paper is organized as follows. Section 2 introduces 
the input signal model and the used notation. Section 3 pre-
sents the AP weight update equation. Section 4 presents the 
statistical analysis leading to the deterministic analytical 
models for the mean weight error vector, the MSE and the 
second order moments. Section 5 presents Monte Carlo 
simulation results to verify the accuracy of the theoretical 
models. Finally, Section 6 presents the main conclusions of 
this work. In this paper scalars are denoted by plain lower-
case or uppercase letters, vectors are denoted by lowercase 
boldface letters and matrices by uppercase boldface letters. 
The superscript T denotes transposition. The letter n denotes 
discrete time. 

2. DEFICIENT LENGTH ADAPTIVE FILTER 

Consider an input signal u(n) described by an AR process of 
order P. Then, 
 ( ) ( ) ( )1

P
ii

u n a u n i z n
=

= − +∑  (1) 
where z(n) is zero-mean, white and Gaussian with variance 
σz

2; and the ai are the AR coefficients. 
Consider d(n) (the desired signal) related to u(n) 

through the linear model of the form 
 ( ) ( ) ( )T

N Nd n n r n= +ow u  (2) 
where wo

N=[wo
0 wo

1 wo
2 … wo

N-1]T can be regarded as the 
impulse response of the unknown system with length N; 
uN(n)=[u(n) u(n-1) u(n-2) … u(n-N+1)]T is an input vector; 
and r(n) is a zero-mean white Gaussian noise, independent of 
u(n). The output of an adaptive filter with length M is given 
by 
 ( ) ( ) ( )Ty n n n= w u  (3) 
where w(n)=[w0(n) w1(n) w2(n) … wM-1(n)]T; u(n)=[u(n) u(n-
1) u(n-2) … u(n-M+1)]T and M<N (deficient length case). 
The instantaneous error is given by 
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where ow =[wo
M wo

M+1 wo
M+2 … wo

N-1]T; ū(n)=[u(n-M) u(n-
M-1) u(n-M-2) … u(n-N+1)]T; and v(n)=wo

M-w(n) is the 
weight-error vector (wo

M=[wo
0 wo

1 wo
2 … wo

M-1]T). The last 
term in (4) describes the part of the channel output that is due 
to the exceeding N-M coefficients in wo

N. 

3. WEIGTH UPDATE EQUATION 

The weight-error update equation of the AP algorithm with 
AR input can be written as [12], [13] 

 ( ) ( ) ( )
( ) ( ) ( )1 T

n
n n e n

n n
+ = +v v

Φ
Φ Φ

 (5) 

where 
 ( ) ( ) ( ) ( )ˆn n n n= −u U aΦ  (6) 
and â(n) is the least squares estimate of the AR coefficients: 
 ( ) ( ) ( ) ( ) ( )1

ˆ T Tn n n n n
−

 =  a U U U u  (7) 

where U(n)=[u(n-1) u(n-2) u(n-3) … u(n-P)]; U(n)TU(n) is 

assumed of rank P; and â(n)=[â1(n) â2(n) â3(n)… âP(n)]T. 
Using (4) and (6) in (5) we have 
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Note from (8) that the effect of ow  is the increase of the ad-
ditive noise r(n) by a term equal to ( )T now u , which is zero-
mean, correlated in time and correlated with u(n). 

4. ANALYSIS 

The following statistical assumptions are used in the analysis, 
and were initially presented and fully discussed in [13]: 

•  Assumption A1: The order P of the AP algorithm is 
assumed sufficient to model the input AR process. 

• Assumption A2: The statistical dependence between 
z(n) and U(n) can be neglected for M>>P. 

• Assumption A3: The vector Φ(n) is orthogonal to the 
columns of U(n). 

• Assumption A4: The vectors Φ(n) and w(n) are sta-
tistically independent. 

 
4.1 Mean Weight Behavior 
Using Assumption 3 (UT(n)Φ(n)=0) it can be shown that 

 
( )( ) ( 1) ( )

( ) ( 1) ( ) ( )
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Combining these results we obtain 
 ( )( ) ( ) ( 1)T Tn n n n= − + oU v r U w  (10) 
where r(n-1)=[r(n-1) r(n-2) r(n-3) … r(n-P)]T and Ū(n)= 
[ū(n-1) ū(n-2) ū(n-3) … ū(n-P)]. Using (10) in (8) we obtain 
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where 
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Note that ra(n) is the white noise component of d(n) filtered 
by the inverse of the all-pole filter that generates u(n). Like-
wise, ba(n) corresponds to the correlated additive noise fil-
tered by the same all-pole filter. This is in agreement with the 
results shown in [12], [13] that the AP algorithm replaces the 
noise floor by its filtered version. 

Taking the expected value of (11) and using Assumption 
4 we obtain 
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The first expected value in (13) was already solved in [13]: 
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where G=M-P. 
The second expected value in (13) is a null vector since 

r(n) and Φ(n) are zero-mean and uncorrelated. The last ex-
pectation is evaluated in the following way 
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where it has been assumed that â(n)≅a (Assumption A1) and 
(from (1)) ū(n)=Ū(n)a+ z (n). Using these results in (13) we 
obtain a deterministic recursive equation to the mean weight 
error vector of the deficient length AP algorithm 

 ( ){ } ( ){ }31
2

GE n E n
G
−

+ =
−

v v  (16) 

Assuming convergence, the steady-state mean weight er-
ror vector can be obtained from (16), resulting in 
 ( ){ }lim

n
E n

→∞
=v 0  (17) 

Eq. (17) demonstrates the mean weights of the deficient 
length AP algorithm converge to the actual first M plant coef-
ficients. 

 
4.2 Mean-Square Behavior 
Using (6) in (4) and (10) in the resulting expression yields 
 ( ) ( ) ( ) ( ) ( )T

a ae n n n b n r n= − + +vΦ  (18) 
Squaring (18) and taking its expected value we have an 

expression for the MSE 
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where E{Φ(n)ΦT(n)}=σΦ
2I; σΦ

2=σz
2(M-P)/M [13]; I is the 

identity matrix and K(n)=E{v(n)vT(n)}. 
The first expected value in (19) can be evaluated using 

ū(n)=Ū(n)a+ z (n) in (12) and assuming â(n)≅a, resulting in 
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Eq. (20) shows that the effect of the correlated additive noise 
on the MSE is a function only of the power of z(n), the un-
predictable part of the input signal, filtered by the un-
modeled part of the unknown impulse response. 

The second expected value in (19) was already solved in 
[13], Eq.(32). 

 { } ( ) ( ){ }{ }12 2 21 T T
a z rE r tr E n nσ σ

−  = + +   
a a U U  (21) 

where tr{·} is the trace operation. 
The third expected value was already developed in (15). 

The last two expected values in (19) are null since r(n) is 
independent of u(n) and Φ(n). 

Using all results in (19) we obtain 
 ( ){ } ( ) ( )2 2 21 T T

r K zE e n T nσ σ σΦ= + + + o oa a w w2  (22) 

where TK(n)=tr{K(n)} and from [13] we know that σz
2 

tr{E{[UT(n)U(n)]-1}}<<1 for M>>P. A recursive equation to 
the second order moments (TK(n)) will be derived in the next 
section. 

 
4.3 Second Order Moments 
The second order moments for the deficient length case can 
be obtained in the same way as in [13]. Post-multiplying (11) 
by its transpose, taking its expected value and applying the 
statistical assumptions A1-A4 yields, after calculations, 
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where terms dependent on the correlation between ba(n) and 
Φ(n) are equal to zero. 

The last expected value in (23) can be approximated by 
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Substituting (24) in (23) we have 
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Eq. (25) is a deterministic recursive model for the be-
havior of the second order moments of the deficient length 
AP algorithm with an AR input signal. However, only the 
trace of K(n) is required to determine the MSE. Taking the 
trace of (25) we obtain 
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where TK(n)=tr{K(n)}. 
Eqs. (22) and (26) constitute a general model to the 

mean square error of the AP adaptive algorithm, valid for 
both the deficient and the sufficient length cases. The results 
provided in [13] can now be considered a particular case of 
these expressions. 

 
4.4 Steady-State MSE 
Assuming convergence, the steady-state MSE can be ob-
tained from (22) as 
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where, from (26) 
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Using (28) in (27) we obtain 
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5. SIMULATION RESULTS 

This section presents simulation results to verify the accu-
racy of the analytical models given by (22), (26) and (29). 
Monte Carlo simulations of (5) have been verified to be in 
excellent agreement with the theoretical expression (17). 
These results will not be shown here due to space limitation. 
All examples assume a plant that emulates an echo path with 
a constant decay envelope [14] with 256 coefficients (Figure 
1) and a signal to noise ratio (SNR) of 60dB. The innovation 
z(n) of the input signal has a power σz

2=0.19 for the first 
order AR model (Figure 2) and σz

2=0.6 for the second and 
third order cases (Figure 3 and Figure 4). The additive noise 
(r(n)) is σr

2= 10-6 for all examples. Initialization of the adap-
tive coefficients was in the origin w(0)=0 and a regulariza-
tion factor of 10-4 was added to UT(n)U(n) before obtaining 
its inverse. Monte Carlo simulations correspond to the aver-
age of 400 runs. 

Figure 2 to Figure 4 present the MSE obtained for dif-
ferent sets of parameters, which are informed in the upper 
right corner of each figure. Here, N is the number of coeffi-
cients in the plant, M is the number of adaptive filter taps, P 
is the order of the AP algorithm and a is the vector with AR 
process coefficients. Each figure shows a comparison be-
tween simulations (ragged yellow curves), theoretical model 

((22)) and the theoretical steady-state model to the MSE 
(horizontal line – Eq. (29)). Values of M equal to 30, 40, 50, 
60 and 70 in each figure correspond, respectively, to the con-
centration of 61, 68, 84, 87 and 88 percent of the total im-
pulse response power in the first M samples (woTwo=1 in all 
cases). All examples present an excellent match between the 
theoretical results and the Monte Carlo simulations. 

 

 
Figure 1 – Impulse response of the plant 

 

 
Figure 2 – MSE evolution for the deficient AP algorithm 

 

 
Figure 3 – MSE evolution for the deficient AP algorithm 
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Figure 4 – MSE evolution for the deficient AP algorithm 

6. CONCLUSIONS 

This work presented a theoretical analysis of the Affine Pro-
jection adaptive algorithm that includes the possibility of a 
deficient length adaptive vector. Deterministic recursive 
equations were derived for the mean weight and the mean 
square error behaviors assuming large number of adaptive 
coefficients (compared to the algorithm’s order), autoregres-
sive input signals and unity step-size. Two main results were 
obtained. First, it has been shown that the AP coefficients 
converge in the mean to the initial plant coefficients, produc-
ing an unbiased solution even for the correlated input signal 
case. Second, it is shown that the steady-state mean square 
error has a term that is proportional to the power of the un-
predictable part of the input signal filtered by the un-modeled 
part of the unknown impulse response. Monte Carlo simula-
tions results were shown to be in excellent agreement with 
theoretical predictions. These results corroborate the concep-
tual idea that the AP algorithm may be a good alternative to 
LMS in identification problems where under-modeling is 
anticipated. 
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