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ABSTRACT

We present a stochastic model for a new recently proposed
robust NLMS algorithm. Under very standard and reasonable
assumptions we show that the algorithm converges to the true un-
known system in a mean square sense. With the aggregate of more
restrictive, but standard, assumptions we can build a model for
the transient behavior of the algorithm. The model can take into
account the presence of impulsive noise. Finally we also present
simulations results which show the excellent agreement with the
model.

1. INTRODUCTION

In real-world adaptive filtering applications, severe impairments
may occur. Perturbations such as background and impulsive noise
can deteriorate the performance of many adaptive filters under a sys-
tem identification setup. In echo cancellation, double-talk situations
can also be viewed as impulsive noise sources.

Many different approaches have been proposed in the litera-
ture to deal with this problem. Most of them are directly or indi-
rectly related with the optimization of a combination of L1 and L2
norms as the objective function. The former presents a low sensi-
tivity against perturbations and the latter improves the convergence
speed of the adaptive filter. Recently, a new robust NLMS-like algo-
rithm has been introduced based on a novel design framework [1].
It provides an automatic mechanism for switching between the nor-
malized least-mean-square (NLMS) and normalized sign algorithm
(NSA).

Although its robust performance is guaranteed by design, no a
priori statement can be made on its mean-square performance. In
order to overcome this issue, we introduce here a theoretical model
to predict the transient and steady-state behavior of the new algo-
rithm. Although several (sometimes strong) assumptions are re-
quired, the predictions and the simulated results are in good agree-
ment.

Finally, we present certain definitions and notations that are
used in the paper. Let wi =

(
wi,0,wi,1, . . . ,wi,M−1

)T be an unknown
M×1 linear finite-impulse response system. The M×1 input vec-
tor at time i, xi = (xi,xi−1, . . . ,xi−M+1)

T , passes through the sys-
tem giving an output yi = xT

i wi. This output is observed, but it
is usually corrupted by a noise, vi, which will be considered addi-
tive. In many practical situations, vi = vB

i + vI
i , where vB

i stands for
the background measurement noise and vI

i is an impulsive noise.
Thus, each input xi gives an output di = xT

i wi + vi. We want to
find ŵi to estimate wi. This adaptive filter receives the same input,
leading to an output error ei = di −xT

i ŵi−1. We also define the
misalignment vector w̃i = wi−ŵi and the a posteriori error signal
ep,i = xT

i w̃i + vi.

This work was supported in part by Universidad de Buenos Aires,
project UBACYT I005.

2. THE NEW ROBUST NLMS ALGORITHM

In this section we will briefly present the new robust NLMS algo-
rithm [1]. A great number of robust adaptive filters were derived
in the past, [2]-[5]. In the derivation of these adaptive filters robust
statistic ideas were used. In this context, the term robust stands for
insensitivity to small deviations of the real probability distribution
from the assumed model distribution. Usually, a Gaussian distribu-
tion is assumed, but in many situations this assumption proves to be
false. This is the case in system identification in an impulsive noise-
contaminated environment and in echo cancelation with double-talk
situations. For this reason, a long-tailed probability density func-
tion (PDF) is preferred for modeling the noise in those applica-
tions. However for the design of these adaptive filters we need to
have statistical information about the noise vi or the error signal ei,
which can be difficult to have, specially for ei which is clearly a
non-stationary stochastic process. In [1] a different approach was
proposed to solve the robust adaptive filtering problem. Suppose
an adaptive filter has a given estimate of the true system at a cer-
tain time-step. Now, if a large noise sample perturbs it, the result
will be a large change in the system estimate, degrading the perfor-
mance of the adaptive filter. This is the problem with the standard
NLMS algorithm in an impulsive environment. Because impulsive
noise samples can occur infinitely often, i.e. double-talk situations
in echo cancelation, the algorithm will always present a very poor
performance. To prevent these situations, the proposed approach is
to constrain the energy of the filter update at each iteration. This
can be formally stated as:

||ŵi− ŵi−1||2 ≤ δi−1, (1)

where {δi} is some positive sequence. Its choice will influence the
dynamics of the algorithm. Nevertheless, (1) guarantees that any
noise sample can perturb the square norm of the filter update by at
most the amount δi−1, so the algorithm performance will be robust.

Next, a cost function is required and the adaptive filter will be
the result of optimizing this cost function subject to the constraint
(1). Different choices of the cost function and the {δi} sequence
will lead to different algorithms. Although other cost functions can
be chosen, for simplicity and ease of treatment we choose to mini-
mize the square of the a posteriori error signal. Then,

ŵi = arg min
ŵi∈RM

e2
p,i, (2)

subject to the constraint (1). The details regarding this optimization
problem can be found in [1]. Here we only present the final result:

ŵi = ŵi−1 +min
[ |ei|
||xi|| ,

√
δi−1

]
sign(ei)

xi

||xi|| . (3)

We see that the quantity |ei|
||xi|| acts as a decision variable: if |ei|

||xi|| ≤√
δi−1 then the algorithm reduces to standard NLMS with unity

step-size. If |ei|
||xi|| >

√
δi−1, then the algorithm reduces to a nor-

malized sign algorithm (NSA) with step-size
√

δi−1. Then, depen-
ding on the values of |ei|

||xi|| and δi−1 the algorithm has two operation
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modes. The NLMS mode will give a fast convergence and the NSA
mode will give the robust behavior.

The only thing that we have to do is to choose the values of {δi}
which will affect the performance of the algorithm and the switch-
ing between the two modes of operation. In principle, one would
desire {δi} to have values as large as possible at the beginning of
the adaptation. This will lead to a good initial speed of conver-
gence. Still, it should not be too large, so that the robust perfor-
mance against large noise samples is not lost. On the other hand,
when the algorithm is close to its steady-state, lower values of δi
will lead to a lower final error. This behavior can not be achieved
using a fixed parameter δ .

A natural selection should make {δi} dependent on the conver-
gence dynamics of the adaptive filter. Thus, we propose:

δi = αδi−1 +(1−α)||ŵi− ŵi−1||2

= αδi−1 +(1−α)min

[
e2

i
||xi||2

,δi−1

]
,

(4)

where 0 < α < 1 is a memory factor and δ0 is the initial value in
(4). Equations (3) and (4) define the RVSS-NLMS algorithm.

3. STOCHASTIC MODEL

In this section we will present some results concerning the stochas-
tic behavior of the algorithm. Using (3) and (4), assuming a statio-
nary system, i.e., wi = w0 ∀i, and noting that the minimum func-
tions in the two updates are logically equivalent, yields:

w̃i = w̃i−1−
√

δi−αδi−1

1−α
sign(ei)

xi

‖xi‖ . (5)

We are interested in the mean square behavior of w̃i. Defining the
a priori error ea,i = xT

i w̃i−1 and using (5) we can write:

‖w̃i‖2 = ‖w̃i−1‖2−2

√
δi−αδi−1

1−α
sign(ei)ea,i

‖xi‖ +
δi−αδi−1

1−α
.

(6)
Now we make the following assumptions:

A1): The noise sequence can be put as vi = vB
i + vI

i , where vB
i is

a background noise assumed to be Gaussian with zero mean and
E[(vB

i )2] = σ2
B . vI

i is the impulsive part of the noise and can be
written as vI

i = ωiNi, where ωi is Bernoulli with P(ω = 1) = p and
Ni is Gaussian with zero mean and E[N2

i ] = Kσ2
B, K À 1. Clearly

the probability of impulse is p. Then the noise PDF is a mixture of
Gaussians:

pvi(vi) = pN
(

0,(K +1)σ2
B

)
+(1− p)N

(
0,σ2

B

)
(7)

The noise sequence is independent of the input regressors xi, which
belong to a zero-mean stationary process as well.

A2): The variance of δi is sufficiently small to approximate:

E

[√
δi−αδi−1

1−α

]
≈

√
E[δi]−αE[δi−1]

1−α
, (8)

E

[
min

[
e2

i
‖xi‖2 ,δi−1

]]
≈ E[δi−1]Pi [z≥ E[δi−1]]+

E[δi−1]∫

0

z dFi(z),

(9)
where z .= e2

i /‖xi‖2, i.e., they have the same distribution, Pi[A] de-
notes the probability of the event A at time-step i and Fi(z) denotes
the distribution function of z. We will also assume that δi is statisti-
cally independent of x j and vi ∀i, j.

A3): The filter length is sufficiently large to assume that ea,i is Gau-
ssian distributed.

A1) is a reasonable assumption. A2) is necessary to account for the
behavior of {δi} and its influence on equation (6) in a simple way.
It seems to be a strong assumption but in fact it is very accurate as
we will see later in the simulations. A3) can be justified by central
limit arguments and it was used and verified with simulations in [6].

Using the first part of A2), and taking expectation in (6):

E[‖w̃i‖2] =E[‖w̃i−1‖2]−2

√
E[δi]−αE[δi−1]

1−α
·

E
[

sign(ei)ea,i

‖xi‖
]

+
E[δi]−αE[δi−1]

1−α
.

(10)

It should be noted that for sufficiently long filters we can write:

E
[

sign(ei)ea,i

‖xi‖
]
≈ E

[
1
‖xi‖

]
E

[
sign(ei)ea,i

]
. (11)

This is justified by the variance of 1/‖xi‖ decreasing at least as
1/M in many situations of interest (for white Gaussian regressors
it actually decreases as 1/M2). Thus the variations in 1/‖xi‖ are
very small for large M and then, we can assume that this quantity
is uncorrelated with respect to sign(ei)ea,i. Now, before proceeding
we need the following lemma:

Lemma 1 Let b be a Gaussian zero-mean random variable with
variance σ2

b , and let y = b + v, with the PDF of v given in (7), and
v independent of b. Let z1 = b + h1 and z2 = b + h2 where h1 and
h2 are independent of b and are zero-mean Gaussian variables with
variances σ2

h1
= (K +1)σ2

B and σ2
h2

= σ2
B . Then:

E [sign(y)b] = pE [sign(z1)b]+ (1− p)E [sign(z2)b] (12)

This lemma is a special case of Lemma 1 in [7] whose proof can be
found there. Using Lemma 1 and Price‘s theorem [8] we can show:

E[sign(ei)ea,i] =

√
2
π

σ2
ea,i





p√
σ2

ea,i
+(K +1)σ2

B

+
1− p√

σ2
ea,i

+σ2
B





(13)
where σ2

ea,i
= E[e2

a,i]. Defining r = E[1/‖xi‖], (10) can be put as:

E[‖w̃i‖2] = E[‖w̃i−1‖2]−2r

√
2
π

√
E[δi]−αE[δi−1]

1−α
σ2

ea,i
·





p√
σ2

ea,i
+(K +1)σ2

B

+
1− p√

σ2
ea,i

+σ2
B



+

E[δi]−αE[δi−1]
1−α

.

(14)

Because E[δi] is time-variant we need a recursion for it. Using the
second part of A2) and (4) yields:

E[δi] = αE[δi−1]+(1−α)



E[δi−1]Pi [z≥ E[δi−1]]+

E[δi−1]∫

0

z dFi(z)





(15)
After (14) and (15) we can obtain results for the steady-state beha-
vior of the algorithm.

3.1 Steady-State Behavior
Assuming that the limit of (14) exists, we can take limits as i → ∞
to obtain:

√
E[δ∞] = 2r

√
2
π

σ2
ea,∞





p√
σ2

ea,∞
+(K +1)σ2

B

+
1− p√

σ2
ea,∞

+σ2
B





(16)
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where E[δ∞]≡ limi→∞ E[δi] and σ2
ea,∞

≡ limi→∞ σ2
ea,i

. Taking limits
in (15) (this is possible because E[δi] is a positive and decreasing
sequence) and assuming that e2

i /‖xi‖2 has a limiting distribution
(which is reasonable in for the assumptions considered) leads to:

E[δ∞]P∞ [z < E[δ∞]] =
∫ E[δ∞]

0
z dF∞(z), (17)

where P∞ [z < δ∞] ≡ limi→∞ Pi [z < δi] and F∞(·) denotes the limi-
ting distribution of e2

i /‖xi‖2. It should be clear that (17) is satisfied
when E[δ∞] = 0. If the limiting distribution of e2

i /‖xi‖2 is such that
P∞ [z < c] = 0 for some c > 0 then it could happen that E[δ∞] = a
with a ≤ c. But because of the presence of the noise vi, which is a
continuous random variable whose probability density extends over
the entire real axis, this is not a realistic assumption. So we will
have E[δ∞] = 0. Replacing this in (16) we obtain:

σ2
ea,∞

= 0. (18)

In the appendix, under the additional assumption of w̃i−1 and xi
being statistically independent, we prove that:

lim
i→∞

E[‖w̃i‖2] = 0. (19)

This is a very interesting result which states that under the hypothe-
ses taken, after a sufficiently long time and independently of α and
δ0 the adaptive filter converges to the true system in a mean-square
sense.

3.2 Transient Behavior
Equations (14) and (15) can be used to study the transient behavior
of the algorithm. However these equations are not self-contained.
We need one more equation linking σ2

ea,i
and E[‖w̃i−1‖2]. For that

reason we will work with the classical approach of obtaining a re-
cursion for the covariance matrix of w̃i. We will also need two more
assumptions:

B1): The input regressors {xi}∞
i=0 are statistically independent and

Gaussian with zero mean and covariance matrix E
[
xix

T
i
]
= R.

B2): We can approximate the mean squared value of ei condi-
tioned on the misalignment vector w̃i−1, by the unconditional mean
squared error:

E
[
e2

i |w̃i−1

]
≈ E

[
e2

i

]
= σ2

ei
. (20)

B1) is a classical assumption and it has been used many times in the
adaptive filter literature [9], [10]. B2) was succesfully used in the
past for analyzing the sign algorithm [9], and it is valid when δi is
small enough. Although this is strictly valid for the steady-state we
take it only for mathematical tractability. However we will see that
the results obtained are in agreement with the simulation results.
Defining Ki = E[w̃iw̃

T
i ], using (5), A1), B1), A2), B2), Lemma 1

and Price‘s theorem we prove in the appendix that:

Ki = Ki−1− r

√
2
π

E [δi−αδi−1]
1−α

[RKi−1 +Ki−1R] ·




p√
σ2

ea,i
+(K +1)σ2

B

+
1− p√

σ2
ea,i

+σ2
B



+

E [δi−αδi−1]
1−α

G,

(21)
σ2

ea,i
= Tr [Ki−1R] , (22)

where G = E
[
(xix

T
i )/‖xi‖2]. It is interesting to observe that if

we take trace to both sides of equation (21) and use (22), we ob-
tain (14). This proves that B1) and B2) give results consistent with
(14) which was based on weaker assumptions. Then with (15), (21)

and (22) we have a self-contained set of equations that gives the
transient behavior of the algorithm under the hypotheses taken. To
solve them, we require the distribution of e2

i /‖xi‖2 and the values
of G and r. The calculation of G is based on the ideas introduced in
[10]. The calculation of r = E [1/‖xi‖] with xi Gaussian and cova-
riance matrix R is very difficult and there is no known closed form.
For this reason we compute it for xi Gaussian with covariance ma-
trix σ2

x I. Using generalized spherical coordinates it is not difficult
to show that in this case:

E
[

1
‖xi‖

]
=

Γ
( M−1

2
)

√
2σxΓ

( M
2

) = r, M ≥ 2, (23)

where Γ(x) =
∫ ∞

0 tx−1e−tdt is the complete gamma function.
In order to obtain a more explicit recursion for (15) we need

A3). This assumption, together with A1) allows us to characterize
ei as a mixture of two Gaussian variables with mixing parameters p
and 1− p and variances σ2

ea,i
+(K+1)σ2

B and σ2
ea,i

+σ2
B respectively.

We want to obtain the PDF of e2
i

‖xi‖2 . It is not difficult to show that

e2
i is a mixture of two non-standard χ2 distributions with mixing

parameters p and 1− p. In the general case with covariance matrix
R, there is no simple expression for the PDF of ‖xi‖2. Because of
this, we consider that the distribution of ‖xi‖2 is χ2 as if the input
regressors had a diagonal covariance matrix, i.e. σ2

x I. We assume
that we can take e2

i and ‖xi‖2 as independent variables. This is more
accurate as the algorithm is closer to its steady-state. In this situa-
tion, ea,i can be small compared with the background noise part of
vi. Then, vi will dominate ei, and because of A1) the independence
assumption between e2

i and ‖xi‖2 will hold approximately. In the
simulations section we will see that these assumptions give good
results. Making the corresponding change of variables the PDF of
z .= e2

i /‖xi‖2 can be show to be a mixture of two non-standard F
distributions. More precisely, for z≥ 0:

pz(z) =
Γ[(M +1)/2]

Γ[1/2]Γ[M/2]σM
x





p
(
(K +1)σ2

B +σ2
ea,i

) M
2 z−1/2

(
z+

(K+1)σ 2
B+σ 2

ea,i
σ2

x

) M+1
2

+

(1− p)
(

σ2
B +σ2

ea,i

) M
2 z−1/2

(
z+

σ 2
B+σ 2

ea,i
σ2

x

) M+1
2





. (24)

Now we can show that:

Pi [z≥ E [δi−1]] =1− p cdf

[
Mσ2

x E [δi−1]
σ2

ea,i
+(K +1)σ2

B
,1,M

]
−

(1− p)cdf

[
Mσ2

x E [δi−1]
σ2

ea,i
+σ2

B
,1,M

]
,

(25)

where we define the cumulative density function:

cdf[γ ,m1,m2] =
1

β
( m1

2 , m2
2

)
(

m1

m2

) m1
2

γ∫

0

ψ
m1
2 −1

(
1+ m1

m2
ψ

) m1+m2
2

dψ,

(26)
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Figure 1: Mismatch (in dB) under different conditions. Inputs:
white and AR1(0.8). SBNR: low (10 dB) and high (40 dB). The
theoretical predictions are in solid line while the simulated results
are in dotted line. M = 32. κ = 1 for white input and κ = 3 for
AR1(0.8) input. p = 0.1 and K = 1000. The curves are the result of
ensemble averaging over 100 independent runs.

where β (n,m) =
∫ 1

0 xn−1(1− x)m−1dx. In the same way:

E[δi−1]∫

0

zp(z)dz =
Γ(3/2)Γ[(M−2)/2]

Γ(1/2)Γ(M/2)
·



p

(
σ2

ea,i
+(K +1)σ2

B

σ2
x

)
cdf


 (M−2)σ2

x E [δi−1]

3
(

σ2
ea,i

+(K +1)σ2
B

) ,3,M−2


+

(1− p)

(
σ2

ea,i
+σ2

B

σ2
x

)
cdf


 (M−2)σ2

x E [δi−1]

3
(

σ2
ea,i

+σ2
B

) ,3,M−2






 .

(27)

Then we have the complete model for the transient behavior of the
algorithm.

4. SIMULATIONS

We will test the preceding model. We use white and AR1(0.8) input
signals. The forgetting factor α is chosen according to the rule of
thumb:

α = 1− 1
κM

, (28)

where κ is a parameter that depends on the color of the input signal
and tipically is between 1 and 6. The signal to background noise
ratio is defined as:

SBNR = 10log10

[
σ2

y

σ2
b

]
. (29)

where σ2
y and σ2

B are the power of the uncorrupted output signal and
the background noise respectively. In the simulations, σ2

b is chosen
in such a way that SBNR=10 dB or 40 dB. The length of the true
system is fixed to M = 32. The measure of performance considered
is the system mismatch defined as:

10log10

[‖w̃i‖2

‖wi‖2

]
. (30)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−140

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

Iterations

δ(
n)

White. SBNR=10 dB 

White. SBNR= 40 dB 

AR1(0.8). SBNR=10 dB 

AR1(0.8). SBNR= 40 dB 

Figure 2: Evolution of {δi} (in dB). The setup is the same as in
Fig. 1. Although the theoretical result is an ensamble average, the
experimental one corresponds to a single run.

We will also consider the presence of impulsive noise, with p = 0.1
and K = 1000. It should be noted that good results were also found
for p up to 0.5 (not shown) although this extreme condition might
be of no practical interest.

In Fig. 1 we can see that the model is in good agreement with
the simulated results concerning the system mismatch. However,
the transient behavior agreement decreases as the correlation of the
input signal increases. The fact that the assumption of indepen-
dent input regressors becomes less accurate, is the main reason for
this phenomenon. We see that the system mismatch is monotoni-
cally decreasing and, although not shown, its limit is in the order of
the machine precision. This confirms that the filter converges in a
mean-square sense.

In Fig. 2 a single realization of the simulated sequence {δi} is
compared to the (ensemble average) prediction of the model. The
theoretical results fits very well, indicating that δi has a very low
variance, and thus confirming hypothesis A2). Again, its limit is in
the order of the machine precision.

Fig. 3 shows the probability of executing the NLMS update
with µ = 1. We only show the result of the first 10000 iterations to
appreciate the details at the beginning of the adaptation. According
to the model this probability is given by 1− Pi [z≥ E [δi−1]]. At
the beginning of the adaptation, specially when the SBNR is high,
the predictions of the model differ from the experimental results.
This is due to the hypothesis considered for obtaining a closed-form
expression for the distribution of e2

i
‖xi‖2 . However, as the adaptation

proceeds for a long time interval, the agreement improves. This
validates the previous discussion where the independence between
e2

i and ‖xi‖2 was introduced. It is clear from the figure that, at the
beginning of the adaptation, the NLMS update is mostly used (as
long as the error is not large, so that the algorithm remains robust)
leading to a fast convergence speed. As time progresses, the NSA
is used more often (with a decreasing step-size) which allows the
algorithm to have zero misalignment.

The overall result is that even with very strong (and sometimes
unrealistic) assumptions, the predictions of the model are quite ac-
curate, specially for large number of iterations.

5. CONCLUSIONS

A new framework for designing robust adaptive filters was recently
introduced. Particularly, the RVSS-NLMS algorithm was derived.
Here, we introduced a theoretical model for predicting its mean-
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Figure 3: Evolution of the probability of executing the NLMS up-
date. The setup is the same as in Fig. 1. The experimental plots
were low pass-filtered with a moving average with a span of 7 sam-
ples.

square behavior. Under certain reasonable assumptions we proved
that the limiting mean-square misalignment is zero. Then, we in-
cluded other assumptions in order to predict the transient behavior
of the algorithm. Overall, the predicted results are in good agree-
ment with the simulated ones.

6. APPENDICES

6.1 Proof of (19)
Clearly, σ2

ea,i
= E[w̃T

i−1xix
T
i w̃i−1]. If we assume that w̃i−1

and xi are statistically independent it can be shown that σ2
ea,i

=
E[w̃T

i−1Rw̃i−1] where R = E[xix
T
i ]. Using the eigenvalue de-

composition of the autocorrelation matrix of the input regressors,
R = QΛQT , and defining ci−1 = QT w̃i−1, we can write:

σ2
ea,∞

= lim
i→∞

M

∑
j=1

λ jE[(c j
i )

2], (31)

where c j
i denotes the j-th component of ci. Because of (18) and the

positive definiteness of R, it is clear that limi→∞ E[(c j
i )

2] = 0 j =
1, . . . ,M. This implies that limi→∞ E[‖ci‖2] = 0. As Q is a unitary
matrix, (19) follows.

6.2 Proof of (21) and (22)
Using the definition of Ki in (5) we can write:

Ki = Ki−1−E

[√
δi−αδi−1

1−α
sign(ei)

(
w̃i−1

xT
i

‖xi‖+

xi

‖xi‖ w̃
T
i−1

)]
+E

[
δi−αδi−1

1−α
xix

T
i

‖xi‖2

]
. (32)

Assuming that the filter is long enough we can make the approxi-
mation

E

[
sign(ei)

(
w̃i−1

xT
i

‖xi‖ +xi
w̃T

i−1
‖xi‖

)]
≈ E

[
1
‖xi‖

]
·

E
[
sign(ei)

(
w̃i−1x

T
i +xiw̃

T
i−1

)]
. (33)

This approximation is justified with the same argument given for
(11). Using A2) and (33) in (32) yields:

Ki = Ki−1−E
[

1
‖xi‖

]√
E [δi−αδi−1]

1−α
E [sign(ei)·

(
w̃i−1x

T
i +xiw̃

T
i−1

)]
+

E [δi−αδi−1]
1−α

E
[
xix

T
i

‖xi‖2

]
. (34)

We need to calculate E
[
sign(ei)w̃i−1x

T
i
]
. We can write:

E
[
sign(ei)w̃i−1x

T
i

]
= E

{
E

[
sign(ei)w̃i−1x

T
i |w̃i−1

]}
. (35)

By means of B1) we can apply Lemma 1 to each entry of
E

[
sign(ei)w̃i−1x

T
i |w̃i−1

]
. Using Price’s theorem and B1), B2) and

Lemma 1 it holds:

E
[
sign(ei)w̃i−1x

T
i

]
=

√
2
π
Ki−1R





p√
σ2

ea,i
+(K +1)σ2

B

+

1− p√
σ2

ea,i
+σ2

B



 .

(36)
The term E

[
sign(ei)xiw̃

T
i−1|w̃i−1

]
can be obtained with the same

procedure. Then (21) follows. Equation (22) is a straightfor-
ward application of the independence between the inputs regressors
stated in B1).
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