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ABSTRACT
Time-frequency representations are ubiquitous in speech and

audio signal processing, their use being motivated by both audi-
tory physiology and the mathematics of Fourier analysis. Nonpara-
metric statistical models (or equivalently transform based signal
processing methods) formulated in this space provide a principled
way to decompose sounds into their constituent parts, as well as
an effective means of exploiting the local correlation present in the
time-frequency structure of naturally generated acoustic signals.
Here we describe how an appropriate generative statistical model,
even under very simple assumptions, provides a means of explor-
ing sparse time-frequency representations in audio. We introduce a
symmetrized lognormal model for spectral coefficients, which shows
good agreement across a broad range of speech samples taken from
the TIMIT database, and demonstrate preliminary speech enhance-
ment results based on a maximum a posteriori shrinkage estimator.

1. INTRODUCTION

Time-frequency representations are ubiquitous in speech and au-
dio signal processing, their use being motivated by both audi-
tory physiology and the mathematics of Fourier analysis. Indeed,
information-carrying natural sound signals can often be conve-
niently characterized as a superposition of simple, well-understood
mathematical building blocks.

In combination with so-called nonparametric statistical mod-
els formulated in the time-frequency plane, such an approach pro-
vides a principled way to decompose sounds into their constituent
parts, as well as an effective means of exploiting the local correla-
tion present in the time-frequency structure of naturally generated
acoustic signals. At the same time, however, more structured rep-
resentations offer the hope of truly generative statistical models for
audio analysis and synthesis tasks, but at the price of less universal
model elicitation and more complex model fitting procedures.

In conjunction with a companion article featured in this EU-
SIPCO special session, this paper approaches these trade-offs si-
multaneously from the points of view of signal processing and
statistics, yielding a common framework intended to shed light on a
variety of techniques in the literature. This framework is then used
to describe the ways in which an appropriate generative statistical
model, even under very simple assumptions, provides a means of
exploiting sparse time-frequency representations in speech and au-
dio signal processing.

2. SHORT-TIME AUDIO SIGNAL PROCESSING

The scenario we consider here stems from the standard method of
“short-time” audio signal processing, in which the signal under con-
sideration is decomposed according to the principles of Gabor anal-
ysis (i.e., the subsampled short-time Fourier transform) over finite
cyclic groups [2]. Simply put, this viewpoint is a formalization of

Work supported by DARPA under Grant HR0011-07-1-0007. The ex-
pository material contained in Section 2 of this article first appeared in [1].

the tried-and-true overlap-add method commonly used for short-
time audio signal analysis and synthesis (see, e.g., [3] for details).

To this end, we recall that the standard practice for modification
of an audio times series vector x ∈ R

L proceeds as follows: first, x
is divided into overlapping segments via the multiplicative action of
a (typically) smooth, real, and symmetric window g whose effec-
tive size l (typically � L) is chosen as a function of the sampling
rate such that the analysis window length lies in the range of 15–
40 ms, depending on the time-varying nature of the audio signal
class under consideration. The discrete Fourier transform (DFT) is
applied on each interval and the resultant spectral coefficients are
modified according to the task at hand; the inverse DFT is then
taken and a corresponding synthesis window applied to each seg-
ment. Finally, the overlapping segments are added together in an
appropriately weighted manner in order to reconstitute the modified
time series vector x̂.

2.1 Gabor Analysis and the Overlap-Add Method
As a prelude to the signal models presented below, it is helpful to
understand the overlap-add procedure more formally as follows:
using the pair (m,n) to denote modulation and translation indices
respectively, and thus to index a (separable) lattice of points in
the time-frequency plane, we may think of mapping each win-
dowed segment of x to a corresponding short-time spectral seg-
ment, or sampled “slice” of that signal’s short-time Fourier trans-
form (STFT). In particular, this operation corresponds to a represen-
tation of x in terms of a set of Gabor transform coefficients {cm,n}
representing a sufficiently fine tiling of the time-frequency plane.
The Gabor transform is hence a sampled version of the STFT.

The so-called Gabor analysis coefficients are calculated as in-
ner products of x and translated, modulated versions of some cho-
sen analysis window as cm,n = 〈x,gm,n〉, where gm,n denotes a dis-
cretized, time-frequency shifted version of a window function g(t):

gm,n(t) = g
(

t − n
N

L
)

e2π j m
M t , t ∈ {0,1, . . . ,L−1}.

Here M and N are positive, integer lattice constants chosen accord-
ing to parameters a and b (representing time and frequency sam-
pling intervals, respectively) such that Na = Mb = L, the length of
the vector x. The corresponding Gabor expansion in turn provides
a means of reconstructing x from its Gabor coefficients, which act
as weights in the sum of translations and modulations of a dual (or
synthesis) window function g̃(t):

x(t) =
M−1

∑
m=0

N−1

∑
n=0

cm,ng̃m,n(t) = ∑
m,n

〈x,gm,n〉g̃m,n(t).

In the discrete-time case, we may hence denote the Gabor trans-
form of a vector x as c = G∗x, where G∗ denotes the Hermitian
transpose of the L×MN Gabor analysis matrix G having the time-
frequency atom gm,n as its (m+nM)th column, and the Gabor trans-
form coefficients {cm,n} are written in the form of a “stacked” col-
umn vector c of length MN. Likewise, we may denote the Gabor
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Figure 1: Comparison of the log-magnitudes of the MDCT coef-
ficients (top) and the Gabor analysis coefficients (bottom) corre-
sponding to a wideband speech waveform, computed using identi-
cal parameter settings and window functions

expansion of x by x = G̃c̃, where G̃ denotes the L×MN Gabor
synthesis matrix having g̃m,n as its (m+nM)th column, and the vec-
tor c̃ represents the corresponding synthesis coefficients.

2.2 Overcompleteness and Gabor Frames
We distinguish between c and c̃ in the above discussion because an
overcomplete representation admits an entire subspace of perfect-
reconstruction synthesis coefficients. Indeed, if the column rank of
G is equal to L, then the family (g,a,b) will form a Gabor frame
with redundancy MN/L (see, e.g., [4]); i.e., the span of the set
{gm,n} is C

L:

∃A,B > 0 : ∀x ∈ C
L, A||x||2 ≤ ∑

m,n
|〈x,gm,n〉|2 ≤ B||x||2.

Owing to the overlap of the windowed time series segments in the
scenario we consider here, we have MN > L vectors in dimension L,
and therefore this representation is redundant (typically by a factor
of two, corresponding to use of the DFT algorithm as described
earlier and a “window overlap” in time of 50%).

3. FROM PARSEVAL FRAMES TO THE MDCT

In contrast, a representation popular in the coding literature employs
the modified discrete cosine transform, or MDCT. The MDCT is a
unitary transformation that may be thought of as 1) a partition of
unity applied to the time axis through a sequence of overlapping
windows which yield short-time blocks, as in the case of the Ga-
bor transform; followed by 2) a type-IV discrete cosine transform
(which implicitly extends the signal at each block’s boundary by
introducing a symmetric extension to the left followed by an anti-
symmetric extension to the right, as a means of periodic extension).

Given the differences between the MDCT and Gabor frame rep-
resentations, it is natural to ask how the redundancy or “overcom-
pleteness” of the latter affects the signal representation that we ob-
tain. While a detailed discussion of the differences between frames
and bases is outside the scope of our present enquiry, key differ-
ences center around a lack of unicity (overcomplete Gabor frames),
and a lack of translation invariance (bases). Our specific interest
here lies in the implications of these differences for model-building,
and hence we shortly proceed to outline the results of an empirical
investigation into differences in sparsity with respect to frames and
bases for a variety of speech utterances.
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Figure 2: Realization of the maximum a posteriori lognormal
shrinkage rule for coefficients of the speech signal of Figure 1,
shown as a function of input signal-to-noise ratio (see Section 5)

To proceed with our investigation, and indeed to address the un-
derlying questions surrounding overcompleteness, it is necessary to
be able to compare frame and basis representations of waveforms
in R

L directly. Note that while the coefficients of a redundancy-two
Gabor system for R

L are complex-valued, we may consider them as
elements of R

2L by an appropriate bijection that takes into account
the conjugate symmetry of the spectra of real-valued waveforms.
This enables us to compare our representations on an equal footing.
In particular, one can formulate a specific choice of redundancy-two
Gabor system such that the resultant frame is “as close as possible”
to a lapped orthogonal transform (of which the MDCT is one exam-
ple). In this case, the frame bounds A,B will be tight (A = B) and the
frame will also be normalized (A = B = 1). Together these condi-
tions describe what is known as a Parseval frame, suggesting its iso-
metric (but not unitary) properties. In fact, while space constraints
preclude a detailed discussion, the necessary conditions for Gabor
frame tightness in the redundancy-two case we consider correspond
to those which define admissible windows in lapped orthogonal
transforms [5], or equivalently enforce the Princen-Bradley condi-
tions for “time-domain aliasing cancellation” (TDAC) [6].

3.1 Comparing the Gabor Transform and MDCT
Under the equivalence conditions described above, we first consider
the application of the Gabor transform and the MDCT to a wide-
band speech signal of duration 2.5 s, sampled at a rate of 44.1 kHz.
An identical window was employed in each case, derived from a
1024-sample (� 23 ms) Hanning window, by computing the closest
window (in the �2 sense) satisfying the Parseval/TDAC conditions.

Comparing the (log-) spectrogram—defined as the (log-)
magnitude-squared of the Gabor transform—and equivalent MDCT
representation of this utterance, as shown in Figure 1, we may ob-
serve the subtle nature of their relationship. While the representa-
tions look very similar at a “macro” level (bearing in mind that in
each case we have discarded the “phase” information), upon closer
inspection we notice that the spectrogram as a time-frequency sur-
face appears less rough than the log-magnitude plot of the MDCT
coefficients. In fact, this smoothness may be explained by recalling
that the spectrogram may also be viewed as a convolution of the
speech signal’s Wigner-Ville distribution with a smoothing kernel
corresponding to the Wigner-Ville distribution of the chosen win-
dow. The relative roughness of the MDCT also suggests a lack
of translation invariance, in contrast to the covariant property of
the (continuous-time) spectrogram and other objects which admit a
loose interpretation as so-called “time-frequency energy densities.”
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Figure 3: Coefficient log-magnitudes corresponding to Figure 1,
sorted in decreasing order to reveal comparative rates of decay
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Figure 4: Comparison showing the slightly heavier tail of the em-
pirical distribution of MDCT coefficient magnitudes for the speech
signal of Figure 1 (top) compared to the Gabor transform (bottom)

3.2 Implications for Sparse Signal Models
Considering the above discussion, it is natural to wonder what im-
plications these differences might have for sparse signal models.
We formulate the question as follows: If a “sparse” signal model is
taken to be one under which the sorted coefficient magnitudes ex-
hibit rapid decay, then which representation—the Gabor transform
or the MDCT—will yield the fastest decay rate? Some empirical
insight into this question is given by Figures 3 and 4, which char-
acterize the decay of the coefficients that comprise Figure 1. These
figures suggest a slightly heavier coefficient “tail” under the MDCT
representation, relative to the short-time Fourier transform.

4. MODEL ELICITATION

If we are willing to consider coefficients as random variables and
hence imbue them with prior distributions, then a sparse signal
model will require that most of the coefficients are small (“mass
near zero”), while just a few coefficients capture the vast majority
of the signal’s energy (“heavy tails”). In this sense, the histograms
of Figure 4 suggest that an appropriate specification can capture the
idea that coefficients will be “sparse” for a given signal class—akin
to the characterization of Besov spaces by wavelet coefficient de-
cay, and its use in deriving nonlinear shrinkage rules for wavelet
regression. Indeed, the intuition behind this line of reasoning has
long been exploited by practitioners in the speech and audio pro-
cessing community, through simple time-frequency shrinkage esti-
mators such as spectral subtraction and its numerous variants [7].
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Figure 5: Histograms showing MDCT (top) and Gabor transform
(bottom) coefficient log-magnitudes corresponding to Figure 1
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Figure 6: Normal probability plot of MDCT data of Figure 5 (top);
log-decay of the corresponding best-fit magnitude density under
maximum-likelihood lognormal parameter estimation (bottom)

In fact, by positing an independent and identically distributed
(i.i.d.) generative model for audio signals (suggesting exchangeabil-
ity and invariance under permutation in the coefficient domain), we
may interpret our histograms as suggesting (at least empirically) a
form of prior distribution. In particular, our preliminary investiga-
tions with the well-known TIMIT speech utterance database suggest
that a so-called lognormal model, in which the logarithm of coeffi-
cient magnitude is taken to be Normally distributed, fits reasonably
well across a wide range of examples, in comparison with the Expo-
nential, Generalized Gaussian, Student’s t, log-Rayleigh, and other
common “heavy-tailed” or super-Gaussian distributions.

To this end, Figure 5 shows a comparison of log-magnitude co-
efficient histograms under both the MDCT and the Gabor transform,
from which it can be seen that the lognormal model appears qual-
itatively reasonable. The slightly super-Gaussian tail behavior of
these coefficients is captured by the Normal probability plot in the
top portion of Figure 6, and the resultant magnitude density fitted
via maximum likelihood is shown in its lower portion (cf. Figure 4).

Of course, regardless of which distribution and coefficient do-
main we choose to adopt, this model is only defined on the coeffi-
cient magnitudes—leaving open the question of how to model the
coefficient phases. (We may interpret the MDCT coefficients as
having a phase restricted to θ = 0 or θ = π .) Fortunately, we may
specify the magnitude and phase models separately for each short-
time spectral (Gabor transform or MDCT) component, and take the
joint distribution resulting from our separable prior model to repre-
sent our (potentially sparse) coefficient prior model overall.
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Figure 7: Eight pairs of MDCT (top) and Gabor transform (bottom) log-magnitude coefficient histograms for speech signals selected at
random from the database of [8] and employed in the experiments of Section 6. A voice activity detector was employed to eliminate large
regions of silence; however, the recurring mode centered near −10 is presumed to be due to time-frequency regions absent of speech energy.

5. MODEL FITTING

The prior models discussed above also lend themselves to fitting
procedures. In particular, by equating the (Bayesian) negative log-
posterior with an objective function for minimization, we arrive at
a family of maximum a posteriori (MAP) shrinkage estimators that
admit a correspondence as solutions to variational problems. We
consider here the case of the lognormal model described earlier for
MDCT coefficient magnitudes, in conjuction with a uniform prior
distribution on MDCT “phase” (i.e., sign values). Together these
define a lognormal model for MDCT coefficients that is a mixture
which has been “symmetrized” about zero.

5.1 Symmetrized Lognormal MDCT Regression
Our interest is in fitting the lognormal model to speech log-
magnitude coefficient data in the presence of additive noise. To
this end, consider first the standard additive observation model

y = x+n, n ∼ Normal(0,σ2
n I),

where y = [y0 y1 . . . yL−1]
T is the vector of the observed

waveform, x is that of the underlying signal we wish to estimate,
and n comprises i.i.d. samples of a continuous Gaussian noise pro-
cess with variance σ2

n .
Recall that our model for MDCT coefficients is also i.i.d., al-

lowing us to revert to scalar notation in the sequel. Moreover, as the
MDCT is unitary, we will simply use the same notation y = x + n
to represent our model for each observed MDCT coefficient. Now
note that a lognormal distribution in |x| is specified by parameters
μ and σ2, corresponding respectively to the mean and the variance
of the density of ln |x|, which is Normal. When a symmetrized log-
normal random variable |x| is observed in additive white Gaussian
noise of variance σ2

n and the MAP estimator x̂MAP is sought, the
fitting procedure can be verified to lead to a variational problem of
the following form:

x̂MAP := argmin
x

{
(y− x)2 +

σ2
n

σ2

(
ln |x|− (μ −σ2)

)2
}

.

Note that under the assumed model (and as reflected by the form
of the objective function), the sign of x̂MAP will always be equal to

that of the observation y. The (implicit) solution to this minimiza-
tion problem is shown in Figure 2 (see second page of this article),
formulated as a shrinkage rule, or “gain” to be applied to each ob-
served MDCT coefficient y as a function of overall input signal-to-
noise ratio (SNR)—which in turn depends on σ2

n and the energy of
the speech waveform. (Hence, the rule itself must be computed for
each observed waveform of interest, owing to the appearance of μ
and σ2.) Owing to the effect of the prior mean μ −σ2 in the log
domain, the minimization procedure can lead to gains greater than
unity for observations near zero—since the symmetrized lognormal
distribution cannot have mass at negative infinity—though this ef-
fect is suppressed in Figure 2 for clarity of presentation.

5.2 Parameter Estimation
For the purposes of modeling and investigation, parameters (μ ,σ2)
of the symmetrized lognormal model can easily be fit via maximum
likelihood estimation using the “clean” waveform data (the proce-
dure corresponding precisely to maximum likelihood for a Normal,
but using the logarithm of the data absolute values). However, any
realistic inference procedure must enable the estimation of these pa-
rameters from noisy data; i.e., the vector of observations y.

To this end, note that the kth moment Exk of a lognormal ran-
dom variable x with parameters (μ ,σ2) is given by the expression
ek(μ+kσ 2/2). Since the moments of x (under an “ordinary” lognor-
mal distribution) and |x| (under our symmetrized lognormal distri-
bution) are equal for k even, we can employ the method of moments
to estimate our distribution parameters (μ ,σ2) as a function of the
(noisy) observed data vector y. In particular, it follows that for the
case of zero-mean additive white Gaussian noise having variance
σ2

n , the following moment equations may be shown to hold:

μ = α − 1
4

β ; σ2 =
1
4

β − 1
2

α ,

where parameters

α := ln
(
Ey2 −σ2

n

)
, β := ln

(
Ey4 −6σ2

n Ey2 +3σ4
n

)

can be straightforwardly estimated from noisy data simply by equat-
ing the appropriate kth sample moments L−1 ∑L

i=1 yk
i with the re-

spective kth distribution moments Eyk. (This relation holds as the
observations yi remain i.i.d. under the assumed model.)
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Figure 8: Shrinkage comparisons averaged across the eight utterances whose transform coefficients are shown in Figure 7, with model
parameters (μ ,σ2) fitted from clean (a) and noisy data (b) according to the methods of Section 5.2. Results are shown in terms of SNR gain
as a function of input SNR; error bars represent approximate 95% confidence intervals based on the eight speech samples considered here.

6. EXPERIMENTAL RESULTS AND CONCLUSION

To test the fitting methods and lognormal shrinkage procedure in-
troduced in Section 5, an investigation was carried out using eight
utterances selected at random from the database of [8], which de-
scribes a representative subset of 516 samples from the TIMIT cor-
pus. These utterances were analyzed via the MDCT and the Gabor
transform using a 256-sample window (� 16 ms given the TIMIT
sampling rate of 16 kHz), derived as described in Section 3.1.

The coefficient log-magnitude histograms of the eight selected
examples are shown in Figure 7 on the preceding page, with ut-
terance numbers corresponding to the directory structure of the
database of [8]. These histograms include only those short-time
segments whose energy exceeded the lower 15th percentile with re-
spect to each utterance overall, though subsequent noise reduction
experiments treat the entire recorded utterance in each case. As
in the example of Figure 5 we observe that these empirical den-
sities are somewhat super-Gaussian, yet relatively symmetric and
unimodal—except for a recurring mode near −10, which we at-
tribute to time-frequency regions absent of speech energy, based on
an informal exploration of other utterances in the TIMIT corpus.

While it may be verified that these MDCT coefficient magni-
tudes decay slightly faster than their Gabor counterparts, the his-
tograms of Figure 7 suggest that a symmetrized lognormal model
for the Gabor coefficients may also be of interest. Noting that our
fitting procedures can be applied equally well to these data (despite
the introduction of coefficient correlations, which violates our origi-
nal modeling assumptions), we may thus pose the question of which
representation—MDCT basis or redundancy-two Gabor frame—
yields the best-performing model in terms of mean-squared error.
(Though other metrics may be more perceptually relevant, our im-
mediate priority is to establish a quantifiable performance baseline.)

As mean-squared error reduction can be re-cast as improvement
in SNR, our experimental procedure here consists of first degrad-
ing the eight selected utterances by additive white Gaussian noise
to yield SNRs in the set {−5,0,5,10,15,20}, and then restoring
them according to the lognormal fitting procedures outlined in Sec-
tion 5.2. For each utterance and SNR considered, this procedure
was repeated 25 times, with SNR gains then averaged accordingly.
To this end, Figure 8(a) shows the results of a “best-case” lognor-
mal estimation based on the MDCT and the Gabor transform, with
parameters fitted from the clean data. It can be seen that the MDCT
outperforms the Gabor representation by about 1 dB on average,
though the approximate 95% confidence intervals tend to overlap.

Figure 8(b) shows the performance of both methods when the
moment estimator of Section 5.2 is applied to the noisy data. While
the MDCT representation retains its performance well in low SNR
regimes yet degrades somewhat at high SNR, the Gabor representa-
tion’s performance follows the opposite pattern. As our data in the
Gabor case do not correspond to the assumptions of our model, and
as we do not yet have quantitative notions of goodness of fit, it is dif-
ficult to postulate an immediate explanation for these phenomena.
They may well represent an interaction with, or manifestation of,

the moment estimator’s properties, as the measured shrinkage per-
formance under both representations converges at high SNR; how-
ever, a more detailed study is needed to draw firm conclusions.

In perceptual terms, informal listening tests indicate that a
stronger suppression is obtained relative to baseline spectral sub-
traction approaches to shrinkage, leading to a reduction in perceived
residual noise but at the loss of some low-level signal detail. These
findings are consistent with our initial attempts to approximate the
exact MAP estimator analytically, which have yielded simple spec-
tral subtraction schemes in which the noise variance term is ar-
tificially inflated—a (typically heuristically motivated) technique
known in the speech enhancement literature as “oversubtraction.”

In summary, we have presented in this article an overview
of sparse time-frequency representations by way of a new sym-
metrized lognormal model and fitting procedure. Future work will
involve a more thorough performance analysis and investigation of
approximate estimator solutions, as well as comparisons to other
shrinkage estimators in the speech and audio literatures. As a sub-
sequent modeling step, we plan to extend our estimator derivation
to model the uncertainty of speech presence, through the inclusion
of mixture priors for the coefficients that admit mass at zero.
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