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ABSTRACT
This paper presents a novel algorithm for Sound Texture Syn-

thesis. Inspired by the well known Efros and Leung non-parametric
2-D Image Texture Synthesis algorithm, our 1-D interpretation is
used to synthesise long, perceptually and statistically similar sound
textures from much shorter real-world audio training examples in-
cluding crowd noise, a baby crying and speech. The process em-
ploys the Dual-Tree Complex Wavelet Transform to reduce com-
putational complexity without sacrificing spectral coherency in the
synthesised audio. Our approach produces plausible and interest-
ing sound textures that are comparable to the results of other state-
of-the-art algorithms.

1. INTRODUCTION

Sound Texture Synthesis (hereafter STS) has many definitions [1,
2]. Generally, the goal is the synthesis of a longer, perceptually
similar body of audio from a much shorter training example. The
training sample may be noise-like or stochastic, quasi-periodic, or
a mixture of these as in most real-world sounds. The biggest chal-
lenge of STS is the achievement of an acoustically plausible sound
texture with an unpredictable temporal evolution. Simple repetition
of the training example, however smoothly it is “tiled”, is easily de-
tectable acoustically and should be avoided. Training candidates for
STS include natural (e.g. babbling water), human (e.g. baby cry-
ing), musical (e.g. piano), and mechanical (e.g. road traffic) sound
samples. Each of these genres present unique challenges for STS.
Some natural sounds seem stochastic (e.g. heavy rainfall), whereas
human speech and polyphonic music have specific, complex struc-
tures. Applications of STS include audio compression, ambient
music synthesis for computer games, installations and movies, re-
synthesis of rare sounds (e.g. a rare bird call), and error correction
or “hole filling” in existing, damaged audio tracks.

STS involves the sample-wise synthesis of a longer, novel
sound track. This is subtly different to the idea of Audio Texture
(hereafter AT) as defined in [3], which is concerned with the loca-
tion of “transition points” for randomized playback of whole seg-
ments of the original training example [3, 4, 5]. AT is like a “patch-
based” alternative to the unit-based STS. Our favouring of the syn-
thesis approach is inspired by the interesting results and challenges
emerging from the field of Image Texture Synthesis (hereafter ITS)
in recent years [6, 7, 8].

Image texture has been successfully modeled as a Markov Ran-
dom Field (hereafter MRF), meaning that “the probability distri-
bution of brightness values for a pixel given the brightness values
of its spatial neighborhood is [assumed to be] independent of the
rest of the image.” Efros & Leung [6]. This idea is derived from a
statistical technique first used by Shannon to generate English-like
text letter by letter. Using a large sample of training text, Shannon
modeled language as a generalised Markov Chain enabling him to
estimate the probability distribution for each new letter to be syn-
thesised by measuring from the existing data. As discussed in [6],
image texture can be pixel-wise synthesised using this technique
adapted to image space.

Although image and audio are presented and perceived quite

differently, we assume that a similar technique exists for sound tex-
turing. Often with 44k samples per second, however, it is clear
that sample-wise synthesis in sound space is not practical. We pro-
pose the use of wavelet space instead. Wavelet, or Multi-Resolution
Analysis (hereafter MRA) involves the analysis of a signal with a
finite energy basis or mother wavelet function under various trans-
lations and dilations. Wavelet decomposition is conducive to the
spectral analysis of non-stationary, real-world signals due to its use-
ful time-scale signal breakdown. This octave filtering is thought to
bear similarity to that of the Human Auditory System [9]. Further-
more, this property can be exploited for computational efficiency in
N-D sample-wise synthesis [2, 7, 8].

The Discrete Wavelet Transform (hereafter DWT) is used in [4]
for the location of AT transition points in several ambient audio
samples. A real-time demo applet (see URL in [4]) allows exper-
imentation with different mother wavelets and parameter tuning.
Similarly, Dubnov et al use the DWT for STS in [2]. Here, anal-
ysis of the training example results in a nodal MRA tree represent-
ing the levels of the DWT. A novel audio texture is created through
the breath-first nodal synthesis of a new tree, such that each new
node is chosen by the suitability of both its same-level “predeces-
sors” and hierarchical “ancestors” for coherency with its same-level
neighbour. Also drawing from an existing ITS technique [7], this
algorithm produces good results for a variety of real-world audio
training examples. The sound files are obtainable online at the URL
associated with [2].

Our algorithm makes use of the Dual-Tree Complex Wavelet
Transform (hereafter DT-CWT) [10] for MRA. Our transformed
signal is represented as an “inverse pyramidal” structure with large-
scale feature coefficients at the bottom, these features decreasing in
scale as we move up the levels of the pyramid. Sound texture is
first synthesised at the largest scale, which represents the coarsest
level of detail in the signal. Other levels are textured by means of
“coarse-to-fine” scale coefficient propagation. A variety of audio
training examples are tested, and the resulting sound textures eval-
uated for spectral coherency and acoustic desirability. Due to its
similarity to our approach, the training examples used by Dubnov
et al [2] are included in our test set for benchmarking purposes.

2. SINGLE RESOLUTION STS (SR-STS)

The idea of SR-STS is necessary in the comprehension of its multi-
resolution extension (MR-STS) using the DT-CWT. Essentially
the 1-D application of [6], a brief explanation of SR-STS is now
needed.

Suppose that our unit of synthesis, ys, is a single sample of
audio, with 22kHz resolution for example. Let Ys be a long body of
audio with N samples to be synthesised from Ye, which is a shorter
audio example of n samples. It is assumed that Ye is long enough
to approximate the statistical distribution of the underlying, infinite
texture from which both Ye and Ys are derived. Initialisation of an
empty Ys involves the copying of a short series of samples, or “seed”
from Ye to a region in Ys. In keeping with [6], this region might be
placed at the mid-point of Ys, although this is somewhat counter-
intuitive for audio, as we shall see later.
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Proceeding from the boundaries of the seed outwards, let ys ∈Ys
be the next sample to be synthesised, and W (ys) be the neighbour-
hood of samples of length w centered at ys. An approximation to
the conditional probability distribution P(ys|W (ys)) must now be
constructed. We begin by identifying the neighbourhoods in Ye that
are similar to W (ys). Let d(W (ys),W (ye)) represent the perceptual
distance between some W (ys) and the same-sized neighbourhood
centred at ye at some point in Ye. In keeping with [6], d is defined
as the Sum of Square Differences:

dys∈Ys,ye∈Ye(W (ys),W (ye)) =
w

∑
i=0

GiVi
√

[Wi(ys)−Wi(ye)]2
w

∑
i=0

GiVi

(1)

where G is a 1-D Gaussian kernel of length w and variance σ =
w/6.4 whose purpose is to maintain local temporal coherency in the
synthesised texture, and V is a binary vector that is only non-zero
where samples Ys have already been filled. Note that the length of
the initialising seed must be at least equal to w/2− 1 to ensure a
valid synthesis of the first case of ys, but need not be any longer
theoretically.

The neighbourhood W (ye) most similar to that of W (ys) corre-
sponds to Wm = MINye∈Ye(d(W (ys),W (ye)). All neighbourhoods in
Ye with d < (1+ε)d(W (ys),Wm) are used to construct P(ys|W (ys))
in the form of a histogram which is then randomly sampled, yield-
ing ys. According to [6], the value of ε can be varied to encourage
or suppress variation in the synthesised texture.

We assume that P(·|·) is valid if the length of w (which defines
the MRF neighbourhood) is chosen to incorporate the longest re-
peating temporal feature in Ye. Here, we are inspired by the spatial
case of this assumption for image texture [6]. The unit of a sample
is analogous to that of a pixel for image in the 2-D case. Unfor-
tunately, the computational burden is potentially heavier than that
for image due to the difference in perception and associated higher
sampling rate of audio.

3. MULTI-RESOLUTION STS (MR-STS)

The DT-CWT [10] is an excellent means of multi-resolution signal
analysis that has already been exploited for ITS [8]. It is known for
its shift-invariant property that is also valid in audio application. In
other words, the DT-CWT relates identical audio features occur

The DT-CWT uses a dual tree of wavelet filters which de-
compose the signal into multi-level (i.e. multi-resolution) complex
wavelet coefficients. Analysis with the mother wavelet in one tree
results in the real values, while analysis with the Hilbert transform
produces imaginary values in the other. At each level of decompo-
sition, the DT-CWT produces a high-pass complex signal of detail
coefficients and a low-pass real signal that is passed on to the next
level. Our MR-STS makes use of Type C wavelet filters in [10]
which are deemed optimal in terms of shift invariance. The Q-Shift
structure of the decomposition implies that each level k coefficient
has two complex “children” located symmetrically above it at level
k−1. Thus we end up with an “inverse pyramidal” structure whose
increasing levels capture coarse-to-fine scales of detail in the signal.

The salient quasi-periods of a signal are often visible as “peaks”
in the resulting band-pass detail signals, particularly in coarser lev-
els of the DT-CWT. Recall that the length of w in SR-STS (Sec. 2) is
chosen to reflect the longest repetitive temporal feature in the train-
ing example. In the DT-CWT of the signal, a fairly small w on the
coarsest level of detail can be used to capture this large-scale period.
Given an audio example of n samples, Ye, and desiring a longer au-
dio texture of N samples, Ys, we can perform a reduced-complexity
MR-STS as follows:
• A K-level DT-CWT is performed on Ye. Knowing N, the dimen-

sions of the K band-pass complex and final low-pass real signals
needed to reconstruct Ys are calculated and used to initialise ap-
propriate empty signal containers (e.g. vector arrays).

• A sample seed of the decomposed Ye is placed in the low pass,
and band-pass signal containers at each level. The size and
position of this seed follows the parent-child relationship de-
scribed earlier, such that the seed placed at level k− 1 is twice
the length of that placed at level k, and symmetrically above it.
Again, strictly adhering to [6] implies placing these seeds cen-
trally. This idea was later questioned, as mentioned in Sec. 4.

• All null coefficients for each level k must now be synthesised.
At the coarsest scale (i.e. level k = K) the algorithm described
in Sec. 2 is used to synthesise the detail coefficients. As we are
now dealing with complex numbers, Eqn. 1 is modified:

d =
w

∑
i=0

GiVi
√

[Re{Wi(cs)−Wi(ce)}]2 +[Im{Wi(cs)−Wi(ce)}]2
w

∑
i=0

GiVi

(2)

where are ce and cs are the complex wavelet coefficients at level
k = K of the wavelet decomposition of Ye and Ys respectively,
and W , w, G and V are as previously described.

• Once a value for a particular cs has been chosen, the levels
k = K − 1..1 are updated in keeping with the parent-child re-
lationship. In other words, the two coefficients above cs at level
k = K − 1 are copied from those above the location of the ce
used to synthesise cs, and so on until level k = K (and therefore
all levels above) has been completely filled.

• Finally, the synthesised structure is inverse transformed yielding
the longer sound texture, Ys.
This coarse-to-fine coefficient propagation has a huge computa-

tional advantage over the SR-STS described in Sec. 2. This saving
depends on both the the depth of the DT-CWT decomposition, K
and associated reduction in neighbourhood size, w. Due to our MRF
assumption, w should capture the dominant tempo (which may be
very small if the signal is nearly stochastic). We try to choose the
greatest possible value of K with corresponding w that does not
compromise the quality of the resulting sound texture Ys.

Referring to the similar work of Dubnov et al [2] for compar-
ison, we note that our MR-STS algorithm is only concerned with
predecessor (i.e. same level) coherency on level k = K, and propa-
gates local ancestral (i.e. parent-child) coherency up the pyramidal
hierarchy. Our algorithm does not, however, guarantee local tem-
poral coherency on levels above K. Dubnov et al are concerned
with both dimensions of local spectral coherency, echoing the ITS
technique of Wei and Levoy [7] in their approach. Although our
algorithm seems more simplistic, a comparison of our results with
those of Dubnov et al is interesting.

4. RESULTS AND DISCUSSION

Training examples obtained from the URL associated with Dubnov
et al [2] were tested first with our algorithm, followed by some other
sound samples of interest. Our sound textures were synthesised to
be much longer than the training examples to allow for the temporal
emergence of variation and novelty, or undesirable looping, tiling,
and uncomfortable artifacts (known as “clicks”).

4.1 Dubnov et al Training Examples and Textures

Dubnov et al create plausible sound textures from a selection of
real-world training samples. These samples, their sampling rates,
Fs, original time durations, t1, and the durations of Dubnov et al’s
sound textures, t2 d, are listed in Table 1. It is clear that some of
these textures are actually shorter than the training examples.

Dubnov et al’s textures of training examples 1 and 2 sound in-
teresting, with few clicks and good variety. The texture of 3 - traffic
jam - has short, repetitive loops, some clicks and abrupt silences.
The latter effect could occur because a period of recorded silence at
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training example Fs[Hz] t1[s] t2 d[s]
1 drum loop 22k 3 5
2 baby crying 11k 13 11
3 traffic jam 22k 22 35
4 shore, splashing 11k 18 11
5 formula 1 race 11k 16 23

Table 1: Training examples used, and sound texture durations, t2 d,
achieved by Dubnov et al. Training set and results are obtainable
online [2].

the start of the original training example. Although generally plau-
sible, the domineering presence of long-term car-horn “honking” is
not reflected well in the synthesised texture.

The authors define a specific problem unsolved by their algo-
rithm; the accurate re-synthesis of some quasi-periodic signals with
both long-term patterns, and sporadic short-term periodic “events”.
Example 4 is in this category - it sounds like the relaxed tempo of
water ebbing on a shore, punctuated with sudden, short “splashing”
events. Here, the authors note an unrealistic “nervous splashing ac-
tivity” in their texture synthesis. Perhaps this effect is due to the
checking of only 5 predecessors at each level of the DWT. Example
5 - formula 1 race - presents a similar problem. A good balance
between the “long sound phenomenon” of gradual engine acceler-
ation and short-term “gear-shifting activity” is not well reflected in
the resulting sound texture.

4.2 Comparative Results from our STS Algorithm
Table 2 summarizes the application of our algorithm to the Dubnov
et al training examples, which we label as Ye in keeping with the
notation of Sec. 3. The values for parameters K, w, and ε which
produced the best results are listed, along with the new durations,
t2 o, of our sound textures.

Ye training example K w ε t2 o[s]
1 drum loop 8 41 0.3 63
2 baby crying 6 25 0.1 73
3 traffic jam 8 5 0.01 70
4 shore, splashing 8 51 0.1 74
5 formula 1 race 8 21 0.1 75

Table 2: Parameter values used, and durations, t2 o, of the best
sound textures achieved by applying our STS algorithm to Dubnov
et al training examples

Extensive trial-and-error experimentation was carried out until
the best parameter combinations were found. In all cases, very short
seeds (e.g. 0.4s for Ye 2) initialized the levels of Ys, and the mech-
anism of coarse-to-fine coefficient propagation from the coarsest
level, K, did not seem to compromise spectral coherency. The best
sound textures are generally plausible, longer than those of Dubnov
et al, and sound smooth and varied (i.e. not tiled). All of the ex-
perimental sound files - including those listed in Table 2 - can be
obtained from our webpage http://www.deirdreoregan.
com/STS_EUSIPCO.html.

The best sound texture of Ye 1 - drum loop - is varied and in-
teresting, with cymbals appearing pseudo-randomly in time. This
particular value for w appears to roughly correspond to the tempo
of the piece at K = 8 in the DT-CWT, as can be seen in Fig. 1 (left).
During experimentation, the origin and placement of the seed was
important, with strange differences between the backwards and for-
wards synthesised results emerging for a central seed (e.g. a novel
beat structure evolving and locking into tempo after the seed). The
seed was later moved to the beginning of the texture. The wave-
forms of the training sample and 11s of our best drum texture are
compared in Fig. 1 (centre and right).

A spectrogram of Ye 2 - baby crying, and 30s of our best sound
texture is shown in Fig. 2 (left) and (right) respectively. The spectral

energy of the latter looks plausible and evolves temporally. The tex-
ture sounds equally plausible and varied, with little audible clicking.
When experimenting with DT-CWT levels K > 6, smaller values of
w produced repetitive looping of particular sections of the train-
ing example, whereas larger values resulted in tiling of the whole
sample. Increasing the value of ε merely resulted in clicking and
garbled sound texturing.

Recorded silence at the beginning and ends of Ye 3, 4 and 5
were excluded to avoid tiling in Ys. In general, our algorithm seems
to favour amplitude troughs in Ye as randomization points for Ys.
Silence has low amplitude, and so there is a tendency toward end-
to-end tiling with Ye 3, 4 and 5 in our STS. Once modified, however,
good results could be achieved for these training examples with the
optimal parameter values listed in Table 2.

The best sound texture of Ye 3 - traffic jam - fully reflects the
annoying ambience of long-term car-horn honking nicely overlayed
with bursts of shouting from irate drivers. Careful tuning of the
parameter w resulted in a plausible reflection of the quasi-periodic
tempo in the textures of Ye 4 and 5. Both the “long sound phe-
nomena” and overlayed short-term “events” associated with these
training examples are well represented and balanced.

4.3 Stochastic, Music and Speech Sound Textures
A further selection of training examples was chosen to test the ro-
bustness of our algorithm to near-stochastic (i.e. baseball game
crowd chatter) and structured (i.e. speech, music) sound samples.
Table 3 lists these samples, their durations, t1, and the algorithmic
parameters used to produce the most plausible sound textures of
duration t2.

Ye training example t1[s] K w ε t2[s]
6 crowd chatter 13 7 11 0.1 71
7 piano phrases 26 8 51 0.3 146
8 german speech 12 6 51 0.001 60
9 english speech + music 10 8 201 0.1 70

Table 3: Further training examples, Ye, their durations, t1, and pa-
rameters used to produce the best sound textures of duration, t2.

The texturing of Ye 6 - crowd chatter - was very interesting.
The noisy crowd ambience was easily reproduced in the synthe-
sis, and w could be quite small due to its fairly stochastic nature.
During experimentation, any tiling of the training example was
detectable through the pattern of a vendor shouting “nuts” and a
man talking and laughing over the noise. Our best texture some-
what randomises these “event-on-noise” patterns, although a slight
“whirring” is present if the shouted word “nuts” emerges more of-
ten than in the original sample. However, it is suspected that this
artifact - and some tiling - would go happily unnoticed if this sound
texture were to be used as low-volume background ambience.

Ye 7 - piano phrases - can be textured in a number of ways.
With large w, the two phrases emerge in their original order, as can
be seen in Fig. 3 (left). Use of the parameters listed in Table 3 re-
sults in a random ordering of the phrases, as can be seen in Fig. 3 (c.
left). At DT-CWT levels K > 10 and with short w, these phrases can
be decomposed into much smaller units. Fig. 3 (c. right) demon-
strates the breakdown of the original phrases to almost single notes
with K = 15, w = 3, and ε = 0.01. This texture sounds like short,
unpredictable bursts of piano played erratically! Further decompo-
sition to level K = 17 and w = 3 results in the emergence of the
original phrases once again. This is intuitive, since the neighbour-
hood size at this level is equivalent to (3×217)/22kHz = 17.83s,
which represents about 80% of the original training example. How-
ever, there is unpredictable inter-phrase spacing, as can be seen in
Fig. 3 (right).

Ye 8 and 9 - German speech and English speech with back-
ground music, respectively - produced exciting textures! Table 3
lists the parameters used to texture German speech with good vari-
ation and minimal clicking. During experimentation, a breakdown
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Figure 1: Synthesised drum texture: The real, imaginary, and absolute (t-b) values of the detail coefficients at K = 8 of the DT-CWT of the
training example (left), the 3s training example (centre), and 11s of the sound texture with 1.5s seed at the start, K = 8, w = 41 and ε = 0.1
(right).
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Figure 2: Synthesised baby crying texture: Spectrograms of the 13s training example (left), and 30s of the sound texture with 0.4s seed at
the start, K = 6, w = 25 and ε = 0.1 (right).

of the structured language phrases seemed to occur at greater lev-
els of the DT-CWT (e.g. K = 15) with a small neighbourhood size
(e.g. w = 3). It is interesting to note that the value of parameter w
used to texture English speech at level K = 8 is roughly equivalent
in duration to that used for German at level K = 6 according to the
dyadic DT-CWT. Perhaps this suggests that the units of German and
English spoken at this relaxed tempo are similar in duration.

Fig. 4 (centre) shows the waveform and spectrogram of the first
5s of our best English speech sound texture. The high frequency
inconsistencies seen in the spectrogram are transitional clicks that
are barely audible on most sound systems. The presence of back-
ground music may be contributing to this effect. Perhaps a smooth-
ing constraint on the coefficient values could be introduced to fix
this problem. During experimentation, English speech could be de-
composed to almost phoneme level with K > 12 and w = 3. Fig. 4
(right) shows the first 5s of this effect with K = 13, w = 3 and ε = 0.
This particular texture contains short periods of distortion, but it is
still interesting due to the seeming presence of words that were not
spoken in the original training example!

5. CONCLUSION

We have described the success of our STS on a variety of real-world
training examples including natural, mechanical, human and musi-
cal sounds. We have demonstrated the application of the Efros and
Leung Image Texture Synthesis algorithm [6] to audio, and have
reduced complexity by employing the Dual-Tree Complex Wavelet
Transform for multi-resolution analysis and synthesis. The acous-
tic products of our research - along with a list of parameter val-
ues - are available online at http://www.deirdreoregan.
com/STS_EUSIPCO.html. We conclude that our results com-
pare favourably to other state-of-the-art STS [2], and AT [4, 5] al-
gorithms whose results are available for acoustic comparison.

Further work will focus on a strategy for automatically choos-

ing parameters, as we hope to render our algorithm truly non-
parametric. The value of K for the DT-CWT, and the dyadically-
related MRF neighbourhood size, w, should be chosen to balance
computational efficiency with error minimisation. Inspired by the
use of Entropy in (particularly wavelet-based) signal compression,
we hope to use a similar technique to choose the optimal value of K
for the DT-CWT.

Different classes of training example seem to respond to partic-
ular values of w, however. Our results suggest a link between w and
the tempo of musical sound samples, for example. Perhaps Beat
Detection [11] could be used to match the value of w to the tempo
of rhythmic training examples. This would be a low-complexity op-
eration on the coarsest scale of the DT-CWT for a large K. A clas-
sification technique could be used to choose a small w for noisy,
stochastic signals, or set w to a multiple of the average length of
a phoneme for speech signals. We could even detect the onset of
phonemes as we synthesise speech signals and vary w to accommo-
date the length of the particular phoneme being synthesised.

The effect of the parameter ε has not been fully explored in this
work. We note the tendency of our algorithm to pick up on low-
energy troughs (including periods of silence) in the amplitudes of
our training signals as coincidental “edit-points” that are more likely
to be followed by variety in the synthesised signal. This tendency
echoes the explicit objectives of transition-point location in many
segmentation-based AT algorithms [3, 4, 5]. Perhaps ε could be
tuned on the fly as amplitude troughs emerge or dissipate in the
synthesis, or vary with the tempo of a percussive signal to amplify
its effect at certain points in the cycle. We could also decrease ε on
early detection of clicks or distortion in the sound texture to curb
the propagation of errors.

We may also explore the possibility of applying SR-STS (see
Sec. 2) to all levels of the DT-CWT simultaneously, or introduce
multi-level coefficient predecessor searching to refine the existing
method of simple parent-child “copying”. This would liken our ap-
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Figure 3: Synthesised piano texture: Tiling of the original phrase ordering (left), random ordering of fully-preserved phrases (c. left),
structural breakdown and the formation of novel phrases (c. right), random phrase ordering and spacing (right)
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Figure 4: Synthesised English speech: 5s of the original training example (left), variation yet structural preservation with K = 8, w = 201,
ε = 0.1 and 1.7s seed (centre), almost phoneme-level decomposition with K = 13, w = 3, ε = 0 and 0.9s starting seed (right)

proach to that of Dubnov et al in terms of spectral coherency, but
some complexity would be gained. We have demonstrated that our
algorithm produces equally plausible sound textures, so this refine-
ment is not a priority. It would be interesting, however, to treat the
non-decimated levels of the DT-CWT of our sound sample in its 2-
D form as an image texture training example, and attempt to extend
it spatially via ITS. To the best of our knowledge this has not yet
been attempted for the synthesis of sound textures.
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