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ABSTRACT
For the simulation of multi-dimensional systems, currently
so called block based methods are under investigation. A
physical model is split into a number of blocks, each corre-
sponding to a specific spatial region, which are modeled and
realized separately. The correct interaction of these blocks is
guaranteed by interaction laws, which can be derived from
the assumption of a global model. In doing so, this paper
presents an application of mixed modeling strategies for the
2D wave equation, where different blocks are realized with
different methods. On the one hand the Finite Difference
Time Domain (FDTD) approach can model arbitrary geome-
tries, but suffers from numerical dispersion. The Functional
Transformation Method (FTM) on the other hand, is com-
pletely free of numerical dispersion, but is restricted to sim-
ple geometries. Via a combination of both methods, it is
possible to model arbitrary geometries, while large parts of
the modeling region are realized free of dispersion with the
FTM.

1. INTRODUCTION

Block based modeling is frequently used in modeling and
simulation for two main reasons: either to represent a com-
plex system as a combination of simpler subsystems or to
subdivide an irregular spatial domain into more regularly
shaped building blocks. This second application is consid-
ered here for the solution of the wave equation in irregular
geometries. Subdividing an irregular spatial domain allows
to apply different numerical methods to different spatial sub-
regions. If used in a clever way, such a mixed modeling ap-
proach may combine the advantages of the several methods
while avoiding their disadvantages.

Two numerical methods for the simulation of wave prop-
agation are considered here: the Finite Difference Time Do-
main (FDTD) method and the Functional Transformation
Method (FTM). The FDTD method is widely applied for the
numerical solution of partial differential equations (PDEs).
It can be easily adapted to irregular domains by forming
a suitable spatial grid and by establishing the relations be-
tween neighboring grid points. A severe disadvantage of the
FDTD is that numerical dispersion is introduced through spa-
tial discretization [1, 2]. The FTM has first been developed
for physical modeling sound synthesis [3]. It represents the
solution of a multidimensional system through its eigenfunc-
tions. Unfortunately, the calculation of these eigenfunctions
becomes rather involved for irregular domains. However, it
is a great advantage of the FTM that it does not exhibit dis-
persion.

Considering these two methods, the following mixed
modeling approach becomes apparent: Subdivide an irreg-
ularly shaped spatial domain into rectangular regions, where
the FTM is applied, and into the remaining irregular re-
gions, where the FDTD method is applied. The calculation
of eigenfunctions for the FTM is easy in for rectangular do-
mains, while the total dispersion effects resulting from the
FDTD method are reduced if it is only applied in the irregu-
lar border regions. The crucial point in such a spatial subdi-
vision is the physically correct description of the block inter-
faces for a smooth transition between the different numerical
methods. A general approach for establishing these interface
conditions is presented here. The wave equation in two spa-
tial dimensions is chosen as an example, although the general
method is applicable to other PDEs and to higher dimensions.

This mixed modeling approach has first been presented in
a simplified form for spatially one-dimensional (1D) prob-
lems in [4]. An extension to two-dimensional (2D) block
based physical modeling with the FTM only has been shown
in [5, 6]. This contribution presents 2D mixed modeling with
the FTM and FDTD method based on a more general inter-
face condition. Sec. 2 introduces the mathematical tools for
the wave equation. The interface conditions for block based
modeling are established in Sec. 3 and a simple example is
presented in Sec. 4.

2. WAVE EQUATION

Under certain simplifications, the propagation of sound in the
air is described by the following two physical principles

−
∂
∂ t

p(~x, t) = ρc2∇~v(~x, t) equ. of continuity,

−∇p(~x, t) = ρ
∂
∂ t

~v(~x, t) equ. of motion ,

(1)

where ~v(~x, t) = v1(~x, t)~e1 + v2(~x, t)~e2 is the particle velocity
and p(~x, t) is the sound pressure. Time is denoted by t and
the 2D space coordinates by ~x = [x1, x2]

T . The spatial unit
vectors are ~e1 and ~e2. The nabla operator is given by ∇ and
the superscript T denotes transposition. The mass density of
air ρ and the speed of sound c are assumed to be constant.

The pair of PDEs (1) can be given in more general form
as a system of coupled PDEs

[

B1
∂

∂x1
+B2

∂
∂x2

+B3
∂
∂ t

]

y = 0 (2)

with the specific system matrices and the vector of out-
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comes y

B1 =

[ 1 0 0
0 0 1
0 0 0

]

, B2 =

[ 0 1 0
0 0 0
0 0 1

]

, (3)

B3 = −





0 0 c−2

1 0 0
0 1 0



 , y =





v1(~x, t)
v2(~x, t)

− 1
ρ p(~x, t)



 . (4)

The identity between (1) and (2-4) can be shown e.g. by
introducing the velocity potential as an intermediate quan-
tity [7]. The assignment of B1, B2, B3, and y according
to (3,4) is not unique, but it is suitable for the definition of
the interface conditions.

3. BLOCK BASED MODELING

In most practical cases, a PDE is defined within a finite spa-
tial region denoted by V . For the purpose of block based
modeling, V may be divided into subregions. Fig. 1 shows
a subdivision of the 2D region which is considered as an ex-
ample in Sec. 4. This section introduces the interface condi-
tions between the subregions in general form and derives the
port connections for mixed modeling with different numeri-
cal methods.

PSfrag replacements

V1 V2 V3

∂V1/2 ∂V2/3

~nb~nb

~nb

~nb

Figure 1: Irregular domain V composed from a simple rect-
angle V2 and two segments of a circle V1 and V3.

3.1 Interface Conditions
The interface conditions between subregions like the ones
shown in Fig. 1 are introduced here for PDEs of the general
form (2). The following assumptions are required:
• The PDE (2) holds for the complete spatial region

V = V1 ∪∂V1/2 ∪V2 ∪∂V2/3 ∪V3 .

• The solutions of the PDE in V are elements of a Sobolev
space which ensures the weak differentiability in V with
respect to the differential operator in (2).

Now define the normal component of the differential opera-
tor of (2) by

Bn = n1B1 +n2B2 +n3B3 (5)

where~nb = [n1, n2, n3]
T is the normal vector on the interface

region.

Then it can be shown [8, 9, 10] that the following conti-
nuity condition holds at the interface ∂V1/2

lim
~x→~xb
~x∈V1

Bny+ lim
~x→~xb
~x∈V2

Bny = 0. (6)

Similar conditions hold for the interface ∂V2/3. The normal
components Bn in each region are defined with respect to
the corresponding orientation of the normal vector ~nb (see
Fig. 1).

These very general interface conditions are now special-
ized to the wave equation, i.e. to the case where (3,4) hold.
Furthermore, a rectangular region like V2 with [0, l1]× [0, l2]
is considered (see Fig. 2). Depending on each of the four
sides of the rectangle, the normal vector~nb is given by either
±~e1 or ±~e2 and Bn results in either

Bn = ±B1 or Bn = ±B2 . (7)

Evaluating the continuity condition (6) for (7) with B1, B2,
and y according to (3,4) results in conditions for

yn(~x, t) = Bny(~x, t), (8)

where

yn(~x, t) =

[ v1(~x, t)
−p(~x, t)/ρ

0

]

(9)

on the right hand side of vertical boundaries (~x = [const,x2]
T )

and

yn(~x, t) =

[ v2(~x, t)
0

−p(~x, t)/ρ

]

(10)

on the upper side of horizontal boundaries (~x = [x1,const]T ).
The orientation of x1 and x2 is assumed as in Fig. 2. These
conditions require the continuity of the normal component of
the velocity (either v1 or v2) and the continuity of the sound
pressure (for constant density ρ).

This result is physically intuitive for this simple example.
However the general formulation in (6) holds also for other
shapes of the spatial region V , other divisions of V into sub-
regions, and other PDEs, as long as the initial assumptions
are fulfilled.

3.2 Boundary Conditions
Since the vectors yn(~x, t) from (8) describe the behavior of
the solution of (2) at the boundary, they appear also in the
definition of the boundary conditions. In homogenous form,
they can be written as

fT
b yn(~x, t) = 0 . (11)

where the boundary operator fb defines the kind of boundary
condition. Simple examples are

fT
b = [0 1 0], (12)

which sets the pressure at the boundary to zero and

fT
b = [R −1 0], (13)

which introduces a fixed relation between pressure and ve-
locity.
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3.3 Port Connections
The continuity condition (6) corresponds to the Kirchhoff
laws at the ports of an electrical network. It is fulfilled at
every instant of the continuous space and time variables. For
a discrete realization, two major problems arise:
• time discretization

Any discrete time model has to be computable. To this
end, the variables in the continuity condition (here veloc-
ity and pressure) have to be organized into input and out-
put variables. A meaningful connection of two modeling
blocks requires, that their input values in one time step
can be computed from their output values in preceeding
time steps.

• space discretization
A discrete space realization ensures the validity of the in-
terface conditions only at discrete points of the interface
regions. The input and output variables are thus restricted
to a discrete set of locations. The numerical methods for
each spatial subregion have to specify their input and out-
put variables at these locations.

These problems are now discussed in more detail.

3.3.1 Time Discretization

The organization of the port variables into input and output
variables and their discretization is most easily accomplished
if all blocks are implemented for a specific geometry. Then
the block models can be custom designed to meet the inter-
face conditions (6) where required. However it is much more
practical to design a set of suitable blocks beforehand and
store them in a block library. Then many different spatial
regions can be assembled from the library elements. Solv-
ing a new problem with a new spatial region requires only
to rearrange existing blocks, not to redesign the blocks from
scratch. For example, the block library for a problem like in
Fig. 1 would contain two different elements, a rectangle and
a segment of a circle. These library elements have to be de-
signed independently from each other. Interface conditions
to other blocks cannot yet be considered in the design phase.
However, the implementation of these blocks by a suitable
numerical method (FDTD, FTM, etc.) requires a properly
posed problem in each subregion. The best one can do in this
situation, is to design these blocks individually for standard
boundary conditions (e.g. Dirichlet, Neumann, or free field
conditions). Whenever these blocks are assembled to form a
specific spatial region, the resulting interface conditions have
to be fulfilled by suitable block interfaces. Here, the aspect of
computability of output values from input values is more im-
portant than the discrete time values themselves. Therefore
the notation of continuous time signals is kept with the tacit
assumption, that all time-dependent variables are represented
by their respective samples.

3.3.2 Space Discretization

The connection of modeling blocks requires the exchange of
variables at discrete spatial positions. For the rectangular re-
gion considered above, possible spatial sampling points are
indicated in Fig. 1. For FDTD and other methods based on
regular grids, these sampling points are simply the grid points
on the boundary. For non grid based methods like the FTM,
the solution has to be evaluated at these points. In the sequel,
only sampling points on the vertical or horizontal boundaries

are considered. They are denoted by~xν , ν = 1 . . .n.

PSfrag replacements

x2

x1
l1

l2

V2

∂V2

Figure 2: Spatial sampling at the boundary of region V2. The
sampling points~xν are denoted by the black dots •.

3.3.3 Port Impedance

The spatial sampling points described above are the locations
where numerical values are exchanged between the (possi-
bly different) models in adjacent spatial regions. Regarding
these locations as ports in the sense of electric circuit the-
ory allows to formulate the interface conditions in terms of
port impedances. The requirement of computability demands
that a part of the port values are input values and the other
part are output values. Here we choose velocity as input and
sound pressure as output variables. Then the input and out-
put values can be assembled into the vectors vb(t) and yb(t),
respectively

vb(t) = [vb(~x1, t) . . . vb(~xn, t)]T (14)

yb(t) = [yb(~x1, t) . . . yb(~xn, t)]T (15)

with

vb(~xν , t) = v(~xν , t) , ν = 1, . . . ,n (16)
yb(~xν , t) = −p(~xν , t)/ρ . (17)

Through (14, 16) and (4), vb(t) and yb(t) are defined in
terms of yn(~xν , t). A relation between vb(t) and yb(t) is eas-
ily established in the frequency domain by Laplace transfor-
mation with respect to time, i.e. Vb(s) = L {vb(t)} and sim-
ilar for Yb(s). Then the input-output behavior at the bound-
ary points can be expressed in terms of the port impedance
matrix Zb(s) as

Yb(s) = Zb(s)Vb(s) . (18)

The port impedance matrix describes the relation between a
pair of input and output values at one port. It is mainly de-
termined by the boundary conditions of the continuous sys-
tem (2), but it also includes spatial sampling effects. The
dependence on the boundary conditions is demonstrated now
by two simple examples.

Boundary conditions of the form (12) set the pressure
at the boundary to zero and result in the port impedance
Zb(s) = 0. Boundary conditions of the form (13) introduce
a fixed relation between vb(~xν , t) and yb(~xν , t) and result in
the port impedance Zb(s) = R · I. The real value R of the
impedance may be adjusted for free field conditions suitable
for connecting spatial regions. For free field propagation of
acoustic waves, R is equal to speed of sound c.

3.3.4 Block Connections through Ports

The description of interface and boundary conditions by
port impedances has important consequences for block based
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modeling. It concerns especially the design of standardized
modeling blocks which can later be assembled to complex
models (see Sec. 3.3.1). These consequences are listed be-
low.

• The design of modeling blocks with standard boundary
conditions leads to spatially discretized models with sim-
ple port impedances.

• The problem of fulfilling the interface conditions (6) is
transformed to the problem of connecting ports with pos-
sibly different impedances.

• The problem of compatibility between blocks which
are designed according to different numerical paradigms
(mixed modeling) is transformed to the compatibility of
their respective ports.

Matching of port impedances, however, is a well stud-
ied problem, for 1D as well as for MD systems. The so-
called wave digital principle provides proven and general
techniques for this purpose [11, 12]. They have shown to be
applicable also for numerical models in state space and other
structures using so-called Kirchhoff-to-wave-variable (KW)
converters [13, 14].

4. EXAMPLE

As an example consider the propagation of acoustic waves in
the 2D spatial region shown in Fig. 1. It can be decomposed
into subdomains of two different kinds: a rectangle (V2) and
two segments of a circle (V1, V3). The rectangular region
V2 has been realized with a FTM model and is thus free of
numerical dispersion. The segments V1 and V3 have been
realized with the FDTD method, which introduces numeri-
cal dispersion in their respective domains, but can be easily
adapted to curved boundaries. Both kinds of models have
been connected at the interfaces by suitable adaptors, which
are 2D extensions of the ones described in [4].

The simulation results in Fig. 3 demonstrate that this
mixed modeling approach faithfully reproduces the propa-
gation of waves in an irregular structure. The regional sub-
division, introduced for modeling reasons only, is not visible
in the simulation result. More complex geometries can be
easily constructed from these block models, as demonstrated
in [6] for the FTM only.

5. CONCLUSIONS

A mixed modeling strategy for multidimensional systems de-
scribed by linear PDEs has been presented. Its application
has been shown for the 2D wave equation, where different
numerical models were used in separate spatial regions. The
interface conditions between these regions constitute the re-
quirements for the connection of the numerical models. They
can be formulated in a general way through the normal com-
ponent of the differential operator of the underlying PDE.

By considering the spatial sampling points at the inter-
face regions, these interface conditions are interpreted as
ports where input and output values are exchanged between
the numerical models. Then the interface conditions are for-
mulated in terms of port impedances. Thus the problem of
fulfilling interface conditions is reduced to matching port
impedances, which is a well-known topic in one- and mul-
tidimensional circuit theory.
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(a) t = 5ms (b) t = 10ms

(c) t = 12.5ms (d) t = 15ms

(e) t = 17.5ms (f) t = 20ms

(g) t = 22.5ms (h) t = 25ms

Figure 3: Simulation of the wave equation for the irregular domain from Fig. 1. The model is excited in the center with a
band-limited Gaussian impulse and Neumann boundary conditions are applied, resulting in perfectly reflecting walls. The
snapshots are taken at several time instances t, demonstrating the correct behavior of the block based model.
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