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ABSTRACT
Optimal filter families used to discretize a transparent motion
model are constructed in this paper. This model is formulated
as an optical-flow-like linear constraint equation. Accuracy
of the estimation of its parameters heavily depends on the fil-
ter families used to implement it. To optimize filter families
we derive a model dependent optimality criterion based on
transfer functions of separable filter families with given fixed
size. Using a simple optimization procedure, we demonstrate
typical properties of optimal filter sets and state some useful
choices. Exemplarily we show their performance on syn-
thetic and real data from a botanical application.

1. INTRODUCTION

Optical-flow-like linear models are very well known and
have a wealth of applications. In this paper we focus on a
model for two transparent motions introduced by [15] and
further refined by [11]. In this model second order deriva-
tives are applied to an image sequence. We show how to de-
sign these filters adapting a recent optimization scheme [12].

Formulated via so called mixed-motion-coefficients the
transparent motion model is linear and thus can be estimated
using schemes designed for optical flow estimation, see e.g.
[1, 6, 14] for overviews on different estimation techniques.
Similar models have been designed for other complex mo-
tion patterns, where the complexity is due to (i) the motions
of up to four transparent layers [11], and/or (ii) an addi-
tional change of brightness in the layers, which can be due
to an additive source term, an exponential decay, or diffusion
[13]. Optical flow models with physically motivated bright-
ness changes (see e.g. [5]) are special cases thereof.

In Sec. 2 we derive the transparent motion constraint equa-
tion. How to derive an optimization scheme for occuring fil-
ter families is shown in Sec. 3. The general optimization
approach is reviewed in Sec. 3.1. This optimization uses the
ideal parameters estimation outcome in a model formulated
in fourier domain as reference function (Sec. 3.2), thus model
dependent filter families will be derived. The ansatz function
(Sec. 3.3) is based on the transfer functions of the filters in a
family. Consequently we will briefly recapitulate the transfer
functions of consistent spatio-temporal derivatives needed in
this paper (Sec. 3.4). A few examples of optimal filter fam-
ilies are discussed in Sec. 3.5, their performance is tested in
Sec. 4. The impact of the proposed work is demonstrated
using data from a botanical application.
Related work. Due to the well understood properties of
derivative filters for numerics of PDE, the need for filter opti-
mization has not been noticed for quite some time. A collec-
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tion of heuristic filter design approaches can be found e.g. in
the first sections of [7]. During the last decade many authors
investigated filter optimization e.g. [4, 9, 10, 2, 8, 3, 12]. The
optimization strategy used here [12] is capable of optimizing
all filters discretizing a linear model as one filter family. Thus
all filters optimize the same criterion simultaneously. While
filters for single motion optical flow have already been pre-
sented in [12], to the best of our knowledge there is no publi-
cation focusing on filter optimization for transparent motion
estimation.

2. ESTIMATION OF TRANSPARENT MOTION

In this section we recapitulate the derivation of a brightness
constancy constraint equation (BCCE) for two transparent
motions (first presented in [15]). The BCCE for standard,
single motion optical flow is

α(v)g = 0 where α(v) := vx∂x + vy∂y +∂t (1)

with image intensities g, partial derivatives ∂x, ∂y, ∂t in x-, y-,
and t-directions, respectively, and displacement vector v =
[vx,vy]T . We construct a BCCE for transparent motions by
successively applying α to an image sequence g [15]

g(x, t) = g1(x−ut)+g2(x−vt) (2)

A basic calculation reveals that α(u)α(v)g = 0, thus

uxvx∂xxg+(uxvy +uyvx)∂xyg+uyvy∂yyg+
(ux + vx)∂xtg+(uy + vy)∂ytg+∂ttg = 0 (3)

where ∂xxg denotes the second order partial derivative in di-
rection x, etc. Using mixed motion parameters [11]

cxx := uxvx cxy := uxvy +uyvx cyy := uyvy
cxt := ux + vx cyt := uy + vy

(4)

one can rewrite Eq. 3 as

dT p = 0 with p := [cxx,cxy,cyy,cxt ,cyt ,1]T

d := [∂xxg,∂xyg,∂yyg,∂xtg,∂ytg,∂ttg]T (5)

We observe that Eq. 5 is a linear model with parameter vector
p and data vector d. Parameters in such a linear model can
be estimated by a number of standard parameter estimation
schemes used for optical flow estimation (see e.g. [1, 14]).
We implemented a total least-squares scheme, based on the
so called extended or generalised structure tensor [5, 11].
From the parameter vector p we infer velocities u and v by
using the following ’trick’ [11]. First, we interpret the vec-
tors u and v as complex numbers. Then, with the definitions

A0 := cxx− cyy + icxy A1 := cxt + icyt (6)
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u and v are the two solutions of the complex polynomial

z2−A1z+A0 = 0. (7)

3. FILTER FAMILY OPTIMIZATION

3.1 General Approach
The filter optimization scheme we use here operates in the 1.
Brillouin zone1 of the Fourier domain, and allows complex
nonlinear optimizations of filter families [12].

We call a discrete filter family optimal for a model if re-
sults calculated with these filters and results calculated with
ideal operators differ as little as possible. To find these fil-
ters, we minimize a cost function in a weighted L2-Norm.
The cost is the difference between a reference and an ansatz
function. The reference function fr(k̃) is build using trans-
fer functions of continuous (’ideal’) operators; k̃ denotes the
wave vector normalized to Nyquist wavenumber. The ansatz
function fa(k̃,h) is very similar to the reference function, but
is build using transfer functions of discrete operators – fixed
size separable filters. The vector h denotes all free filter co-
efficients of the sought for filter family. As reference and
ansatz functions live in Fourier domain the cost functional
reads

c(h) =

√√√√
∫

w2(k̃)
(

fr(k̃)− fa(k̃,h)
)2 dk̃∫

w2(k̃)dk̃
(8)

Weight function w(k̃) allows to specify statistical importance
of different wave vectors k̃. Generally, optimization has to be
done in the whole first Brillouin zone. The dimension of this
zone depends on the dimension of the data – 3 dimensional in
our case –, not on the dimension of the filter family vectors.
Using a symmetric weight function w(k̃) and symmetric filter
families allows calculation on a fraction of this space. E.g. if
the weight function and all filters are symmetric or antisym-
metric with respect to the coordinate axes only the positive
quadrant (octant etc.) has to be processed. We minimize e(h)
using Matlabs lsqnonlin-function. In all example calcu-
lations we use the weight function

w(k̃) =
D

∏
i=1

cos4(π k̃i/2) (9)

which is the transfer function of a 5-tab binomial filter, which
is often used for simple preprocessing or to build a Gaussian
scale space.

3.2 Reference Function
The model we want to optimize filters for reads dT p = 0 (see
Eq. 5) with the data vector dT = [∂xx,∂xy,∂yy,∂xt ,∂yt ,∂tt ]g.
Calculating d for a basis function of Fourier transform

g(x, k̃) = A(k̃)exp(iπ k̃(x− x0)) (10)

we get the transfer function of d

d̂(k̃) =−π2[k̃2
x , k̃xk̃y, k̃

2
y , k̃xk̃t , k̃yk̃t , k̃

2
t ]

T g(x, k̃) (11)

1area limited by Nyquist wavenumber

As only the orientation of this vector is of relevance in the
model, not its length (see Eq. 5, d must be normal to p), we
normalize this vector fr(k̃) = d̂(k̃)/|d̂(k̃)| or

fr(k̃) =
[k̃2

x , k̃xk̃y, k̃
2
y , k̃xk̃t , k̃yk̃t , k̃

2
t ]T√

k̃4
x + k̃2

x k̃2
y + k̃4

y + k̃2
x k̃2

t + k̃2
y k̃2

t + k̃4
t

(12)

Thus the reference function is independent of input data g.

3.3 Ansatz Function
The Ansatz function is derived in the same way the reference
function is calculated, but instead of using continuous oper-
ators for the derivatives in d from Eq. 5, we use fixed size
derivative kernels

dh = [Dxx,Dxy,Dyy,Dxt ,Dyt ,Dtt ]T g (13)

where the lower index h indicates that dh depends on the
filter coefficients of the second order derivative kernels D...
As above, calculating dh for a basis function of the Fourier
transform (Eq. 10) we get the transfer function of dh (where
all symbols with a hat depend on (k̃) which we suppressed
for ease of notation)

d̂h(k̃) = [D̂xx, D̂xy, D̂yy, D̂xt , D̂yt , D̂tt ]T g(x, k̃) (14)

Again, as only the orientation of this vector is of relevance,
we normalize it: fr(k̃,h) = d̂h(k̃)/|d̂h(k̃)| or

fr(k̃,h) =
[D̂xx, D̂xy, D̂yy, D̂xt , D̂yt , D̂tt ]T√

D̂2
xx + D̂2

xy + D̂2
yy + D̂2

xt + D̂2
yt + D̂2

tt

(15)

Also the ansatz function is independent of the input data g.

3.4 The needed Transfer Functions
All filters optimized in this paper are separable filters com-
posed of 1d odd symmetric or 1d odd antisymmetric filters.
Symmetric filters 2 h(r) = [hR, . . . ,h1,h0,h1, . . . ,hR] have the
transfer function

ĥ(k̃) = h0 +2
R

∑
r=1

hr cos(πrk̃) (16)

Consistent identities (i.e. smoothing kernels) in addition
have to fulfill the constraint

h0 = 1−2
R

∑
r=1

hr (17)

and consistent second order derivatives have to fulfill
R

∑
r=1

hr = 0,
R

∑
r=1

hrr = 0 and
R

∑
r=1

hrr2 = 2 (18)

First order derivatives are odd antisymmetric filters
h(r) = [hR, . . . ,h1,0,−h1, . . . ,−hR] with transfer functions

ĥ(k̃) = 2i
R

∑
r=1

hr sin(πrk̃) (19)

fulfilling the consistency constraints
R

∑
r=1

hr = 0 and
R

∑
r=1

hrr = 1 (20)

For details on consistency of filters we refer to [12].
2Please note that a filter has to be mirrored before it is applied to the data.

Thus the usual notation for a 2-tab derivative in numerics is [−1,1] in filter
notation it is [1,−1].
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3.5 Results: Optimized Filter Sets
In the sections above we defined reference (Eq. 12) and
ansatz functions (Eq. 15) using fixed size separable filters,
a cost functional (Eq. 8 and Eq. 9) to calculate a distance be-
tween them. We minimized this distance for different filter
sizes. When filter sizes are the same in all directions, we
observe that a filter family consists of only four 1d filters:
a first order derivative D1, a second order derivative D2 and
two smoothing kernels I1 and I2. The 3d filters are then

∂xy = D1
x ∗D1

y ∗ I1
t and ∂xx = D2

x ∗ I2
y ∗ I2

t (21)

where ∗ denotes convolution and lower indices denote the
application direction. All filters not introduced above, can be
derived by suitably exchanging lower indices.

For 3× 3× 3-filters these four filters are (c = 6.2e− 09,
cmp. Eq. 8)

I1 = [0.12026,0.75948,0.12026] D1 = [0.5,0,−0.5]
I2 = [0.21478,0.57044,0.21478] D2 = [1,−2,1] (22)

for 5×5×5- filters (c = 1.6e−12)

I1 = [0.01504,0.23301,0.50390,0.23301,0.01504]
I2 = [0.01554,0.23204,0.50484,0.23204,0.01554]

D1 = [0.06368,0.37263,0,−0.37263,−0.063681]
D2 = [0.20786,0.16854,−0.75282,0.16854,0.20786]

(23)

for 7×7×7-filters (c = 2.9e−15; I1, I2, and D2 are symmet-
ric, D1 is antisymmetric, please complete coefficients where
indicated by ”...”)

I1 = [0.00177,0.04910,0.24659,0.40508, ...]
I2 = [0.00178,0.04909,0.24660,0.40506, ...]

D1 = [0.00834,0.11282,0.24936,0, ...]
D2 = [0.03239,0.18112,−0.01601,−0.39499, ...]

(24)

and for 9-tab filters (c = 1.7e−17)

I1 = [0.00023,0.00943,0.07744,0.24047,0.34485, ...]
I2 = [0.00023,0.00943,0.07744,0.24047,0.34485, ...]

D1 = [0.00117,0.02575,0.12138,0.17531,0, ...]
D2 = [0.00502,0.05634,0.11698,−0.05537,−0.24594, ...]

(25)
When filters have different sizes in different directions, for
each size a set of 4 filters is needed. For 5× 5× 3-filters
(c = 1.5e−09, lower indices indicate the size of the filters)

I1
3 = [0.15158,0.69683,0.15158]

I2
3 = [0.14684,0.70633,0.14684]

D1
3 = [0.5,0,−0.5]

D2
3 = [1,−2,1]

I1
5 = [0.00254,0.22288,0.54917,0.22288,0.00254]

I2
5 = [0.00859,0.21323,0.55638,0.21323,0.00859]

D1
5 = [0.03885,0.42230,0,−0.42230,−0.03885]

D2
5 = [0.16643,0.33429,−1.00143,0.33429,0.16643]

(26)

and for 7×7×5-filters (c = 5.0e−13)

I1
5 = [0.01534,0.23312,0.50306,0.23312,0.01534]

I2
5 = [0.01533,0.23314,0.50306,0.23314,0.01533]

D1
5 = [0.06433,0.37134,0,−0.37134,−0.06433]

D2
5 = [0.20875,0.16500,−0.74749,0.16500,0.20875]

I1
7 = [0.00149,0.04651,0.24630,0.41140, ...]

I2
7 = [0.00154,0.04643,0.24639,0.41129, ...]

D1
7 = [0.00731,0.11035,0.25737,0, ...]

D2
7 = [0.02945,0.18576,−0.00811,−0.41419, ...]

(27)

3×3×3 5×5×5 7×7×7 9×9×9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Transfer functions of 1d smoothing filters of the
indicated filter families.
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Figure 2: Transfer functions of second order derivatives cal-
culated from the 1d filters of the indicated filter families.
Red: −π2k̃2Î1, and −π2k̃2Î2, blue: iπ k̃D̂1, green: D̂2.

We observe that the distance measure c (cmp. Eq. 8) drops
about 2 to 3 orders of magnitude when all filter sizes are in-
creased by 2. Further, smoothing kernels I1 and I2 become
more and more similar, the larger the filters are.

In Fig.1 the transfer functions of the 1d smoothing kernels
Î1, and Î2 are plotted. We observe that (inherent) smoothing
increases rapidly with filter size. In Fig.2 the transfer func-
tions D̂2, iπ k̃D̂1, −π2k̃2Î1, and −π2k̃2 Î2 are plotted. They
are all second order derivatives. This plot is inspired by [3].
We observe that the larger the filters are, the better the deriva-
tive kernels approximate derivatives of the smoothing kernels
in the same sense like Derivative-of-Gaussian filters are con-
structed. While [3] directly optimizes this behavior based on
sampling theory reasoning, we get it without any assump-
tions on the filters, but via the purpose they are used for. For
large filters where all filters have the same size3, results from
[3] and the ones we get are comparable. Then (and only then)
the method [3] is preferable due to its much simpler, 1d opti-
mization concept. But especially when filter sizes are not the
same in each direction, e.g. when the temporal reach of the
method has to be limited, results are quite different. This can
be seen when comparing the filters in the 5×5×3-filter fam-
ily with the filters in the 3×3×3- and the 5×5×5-filter fam-
ily. In the 5×5×3-filter family the 5-tab filters try to correct
the errors introduced by the 3-tab filters. Consequently there
is model specific cross talk between filters applied in differ-
ent directions. This effect gets less dramatic, when filter sizes
increase, compare 7× 7× 5-filter family with 5× 5× 5 and
7×7×7 versions.

4. EXPERIMENTS

Experimental results have been obtained by using a synthetic
image sequence with ground truth and a sequence from a
botanical application (see Fig.4).

4.1 Synthetic Sequence
The image sequence used in the experiments consists of two
motion layers. Each layer is generated by moving given ba-
sic patterns. The first motion layer g1 (cmp Eq. 2) is gen-

3and when the weight function in the error norm is symmetric wrt. all
coordinate axes
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erated by moving such a pattern with known ’actual’ veloc-
ity ua = [0,−1]T , the second layer g2 via va = [1,1]T . We
use integer shifts in order to avoid interpolation errors. In
the experiments analyzing systematic errors the optimized
filters produce using the estimation scheme from [5], we
use smooth noise patterns as depicted in Fig.3. They are
static i.i.d. noise patterns smoothed by a 5-tab binomial fil-
ter [1,4,6,4,1]/16 applied in x- and y-direction. No time-
varying noise has been added to the sequences, and there-
fore, errors presented in Sec. 4.3 are systematic errors only,
coming from the filter discretization and estimation process.

4.2 Error Measures
For the estimation of optical flow the most popular error mea-
sure is the angular error Ev (see [1], eq. 3.38) defined by

Ev = arccos(rT
a re) (28)

where the lower index of E indicates, which velocity is used
to obtain this error, ra = [vx,a,vy,a,1]/(v2

x,a + v2
y,a +1)1/2 is

the known (’actual’) ground truth spatio-temporal velocity
vector of length 1 and re = [vx,e,vy,e,1]/(v2

x,e + v2
y,e +1)1/2 is

the estimated velocity vector. A similar definition holds for
velocities u.

4.3 Results
We tested how well the optical flow fields are estimated by
using a total-least-squares scheme [5]. We used several filter
sets: central differences (3×1×1), 3-tab optimized (3×3×
3), 5-tab optimized (5× 5× 5), 7-tab optimized (7× 7× 7),
and 9-tab optimized (9×9×9) filters (cmp. Sec. 3.5).

We observe that errors are rather high for central differ-
ences and 3-tab optimized filters. Using 5-tab optimized fil-
ters, the errors drop about 1-2 orders of magnitude and an-
other 1-2 orders of magnitude for 7-tab and 9-tab filters, re-
spectively. The systematic errors are then much smaller than
usual errors introduced by noise or model errors.

4.4 Real Sequence
The sheath region of a pine needle (see Fig.4) consists of a
semitransparent layer, becoming more and more opaque the
closer we are to the base of the needle. Motion underneath
this layer shall be measured in order to quantify local growth.
The size of the growth zone depends on environmental pa-
rameters like temperature, humidity etc. In the current data
set only rigid motion is visible, indicating that the growth
zone is completely hidden in the opaque region at the base
of the needle. In future data sets the growth zone is expected
to be more elongated and thus be visible in the transparent
region. In Fig.4 motion fields estimated using 3× 1× 1,
5× 5× 5, 7× 7× 7, and 9× 9× 9-filters are shown. The
motion field estimated using 3×3×3-filters looks identical
to the one where 3× 1× 1-filters are used. Motion vectors
longer than 4 pixels/frame are cut off for better visualization
as a pine needle can only grow about half that fast. We ob-
serve that using simple central differences (3×1×1-filters)
or 3×3×3-filters, reliable results can be achieved nowhere
in the transparent region. Only in the small region on the
lower left of the images acceptable motion vectors are ob-
tained, even though they appear to be too short. No cov-
ering layer (semitransparently) occludes the moving needle
there. All other estimated motion vectors are too long and

3×1×1 3×3×3 5×5×5

Eu=1.7e−0 Eu =6.5e−1 Eu=2.2e−2
Ev =9.5e−0 Ev =4.2e−0 Ev =1.8e−2

7×7×7 9×9×9

Eu=3.4e−4 Eu=1.2e−5
Ev =3.1e−4 Ev =1.4e−5

Figure 3: Flow fields using different filter sets. Filter sizes as
indicated. Motion vectors are scaled by a factor 10. Errors
Eu and Ev are angular errors (Eq. 28) in degree.

are thus not displayed. The larger the optimized filters, the
larger and visibly more accurate the motion fields become.
More vectors appear in the correct length range. At the right
and towards top and bottom of the needle the motion fields
become less accurate, because the semitransparent layer be-
comes thicker and thus more opaque there; signal to noise
ratio drops severely.

Part of the positive effect of larger filters comes from the
additional inherent smoothing. In order to test this, we pre-
smoothed the data in all coordinate directions using the 9-tab
filter I1 from Eq. 25. We then estimated the motion using the
3× 1× 1-filter set (cmp. Fig.5). If the better performance
came from the smoothing only, the result now should resem-
ble the result using 9×9×9-filters. But it remains below the
performance depicted in Fig.4.

5. CONCLUSION AND SUMMARY

In this paper we demonstrated how to optimize filter families
used to discretize a transparent motion model. The ansatz
and reference functions are derived from the orientation of
the data vector of the linear motion model. The resulting
separable, fixed size filter families are similar to the ones in-
troduced in [3], if (and only if) all sizes of 1d filters in the
family are the same and the weight function used in the cost
functional is symmetric. Then smoothing kernels and inher-
ent smoothing of derivative kernels must match across all fil-
ters applied in the same direction. The optimization scheme
from [3] optimizes this behavior, thus – in this special case
– it is preferable due to its simpler, 1d implementation. In
all other cases, the optimization procedure put forward here
yields better filter kernels, best adapted to the model they are
used in. E.g. when filter sizes vary, larger filters try to com-
pensate errors introduced by smaller ones. 1d optimization
independent from the model to discretize is then no longer
applicable. In addition to the filter coefficients, this paper
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Figure 4: Growing pine needle. Top two images: 1st

and 100th image of the sequence, the frames indicate the
256× 128 sheath region. Then from top to bottom: mo-
tion estimation results on the sheath region using 3× 1× 1,
5×5×5, 7×7×7, and 9×9×9-filters. Vectors longer than
4 pixels/frame are cut off. Vectors are scaled by a factor of 4.

demonstrates the reduction of systematical errors in trans-
parent motion estimation using these filters. The error drops
about 1-2 orders of magnitude when increasing filter size by
2 tabs. But the larger the filters are, the more smoothing
they introduce, reducing spatio-temporal resolution of the
estimated motion field. If regularization has to be small in
a given application a trade off between small filter size and
small systematical error has to be found.

Figure 5: Motion field from growing pine needle using data
presmoothed by 9-tab I1 (Eq. 25) and 3×1×1-filters. Vec-
tors longer than 4 pixels/frame are cut off. Vectors are scaled
by a factor of 4.

REFERENCES

[1] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance
of optical flow techniques. International Journal of Computer
Vision, 12(1):43–77, 1994.

[2] M. Elad, P. Teo, and Y. Hel-Or. Optimal filters for gradient-
based motion estimation. In ICCV’99, 1999.

[3] H. Farid and E. P. Simoncelli. Differentiation of discrete
multi-dimensional signals. IEEE Trans Image Processing,
13(4):496–508, April 2004.

[4] H. Farid and E.P. Simoncelli. Optimally rotation-equivariant
directional derivative kernels. In 7th Int’l Conf Computer
Analysis of Images and Patterns, Kiel, 1997.

[5] H. Haußecker and D. J. Fleet. Computing optical flow with
physical models of brightness variation. PAMI, 23(6):661–
673, June 2001.

[6] H. Haußecker and H. Spies. Motion. In B. Jähne,
H. Haußecker, and P. Geißler, editors, Handbook of Computer
Vision and Applications. Academic Press, 1999.

[7] B. Jähne, H. Scharr, and S. Körkel. Principles of filter design.
In Handbook of Computer Vision and Applications. Academic
Press, 1999.

[8] Behz. Kamgar-Parsi, Behr. Kamgar-Parsi, and A. Rosenfeld.
Optimally isotropic laplacian operator. IEEE Trans. Img.
Proc., 8(10), Oct. 1999.

[9] H. Knutsson, M. Andersson, and J. Wiklund. Multiple space
filter design. In Proc. SSAB Symposium on Image Analysis,
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